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Risk Preferences in Strategic Wildfire Decision Making: A
Choice Experiment with U.S. Wildfire Managers

Matthew J. Wibbenmeyer,1,† Michael S. Hand,2,∗ David E. Calkin,2 Tyron J. Venn,3

and Matthew P. Thompson2

Federal policy has embraced risk management as an appropriate paradigm for wildfire man-
agement. Economic theory suggests that over repeated wildfire events, potential economic
costs and risks of ecological damage are optimally balanced when management decisions are
free from biases, risk aversion, and risk seeking. Of primary concern in this article is how
managers respond to wildfire risk, including the potential effect of wildfires (on ecological
values, structures, and safety) and the likelihood of different fire outcomes. We use responses
to a choice experiment questionnaire of U.S. federal wildfire managers to measure attitudes
toward several components of wildfire risk and to test whether observed risk attitudes are
consistent with the efficient allocation of wildfire suppression resources. Our results indicate
that fire managers’ decisions are consistent with nonexpected utility theories of decisions un-
der risk. Managers may overallocate firefighting resources when the likelihood or potential
magnitude of damage from fires is low, and sensitivity to changes in the probability of fire
outcomes depends on whether probabilities are close to one or zero and the magnitude of the
potential harm.
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1. INTRODUCTION

Public land and natural resource managers in
the United States are increasingly responsible for
addressing threats posed by environmental distur-
bances and natural disasters. Wildland fire, floods,
invasive species, and climate change impacts (among
others) often require the involvement of public agen-
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cies to manage the likelihood that a disturbance oc-
curs and mitigate negative consequences when an
incident does occur. Wildland fire managers (and
sometimes managers of floods) may also be called
upon to enhance the beneficial effects while mini-
mizing potential for large and destructive incidents.
Inherent in these responsibilities is risk: outcomes
of environmental disturbances and natural disas-
ters, as well as the effectiveness of potential re-
sponse strategies, are generally not known with cer-
tainty before and during an incident.4 Managerial
responses to risk, and tradeoffs between the costs
and potential benefits of protecting life, property,

4Although responses to natural disturbances, including wildland
fire, involve risk, where managers know the probability distri-
bution for potential outcomes, and pure uncertainty, where the
outcome probabilities are unknown or ambiguous, this study is
confined only to manager responses to risk.
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and natural resources, are important determinants
of the efficiency of government responses to natural
disturbances.

In this article, we ask how public agency man-
agers respond to risk during wildfire incidents, and
whether responses to risk are consistent with strate-
gies that would minimize the expected loss from wild-
land fire incidents. Although the majority of eco-
nomic studies of risk preference rely on expected
utility models, it is well established that individuals
often make decisions that are inconsistent with ex-
pected utility theory;(1)) ignoring this behavior may
result in biased conclusions about preferences for
outcomes related to natural resources.(2) Yet little is
known about how managers acting on behalf of pub-
lic agencies respond to risk, and to what degree ex-
pected or nonexpected utility models describe their
decision making under risk.

Wildland fire provides an interesting labora-
tory for examining public managers’ risk prefer-
ences. Unlike other types of incidents to which
public managers respond, wildland fire events and
fire suppression efforts occur with great frequency
every year. Also, wildfire managers often have
greater capacity to change the likelihood and phys-
ical extent of the disturbance than do managers
of other natural disturbances, such as hurricanes,
earthquakes, etc., in which management responses
are generally limited to mitigating consequences.
Wildfire management can consume significant re-
sources and account for large portions of pub-
lic land management agency budgets. In addi-
tion, suppression costs have been rising for several
decades,(3,4) threatening the ability of the U.S. For-
est Service (USFS) to meet other objectives, such
as recreation, landscape restoration, and wildlife
management.(5)

Managerial responses to risk from wildland fire
occur within a complex decision-making environ-
ment. Decisions in wildfire management are deter-
mined in part by institutional rules, regulations, and
management directives,(6) and interactions between
managers and the community can affect options
available for responding to a fire.(7) Social and po-
litical pressure can play a role in how intensively
managers respond to fires,(8) and managers have ex-
pressed concern that political pressures and an in-
creasing array of policies and rules may limit options
for responding to fire.(9) Further, the incentives faced
by managers may encourage aggressive suppression
and discourage consideration of the beneficial effects
of wildland fire.(10−12)

Manager decisions also occur within a context of
behavioral biases, heuristics, and risk attitudes. Re-
cent research has demonstrated that loss aversion,
discounting, and status quo bias are significant factors
in how wildfire managers make decisions.(13) This
finding supports a broader view that actions (and in-
action) by public agency managers are subject to bi-
ases that can result in suboptimal outcomes when
viewed from a social welfare perspective.(14−15)

This study uses responses to a choice experi-
ment (CE) survey of fire managers to estimate risk
preferences when suppression strategies involve risks
to structures, watersheds, and firefighting personnel.
Results indicate whether more cost-effective sup-
pression efforts can be achieved through more effi-
cient responses to risk, and have implications for a
wide range of government responses to natural and
man-made disasters and disturbances.(16) We antici-
pate that this line of research will help improve risk
management efforts for natural disturbance incidents
and policies designed to align manager decisions with
efficient outcomes.

2. WILDLAND FIRE DECISION MAKING
UNDER RISK

The current policy guidance for U.S. federal
wildfire managers states: “Notwithstanding protec-
tion of life, the cost of suppression, emergency sta-
bilization and rehabilitation must be commensurate
with values to be protected.”(17) One interpretation
of this statement is that resources should be invested
in wildfire management until the marginal benefits
equal marginal costs.(11) This interpretation is con-
sistent with models of efficient wildland fire man-
agement in which the objective is to minimize the
sum of suppression costs and net value change due
to fire.(18−20)

Efficient strategies for wildland fire management
that incorporate risk have also been characterized
in the literature.(21−24) These strategies seek to min-
imize the sum of expected suppression costs and net
value change, and require that managers are risk neu-
tral in their decision making. That is, efficiency in
wildland fire management supposes that managers
are coolly analytical decisionmakers, recalculating
expected impacts of a fire when conditions change,
and making proportional changes in strategy that
are free from biases, risk aversion, and risk seek-
ing. This assumption is akin to disengaging the expe-
riential and affective mode of information process-
ing described by Epstein(25) and Slovic et al.(26) in
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complete favor of rational and analytic processing of
risk information.

2.1. Nonexpected Utility Model of Wildland
Fire Management

In practice, we know that most decisions will
involve a role for both analytical and affective in-
formation processing. Thus, in this study we inves-
tigate the degree to which wildfire managers are re-
sponsive to various factors affecting risk. Further, we
ask whether responses to these factors are consistent
with the behavior that would minimize the expected
economic losses due to wildfire, or whether they are
better described by expected or nonexpected utility
models. In this context, expected economic loss is ex-
pressed as the probability-weighted sum of potential
damage to homes and degradation of watersheds re-
sulting from wildfire.

The majority of economic studies of risk pref-
erences rely on an expected utility model, in which
preferences over outcomes are nonlinear but pref-
erences over probabilities are linear;(22−24) however,
behavior that is inconsistent with expected utility
theory is well documented. Prospect theory(1) and
its allied theories rank-dependent utility theory(27)

and cumulative prospect theory,(28) referred to col-
lectively as nonexpected utility theories, allow pref-
erences for risky decisions to be nonlinear in both
outcomes and probabilities. These theories help ex-
plain the observed “fourfold” pattern of risk atti-
tudes, wherein individuals are risk averse over low-
probability losses and high-probability gains, and
risk seeking over high-probability losses and low-
probability gains.

Shaw and Woodward(2) argue that many deci-
sion problems in natural resource economics can be
described by nonexpected utility models of choice,
where the assumption of preferences that are linear
over probabilities is violated due to the common im-
portance of ambiguity and low probabilities. In the
fire management context, managers face consider-
able ambiguity with respect to social preferences, fire
probabilities, and potential fire outcomes to a vari-
ety of resources, and they must frequently consider
low-probability high-consequence events. We know
of only a handful of CE studies that have evalu-
ated preferences over risky attributes using models
that allow for nonlinear preferences over probabili-
ties.(29−31) Although previous studies have examined
the role of decision heuristics in wildfire manage-

ment,(13,14) no study has yet provided a detailed ac-
count of wildfire manager risk preferences.

We model manager risk preferences by com-
bining a random utility model of choices of multi-
attribute goods(32−34) and a nonexpected utility
framework where the probability of an outcome may
be weighted by individuals. A similar treatment of
this type of model was developed by Hensher et al.(31)

The basic choice that managers must make is be-
tween strategies that yield utility based on poten-
tial outcomes. Respondents were asked to choose the
strategy expected of them in their professional ca-
pacity; thus, utility represents a form of professional
utility.

Each strategy n can result in several potential
outcomes (i) that occur with probability p. A man-
ager receives utility vi (xi |β) when outcome i occurs,
where xi is a vector of outcome characteristics and
β is a vector of utility function parameters that de-
scribe preferences over xi . Thus, the utility derived
from strategy n is a function of the utility associated
with each outcome and the probability that each out-
come occurs, or Vn = f (π(pi ), v(xi |β)), where π(pi )
is a probability weighting function that describes how
managers weight each potential outcome.

Managers choose among the menu of strategies
the one where Vn is highest. In a random utility
model, given an unobserved random component to
choices (ε), the probability of observing a choice of
strategy m is,

Pr (m = 1) = Pr (Vm + ε > Vn + ε) ∀m �= n. (1)

To summarize, Equation (1) describes how man-
agers evaluate the utility associated with different
outcomes by making tradeoffs between different at-
tributes (based on the β parameter vector), how man-
agers weight the likelihood of potential outcomes as-
sociated with each strategy (the function π(pi )), and
a decision rule for choosing among strategies.

3. ECONOMETRIC METHODS

To explore decision making under risk in the
context of wildfire management, we analyze two
econometric choice models. By specifying functional
forms for the arguments in Equation (1), these mod-
els use observations of strategies chosen by man-
agers (in a hypothetical wildfire incident) to relate
the characteristics of each strategy to the proba-
bility of choosing a strategy. Econometric analy-
sis is useful in this context where the model and
experimental design necessitate that choices are a
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function of multiple attributes, and when we seek
parametric estimates of utility function and probabil-
ity weighting parameters. We estimate a categorical
model and a probability weighting model, which pro-
vide descriptive accounts of fire manager risk pref-
erences. The estimated models allow fire manager
preferences over risky outcomes to be nonlinear over
outcomes and probabilities, as in nonexpected utility
theories such as prospect theory. We estimate both
models using the conditional logit model of proba-
bilistic choice, which follows directly from the ran-
dom utility model of choice.(32−34)

We specify a functional form for the strategy
utility function, adapted from Kahneman and Tver-
sky,(1) as the weighted sum of the utility of each
outcome:

Vn =
∑

i

π (pi ) ν(xi ). (2)

Here, ν(xi) is the value a manager would re-
ceive from each potential outcome i of strategy n,
and π(pi ) represents the decision weight applied
to the probability of outcome i. This function can
accommodate the special case where ν(xi) is lin-
ear and π(pi ) = pi ; testing these conditions indicates
whether nonexpected utility is an appropriate way
of modeling wildfire manager decision making under
risk.

Wildfire managers’ choices among potential
management strategies may vary based on the at-
tributes of those strategies and the characteristics of
the wildfires to which those strategies will be applied.
For example, a wildfire manager may be less will-
ing to select a strategy offering a lower probability of
success when faced with a very threatening wildfire.
Let qk equal the probability that wildfire k reaches
a single resource-at-risk (in absence of suppression
efforts), and let sn equal the probability that a given
strategy will be successful in protecting that resource.
The nonexpected utility provided by strategy n in
scenario k can be expressed as:

Vnk = (1 − π(qk))vn0 + πq(qk)πs(sn)vn0

+πq(qk)(1 − πs(Sn))vn1.
(3)

where vn0 is the value of reduced-form utility under
the status quo (i.e., when the endowed level of the
resource-at-risk is preserved), and vn1 is utility when
the fire event occurs (i.e., when the suppression strat-
egy fails and the fire burns the resource-at risk). No-
tice that the resource can preserve its status quo value
in two ways: the fire may fail to reach it, or the fire

may reach it and the suppression strategy may be suc-
cessful in protecting it.

In the context of the CE design presented in the
next section, vn0 and vn1 each contain a vector of
deterministic attributes of strategy k that occur with
certainty (Xn, which is identical for outcomes vn0 and
vn1). In addition, vn1 accounts for the impact on util-
ity of the probabilistic loss to the resource-at-risk (zk,
the value lost when the strategy fails and the fire dam-
ages the resource). Specifying utility as a linear func-
tion of outcome factors and utility parameters gives
forms of the utility function when the event does and
does not occur:

νn0 = X′
nβ, and

νn1 = X′
nβ + zkδ,

(4)

where δ is a typically negative parameter represent-
ing the change in utility when resource zk is lost. Af-
ter collecting terms, the random utility problem for
wildland fire strategy choices becomes:

Vik = X′
nβ + πq(qk)(1 − πs(sn))zkδ. (5)

In this study we are interested in whether man-
agers’ choices among strategies are consistent with
the nonexpected utility presented in Equation (1),
and the specific formulation of this model presented
in Equation (4). Under the special case of expected
utility theory (where π(pi ) = pi in Equation (1)),
strategy choices would be consistent with the min-
imization of expected economic losses from wild-
fire. We follow the example of van Houtven et al.(29)

and investigate these questions by estimating cate-
gorical and parametric probability weighting func-
tion econometric models that examine preferences
over different probabilities and values-at-risk.

3.1. The Categorical Model

The categorical model describes fire manager
decisions over risky outcomes through the inclu-
sion of separate dummy variables for each combina-
tion of resource-at-risk (zk), probability fire reaches
the resource-at-risk (qk), and probability of strat-
egy success (sn). Comparing the parameter estimates
across different combinations of factors affecting risk
can indicate whether changes in these factors result
in choices consistent with minimization of expected
economic loss.

Incorporating the categorical variables, the util-
ity function estimated in the categorical model is
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expressed as follows:

Vn = Xnβ
′ + Rn,kδ

′, (6)

where Xn is a vector of deterministic attributes of the
fire management strategy and Rn,k is a vector of cat-
egorical variables representing all possible combina-
tions of (1 − sn), qk, and zk, excepting combinations
omitted as reference cases.5 Values of qk and zk are
scenario-specific and therefore do not vary among
strategies offered to address a particular wildfire sce-
nario. The base case for the categorical model is cre-
ated by omitting all combinations of (1 − sn) × qk ×
zk where sn takes its maximum value.

Estimates of the δ parameter vector form the ba-
sis of tests of three hypotheses about sensitivity to
differences in the level of value-at-risk, probability of
strategy success, and probability that the fire reaches
the value-at-risk.

H1: Respondents are not sensitive to changes
in factors affecting risk (value-at-risk, burn
probability, and probability of success).

Tests of H1 are constructed by comparing the
terms in δ across different levels of (1 − sn), qk, and zk

while holding the other two factors constant. Define δ

as the parameter associated with the categorical vari-
able in Rn,k with given levels of (1 − sn), qk, and zk.
Respondent sensitivity to differences in value-at-risk
across scenarios k and k + 1 is tested by evaluating
whether:

δsn,qk,zk − δsn,qk,zk+1 = 0. (7)

If the test statistic in the left-hand side of Equa-
tion (7) equals zero, then we cannot reject the
hypothesis H1 that respondents are sensitive to dif-
ferences in value-at-risk. Because values of δ are typ-
ically negative, given that they represent the utility
of an increase in expected loss, positive values of
the test statistic indicate greater aversion to select-
ing strategies with reduced probability of success in
scenarios with greater value-at-risk. Similar statistics
can be constructed across varying levels of qk and sn.

If managers are sensitive to value-at-risk, burn
probability, and probability of success, a stronger hy-
pothesis is that they react to changes in these vari-
ables in a manner consistent with minimization of ex-
pected economic loss.
5For simplicity, we present the econometric framework with one

resource-at-risk; however, the choice experiment application de-
scribed in the following section includes two resources-at-risk:
homes and a highly valued watershed. In our results, categori-
cal variables relevant to homes and watershed are represented
by Hs,q,z and Ws,q,z, respectively.

H2: As factors affecting risk (value-at-risk,
burn probability, and probability of success)
increase, estimated declines in the utility of a
strategy are proportional to changes in calcu-
lated expected economic losses.

Define additional expected economic loss rela-
tive to the reference case as (0.90 − sn) × qk × zk,
because reference categories in this application are
combinations of (1 − sn), qk, and zk where sn equals
its maximum value, 0.90. This quantity is calculated
for each value of (0.90 − sn) × (qk) × zk. Then the
relevant test for H2, again using sensitivity to value-
at-risk as an example, is:(

(0.90 − sn) × qk × zk

(0.90 − sn)× qk × zk+1)

)
×δsn,qk,zk+1 − δsn,qk,zk = 0. (8)

If the left-hand side of Equation (8) is greater
(less) than zero, then the estimated utility change
is smaller (larger) than the change in expected loss.
This indicates that managers are less (more) sensi-
tive to changes in value-at-risk than would be consis-
tent with minimization of expected economic losses.
Similar test statistics can be constructed for compar-
isons over changes in sn or qk, holding other factors
constant.

For probability of success, which is measured in
this application across more than two attribute levels,
we are also interested in whether respondents value
decreases in probability of success proportionally to
the increases in expected loss those changes in prob-
ability of success imply. That is, we are interested in
whether respondents weight changes in probability
of success nonlinearly depending upon where in the
probability spectrum those changes occur, consistent
with nonexpected utility theory.

H3: Changes in utility relative to expected eco-
nomic loss are constant across adjacent inter-
vals of probability of success.

The relevant test over two adjacent intervals of
probability of success, (sn−1, sn) and (sn, sn+1), is:[

((0.90 − sn−1) × qk × zk) − ((0.90 − sn) × qk × zk)
((0.90 − sn) × qk × zk) − ((0.90 − sn+1) × qk × zk)

]

×(δsn,qk,zk − δsn+1,qk,zk) − (δsn−1,qk,zk − δsn,qk,zk) = 0. (9)

Equation (9) tests whether respondents weight
changes across adjacent probability of success inter-
vals equally, after accounting for the size of those in-
tervals. With value-at-risk and burn probability held
constant, the term in brackets is the ratio of the dif-
ference in probability of success over two intervals,
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or (sn − sn−1)/(sn+1 − sn). If the test statistic is greater
than zero, then the change in probability from sn to
sn+1 is overweighted relative to the change from sn−1

to sn; if the second term is greater (i.e., the test statis-
tic is less than zero), then the sn to sn+1 interval is
underweighted relative to the first interval.

3.2. Probability Weighting Function Model

The probability weighting model integrates con-
cepts from nonexpected utility theory and provides a
more concise description of risk preferences among
fire managers. As explained earlier, risk preferences
under nonexpected utility theory comprise two func-
tions, a value function and a probability weight-
ing function. Accordingly, we allow preferences over
probabilities to follow one of the nonlinear func-
tional forms proposed in the experimental literature.
To gain insights regarding the value function we use
a simple approach that includes categorical variables
to indicate the different levels of each resource-at-
risk.6 This specification can be expressed as follows:

Vn = Xnβ
′ + wδ1 + wδ2 Dz, (10)

where Dz is a categorical variable indicating the
different levels of resource-at-risk (Dz = 0 if z =
zk, Dz = 1 if z = zk+1), and:

w = (1 − πs (s)) πq (q) . (11)

The probability weighting function w estimates
separate weighting parameters for the probability of
strategy success and the probability the fire reaches
the resource, within the functions πs(p) and πq(q),
respectively.7 Also, two resources are at risk within
the application presented in the following section.
Therefore, we estimate four probability weighting
functions: two probability of success weighting func-
tions, and two burn probability weighting functions.

The probability weighting functions we esti-
mate here are based on the single-parameter form8

6The resources-at-risk in this study each have only two levels, so
estimating a parametric value function would not provide any ad-
ditional information over estimating utility parameters for each
category of the resource-at-risk variables.

7In the application presented in the following section two re-
sources are at risk: homes and a highly valued watershed. There-
fore, we estimate separate weighting functions w for homes and
the watershed, and we estimate parameters δ1 and δ2 separately
for homes and the watershed.

8Several other parametric forms for probability weighting func-
tions have been described in the literature, including a two-
parameter form from Prelec,(35) a one-parameter form from

described by Prelec:(35)

π (p) = exp (−(− ln p)γ ). (12)

The parameter γ in this equation controls the
curvature of the probability weighting function.
When γ = 1, π(p) = p. This shape implies per-
fect discriminability, where individuals respond to
all equivalent changes in probability equally. Al-
ternatively, as γ approaches 0, the function begins
to approximate a step function, where probabilities
of 0 and 1 are perceived, but all other probabili-
ties are indistinguishable from one another. Exper-
iments have generally found γ values between 0 and
1, which is consistent with overweighting low prob-
abilities and underweighting high probabilities. This
property, coupled with the certainty effect, results in
the inverse-S shaped probability weighting function
typically observed in experimental studies.

In addition to providing estimates of probabil-
ity weighting parameters, the probability weighting
model provides insight into respondents’ value func-
tions. For example, (δ1 + δ2)/.δ1

indicates the relative
value of protecting the two different levels of the
resource-at-risk (z). Comparing this ratio to the ratio
of two levels of z (i.e., z2/.z1

) provides a measure of
the degree of curvature of respondents’ value func-
tions; risk-averse behavior is associated with concave
value functions.

4. SURVEY DESIGN AND DATA
COLLECTION

This study uses data from a web-based CE ques-
tionnaire of federal fire managers regarding their
managerial preferences toward hypothetical wildfire
management strategies. CE is frequently used to
elicit stated preference data within environmental
valuation studies; in the context of this study, CE fa-
cilitates efficient collection of manager preferences
within a controlled environment designed to reflect
contemporary spatial risk assessment tools familiar
to fire managers.

In a decision support system such as the
Wildland Fire Decision Support System (WFDSS)
used for fire management in the United States,(36)

Tversky and Kahneman,(28) and a two-parameter form from
Gonzalez and Wu.(51) The discrete choice experiment data used
here do not provide sufficient variation in probability values to
estimate two-parameter forms. Of the single-parameter forms,
the one-parameter form provided by Prelec appeared to fit our
data better; therefore, it is the only form presented here.
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Fig. 1. Example wildfire scenario and choice set provided to respondents. Photographs within the scenario supplemented text above the
scenario to indicate potential fire severity within the watershed; in this case, there is potential for moderate-severity fire. Each scenario
provided to respondents was accompanied by four choice sets.

simulated fire probability contours, calculated using a
predictive model of fire spread, are overlaid with spa-
tial identification of values-at-risk. Fire managers are
then asked to consider suppression strategies and the
probabilities they will be successful in containing the
fire. Correspondingly, we elicited managerial pref-
erences toward wildfire suppression strategies using
a two-tiered experimental design consisting of fire

scenarios and strategies. Questionnaires asked man-
agers to respond to a series of choice sets, which pre-
sented potential strategies that could be used to man-
age the fire described in the associated hypothetical
wildfire scenario. An example wildfire scenario and
choice set are provided in Fig. 1. Each questionnaire
consisted of three wildfire scenarios describing vary-
ing levels of risk to a valued watershed, and asked
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Table I. Definitions and Levels of Scenario- and Strategy-Specific Attributes

Attribute Definition Levels

Scenario attributes
h30 30 homes (value of $200,000 on average)

are at risk.
= 1 if yes; = 0 if no. If no, then 5 homes

are at risk.
qh Probability fire will reach homes in

absence of suppression efforts.
0.25; 0.75

mod The highly valued watershed has medium
tree density, although the riparian
zone along the river illustrated has
high tree density. Mixed severity in
nonriparian areas and high-severity
fire in the riparian area is projected.

= 1 if yes; = 0 if no. When the watershed
is at risk for high severity fire, it is not
at risk for moderate severity fire.

high The highly valued watershed has high
tree density throughout, including in
the riparian zone. High-severity
wildfire in nonriparian areas and in the
riparian area is projected.

= 1 if yes; = 0 if no. When the watershed
is at risk for moderate severity fire, it is
not at risk for high severity fire.

qws Probability fire will reach the watershed
in absence of suppression efforts.

0.25; 0.75

Strategy attributes
hprotect Strategy protects homes. = 1 if yes; = 0 if no.
wsprotect Strategy protects the watershed. = 1 if yes; = 0 if no.
probsucc Probability of success if a strategy that

protects homes or the watershed is
chosen.

0.50; 0.75; 0.90

aviation Aviation person-hours. 50; 100; 1,000
ground days Direct line person-days. 0; 100; 3,000
duration Wildfire duration. <14 days; >30 days
cost Wildfire management cost. $0.2 million; $0.5 million; $2 million;

$4 million; $8 million; $15 million

respondents to select a strategy from each of four
choice sets associated with each scenario. Attributes
used in the CE questionnaire are defined as either
scenario-specific or strategy-specific, and definitions
and levels used for each attribute are provided in
Table I.

Scenarios described the current perimeter of
a hypothetical wildfire and its 0.75 and 0.25 burn
probability contours (likelihood of a fire reaching a
given extent projected over the next 14 days, pro-
vided the fire is not suppressed). Located within the
burn probability contours (which were drawn con-
sistently across scenarios), each scenario contained
two values-at-risk: a highly valued watershed and a
group of homes. We varied levels of risk to these at-
tributes by varying the number of homes at risk (5 or
30 homes) and the potential wildfire severity within
the watershed (moderate or high severity), and by
varying the locations of homes and the watershed rel-
ative to the reported fire probability contours. Us-
ing an experimental design, we selected 12 wildfire
scenarios, which described different levels of risk to

homes and the highly valued watershed, to present to
respondents.

The choice sets accompanying scenarios asked
respondents to select from three alternative fire man-
agement strategies the “strategy that you believe best
meets community, agency leadership and political
expectations, and conforms to federal fire and land
management policies.”9 Strategy attributes included

9Respondents were asked to indicate the management strategy
they expected they would pursue in the field. In addition, respon-
dents were separately asked to indicate a “preferred” strategy, or
“the strategy you believe would result in the best long term fire
management outcomes, ignoring community, agency leadership
and political expectations.” In this study, we only report models
using expected strategy as the dependent variable. (A compari-
son of expected and preferred responses with these survey data
can be found in Calkin et al.(52)) Expected management strategy
selections are more likely to reflect the actual choices managers
would make, and thus are more relevant to fire management
outcomes. The models of expected strategy choices also had sub-
stantially better goodness of fit than models of preferred strategy
choices, and tests of responses to risk with preferred responses
yielded highly inconsistent results. For the probability weighting
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suppression cost, expected fire duration, personnel
exposure to hazard, and risk to homes and the highly
valued watershed. Definitions and levels for “Wild-
fire cost” (cost), “Wildfire duration” (duration), and
“Personnel exposure” (aviation and ground days),
which were described as deterministic attributes of
fire management strategies (components of Xn), are
given in Table I.

Risk to the homes and watershed was described
probabilistically based on the chosen strategy’s prob-
ability of success and the base level of risk de-
scribed by the resources’ locations relative to the
fire probability contours. Each management strat-
egy was described as providing protection to homes,
the watershed, both, or neither; resources protected
by each strategy were indicated by the variables
“Protect homes” (hprotect) and “Protect watershed”
(wsprotect). Second, management strategies were de-
scribed as succeeding with a probability given by
the attribute “Probability of success” (probsucc).
For example, if the management strategy protected
the watershed, but not homes, and had a proba-
bility of success of 0.75, the strategy would have
a 0.75 probability of protecting the watershed, but
zero probability of protecting homes. Therefore,
we define probabilities of success with respect to
homes (sh) and the watershed (sws), respectively,
as:

sh = probsucc × hprotect, and (13)

sws = probsucc × wsprotect. (14)

In addition, on the basis of the location of re-
sources relative to fire probability contours, there
would be either 0.25 or 0.75 probability (qk) that
the fire never reached the homes (or the watershed),
even without protection. This two-tiered design, in
which risk enters in both tiers, adds a level of com-
plexity absent in other studies of risk preferences;
therefore, analyses of managerial risk preferences
are somewhat more involved. Due to the complex-
ity, however, we are able to test reactions to various
components and levels of risk that are salient to the
actual sources of risk fire managers must consider in
evaluating various management strategies.

We designed and administered the survey in a
web-based questionnaire following best-practice pro-
cedures described in the environmental choice mod-
eling literature.(37,38) We held a focus group in Mis-

function model, the preferred strategy model estimates generally
failed to converge.

soula, MT to allow fire managers to provide input
into the survey design. Later, at a national fire con-
ference, we pretested the questionnaire with a group
of fire managers to suggest areas where it might
be improved. Beginning in March 2009, the survey
was administered to agency administrators within the
U.S. Forest Service (district rangers and forest su-
pervisors, all of whom have fire management au-
thority) and fire and fuels management professionals
(including U.S. Forest Service Fire Management Of-
ficers, Assistant Fire Management Officers, and fed-
eral land management agency personnel who had
completed higher level courses in fire management
decision making administered by the National Wild-
fire Coordination Group). In total, we sent 2,054 fed-
eral fire managers e-mails asking them to complete
the web-based questionnaire.

5. RESULTS

We received a total of 583 completed surveys,
resulting in an overall response rate of 28.4%.10

Table II summarizes several characteristics of the
sample. The sample primarily consists of Forest Ser-
vice managers with significant experience and/or
some level of seniority within the federal land man-
agement agencies. We specifically targeted fire man-
agers who have decision-making authority, either
in the formulation or execution of fire manage-
ment plans. Agency administrators (generally district
rangers or forest supervisors who are responsible for
developing suppression strategies and objectives con-
sistent with existing fire and land management plans)
comprise 37.7% of the sample, whereas 37.9% of the
sample was made up of fire or fuels management
professionals (those specifically engaged in fire

10Our response rate is within the range, although on the low end,
of typical response rates found in other studies of similar survey
methods, for example, between 22% and 79% for general pop-
ulation surveys;(53) between 20% and 60% for contingent valu-
ation surveys;(54) and between 28% and 86% in a meta-analysis
of survey nonresponses.(55) Wilson et al.(13) obtained a response
rate of 34% with a similar target population. Despite a reason-
able response rate, the possibility remains that respondents are
not representative of the target population, and that nonrespon-
dents have different risk attitudes and preferences. Due to the
narrow time frame for conducting the survey (when managers
are preparing for the fire season, but before they are in the field),
a nonresponse survey was not conducted. Thus, conclusions may
not be representative of all fire managers. Ongoing research us-
ing a more recent survey of fire managers specifically designed
a nonresponse survey into the sample contact plan to more fully
account for potential nonresponse bias and representativeness.
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Table II. Respondent Characteristics

Count Percent Count Percent

Gender Experience
Male 451 77.40% 0–4 years 7 1.2%
Female 132 22.60% 5–9 years 30 5.1%
Total 583 100.00% 10–14 years 45 7.7%

15–19 years 77 13.2%
Current federal grade level 20–29 years 239 41.0%

5–6 13 2.20% 30+ years 185 31.7%
7–8 45 7.70% Total 583 100.0%
9–10 50 8.60%
11–12 202 34.60% Agency
13–15 270 46.30% Forest Service 495 84.9%
SESa 1 0.20% Bureau of Indian Affairs 5 0.9%
Other 2 0.30% Bureau of Land Management 13 2.2%
Total 583 100.00% National Park Service 69 11.8%

Interagency 1 0.2%
Total 583 100.0%

aSenior Executive Service, a pay schedule series including most managerial, supervisory, and policy positions above General Schedule
grade 15.

management). The remainder of the sample con-
sisted of individuals who are not currently in a fire
management position, but have completed advanced
fire management training and likely maintain some
role within fire and fuels management.

5.1. Categorical Model Results and Tests

Table III provides parameter estimates from
the categorical model. Coefficients on each of the
categorical variables provide estimates of losses to
managerial utility when probability of success with
respect to homes or the highly valued watershed is
reduced from 0.90 (the reference case) to the spec-
ified amount, given the base level of risk described
in the associated wildfire scenario. Tests applied to
these estimates can be used to investigate whether
managers are sensitive to various components of risk
(hypothesis 1), and whether the degree of sensitivity
to various components of risk corresponds with min-
imization of expected economic loss (hypotheses 2
and 3).

Tests of hypotheses 1 and 2 are presented in
Figs. 2 and 3, respectively. In both figures, panel A
presents tests of sensitivity to burn probability and
values-at-risk, whereas panel B presents tests of sen-
sitivity to probability of success. In each figure, mark-
ers for tests with respect to homes are unfilled and
markers for tests with the respect to the watershed
are filled.

Fig. 2 presents tests of hypothesis 1, which sup-
poses that managers are sensitive to the various com-
ponents of risk. Test statistics with respect to homes
in Fig. 2(A) (tests of H1 with respect to burn prob-
ability and values-at-risk) are generally significantly
different from zero and positive, indicating that man-
agers are more averse to the prospect of diminished
probability of success when more homes are at risk
and when burn probability is greater. For watersheds,
respondents were less inclined to select strategies
with lower probability of success when the watershed
was within a higher burn probability contour or was
at risk of high-severity fire. Respondents were gener-
ally averse to strategies with reduced probability of
success for both homes and watershed, as indicated
by Fig. 2(B); however, they displayed a peculiar pref-
erence for strategies with 0.50 probability of success
for watersheds. These tests reject hypothesis 1 and
provide evidence that managers were attentive to dif-
ferences in risk factors across scenarios.

Hypothesis 2, tests of which are presented in
Fig. 3, examines the stronger hypothesis that choice
behavior was consistent with choices that would min-
imize expected economic losses. That is, did man-
agers respond to a change in a factor affecting
risk proportionally to the change in expected eco-
nomic loss? With a few exceptions, these tests reject
hypothesis 2.

Fig. 3(A) indicates that managers did not re-
spond to increases in burn probability or the number
of homes at risk as strongly as would be predicted
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Table III. Categorical Model Results: Conditional Logit

Variable Coeff. SE

aviation 1.10E-05 1.23E-04
ground days 5.58E-05*** 1.92E-05
duration −0.0226*** 0.0032
cost −0.0256** 0.0106
Hs = 0.75,q = 0.25,z = 5 0.1167 0.0974
Hs = 0.50,q = 0.25,z = 5 −0.7045*** 0.1050
Hs = 0,q = 0.25,z = 5 −1.5990*** 0.1168
Hs = 0.75,q = 0.75,z = 5 −0.0347 0.0896
Hs = 0.50,q = 0.75,z = 5 −0.9117*** 0.0907
Hs = 0,q = 0.75,z = 5 −2.1840*** 0.1258
Hs = 0.75,q = 0.25,z = 30 −0.1295 0.0999
Hs = 0.50,q = 0.25,z = 30 −1.0140*** 0.1065
Hs = 0,q = 0.25,z = 30 −2.0410*** 0.1244
Hs = 0.75,q = 0.75,z = 30 −0.1805 0.1186
Hs = 0.50,q = 0.75,z = 30 −1.4690*** 0.1254
Hs = 0,q = 0.75,z = 30 −2.7910*** 0.1875
Ws = 0.75,q = 0.25,z = mod −0.5331*** 0.1991
Ws = 0.50,q = 0.25,z = mod 0.1559 0.1749
Ws = 0,q = 0.25,z = mod −0.6681*** 0.1245
Ws = 0.75,q = 0.75,z = mod −0.4317*** 0.1674
Ws = 0.50,q = 0.75,z = mod 0.0575 0.1519
Ws = 0,q = 0.75,z = mod −0.9784*** 0.1072
Ws = 0.75,q = 0.25,z = high −0.6219*** 0.1812
Ws = 0.50,q = 0.25,z = high 0.1141 0.1615
Ws = 0,q = 0.25,z = high −0.9756*** 0.1155
Ws = 0.75,q = 0.75,z = high −0.7837*** 0.1797
Ws = 0.50,q = 0.75,z = high −0.2243 0.1590
Ws = 0,q = 0.75,z = high −1.3540*** 0.1148
No. of obs. 19575
No. of pars. 28
Log-Likelihood −5782.7
Pseudo R2 0.1930

Note: *** and ** indicate p values of 0.01 and 0.05, respectively.

under expected loss minimization. For instance,
holding burn probability constant, the loss in utility
resulting from a decrease in probability of success
from 0.90 (the reference case) to 0.50 was less than
six times greater when 30 homes were at risk than
when 5 homes were at risk. Similarly, responses to
burn probability for watersheds are not as strong as
would be predicted under expected loss minimization
when probability of success is held constant at 0.75
or 0. (Because watershed fire severity is a qualita-
tive measure, calculations of expected loss with re-
spect to changes in severity cannot be calculated
numerically.)

Fig. 3(B) shows that, with respect to homes, re-
spondents overweighted decreases in probability of
success from 0.90 to 0.50 relative to decreases from
0.90 to 0.75, and decreases from 0.90 to 0 relative to
decreases from 0.90 to 0.50. For watersheds, respon-

dents underweighted decreases in probability of suc-
cess from 0.90 to 0.50 relative to decreases from 0.90
to 0.75, and they overweighted decreases from 0.90
to 0 relative to decreases from 0.90 to 0.50.

Fig. 4 presents tests of hypothesis 3, which asks
whether relative probability weighting across adja-
cent probability intervals is constant. For homes, re-
spondents underweighted changes in probability of
success from 0.90 to 0.75 relative to changes from 0.75
to 0.50, but they overweighted changes in probabil-
ity of success from 0.75 to 0.50 relative to changes
from 0.50 to 0. Similar results were exhibited for
watersheds, although the pattern of weighting was
reversed and more difficult to interpret given the
anomalous response to watershed risk when the
probability of success was 0.50 (see Fig. 2A). Over-
all these test statistics reject hypothesis 3, indicating
nonlinear responses to changes in risk factors.

5.2. Parametric Probability Weighting Results

To provide additional detail regarding fire man-
agers’ risk preferences, we estimated a probability
weighting model based on Equations (9) and (10),
the results of which are provided in Table IV. This
model is derived from nonexpected utility theory;
therefore, it provides estimates of parameters that
summarize sensitivity to probability and the value (or
utility) function. Coefficients on wh and wh × h30
can be interpreted as indicative of respondents’ value
function with respect to homes. Under the null hy-
pothesis that managers minimize expected economic
losses (i.e., a linear value and probability weighting
functions), the coefficient on wh × h30 is expected
to be five times larger than the wh coefficient, cor-
responding to the 25 additional homes-at-risk when
h30 is equal to 1; however, the wh × h30 coefficient
is less than the coefficient on wh. Although there is
no relevant quantitative measure of expected loss as-
sociated with moderate- and high-severity fire within
the highly valued watershed, the value function ap-
pears to be similar to that observed for the attribute
homes: any fire within the watershed causes utility
loss, and the added loss associated with high-severity
fire is somewhat smaller.

Probability of success and burn probability are
each weighted separately for homes and watershed;
therefore, Table IV contains four γ values, and the
probability weighting functions implied by these pa-
rameter estimates are illustrated in Fig. 5. The γ val-
ues representing probability weighting on burn prob-
abilities for homes and watershed are similar and
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Fig. 2. Tests of sensitivity to changes in factors affecting risk (hypothesis 1, Equation (7)).

Fig. 3. Tests of consistency with expected loss minimization (hypothesis 2, Equation (8)).

relatively low. Values around 0.20 indicate that re-
spondents substantially underweight the significance
of differences across burn probabilities; in other
words, they are insensitive to differences across burn
probabilities. The estimated γ value for probability

of success with respect to homes is greater than 1, in-
dicative of an S-shaped probability weighting func-
tion. The γ value estimated for probability of suc-
cess with respect to the watershed is not significantly
different from zero, though this result is no doubt
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Fig. 4. Tests of consistency with expected loss minimization
across adjacent probability of success intervals (hypothesis 3,
Equation (9)).

influenced by unexpected responses to strategies
with 50% probability of success with respect to the
watershed.

6. DISCUSSION

The effects of natural disturbances, including
wildfire, are often directly tied to the actions and at-
titudes of government agencies tasked with assess-
ing and responding to large-scale risks. Theory sug-
gests that over a large portfolio of wildfire events
(or other types of natural disturbances), efficient out-
comes will be realized when managers minimize the
expected losses from each event, and federal wild-
land fire management policy appears to support this
view. However, results from this study indicate that
the risk preferences of wildfire managers when se-
lecting suppression strategies are inconsistent with
behavior that would minimize expected economic
loss. Results are broadly consistent with other find-
ings related to fire manager decision making, partic-
ularly research by Wilson et al.(13)

When choosing among strategies, managers ap-
pear to weight the probability of damage based in

Table IV. Probability Weighting Model Results:
Conditional Logit

Param. Estimate SE

Coeffs. Aviation 1.94E − 05 1.14E − 04
Ground days 1.99E − 05 1.78E − 05
Duration −0.0198∗∗∗ 0.0029
Cost −0.0356∗∗∗ 0.0102
wh −5.4135∗∗∗ 0.2597
wh × h30 −1.4377∗∗∗ 0.2827
wws −5.1343∗∗∗ 0.4738
wws × high −1.3992∗∗∗ 0.3522

Probability weighting pars.
γ s,h 1.4325∗∗∗ 0.2092
γ q,h 0.2021∗∗∗ 0.0352
γ s,ws 0.0273 0.0578
γ q,ws 0.1970∗∗∗ 0.0484

No. of obs. 19620
Log-likelihood −5806.4
No. of pars. 12

Note: ∗∗∗ indicates p values of 0.01.

Fig. 5. Probability weighting functions implied by γ values esti-
mated in probability weighting model.

part on the source of probability variation; with re-
spect to homes, manager choices were more sensi-
tive to differences in the probability of success than
to burn probability. One possible explanation for
this difference (summarized by the substantial differ-
ence between estimates of the probability weighting
parameters γ s,h and γ q,h) is the isolation effect, sug-
gested by Tversky.(39) The isolation effect suggests
that individuals discount characteristics shared by
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alternatives within a choice set and inflate the impor-
tance of characteristics that differentiate them. That
is, managers may have felt they had no control over
fire scenarios but could control the probability of suc-
cess within their chosen strategy.

Managers were more sensitive to changes in the
probability of success over moderate probabilities
than to changes over relatively high probabilities.
This pattern is characteristic of an S-shaped probabil-
ity weighting function rather than the inverse S-shape
typically observed in experimental studies. Roberts
et al.(31) also observed S-shaped probability weight-
ing in the natural resource context, and compared it
to the decision whether to leave home with an um-
brella when there is a chance of rain: one takes the
umbrella when the probability of rain is beyond some
probability threshold. In the fire management con-
text, this implies that managers are overly optimistic
about strategies with a relatively high probability of
success, and that they may be overly pessimistic re-
garding strategies with a low probability of success.
Of note is that while burn probabilities can be mod-
eled with a relatively high degree of accuracy,(40) like-
lihood of fire management strategy success is not
well understood. Differences in probability weight-
ing across sources of probability variation may also
be partly driven by attitudes toward the accuracy of
information provided in the CE questionnaire.

We found managerial responses to low levels of
risk (due to low home or watershed burn probabil-
ities, or fewer homes at risk) to be disproportion-
ately large relative to their responses to high-risk
scenarios. This observation is consistent with prob-
ability neglect (an overreaction to low-probability
events because of high-affect outcomes) coupled
with insensitivity to numbers (a greater response to
low or initial levels of the value-at-risk, and lower
marginal sensitivity to additional units of the value-
at-risk) described in Slovic and Peters.(42)

Another possibility is that managers’ choices ex-
hibit an emotional response, or affect. The degree
and shape of probability weighting can be explained
by how affect-rich or affect-poor are the potential
outcomes.(42)11 For example, damage to homes is of-
ten perceived as a devastating outcome for those af-
fected. On the other hand, damage to watersheds is
more difficult to comprehend and may not to carry
the same emotional weight as homes. Thus, we may
not observe the same responses to risk for both

11Thanks to an anonymous reviewer for pointing out this
connection.

homes and watershed due to greater affective con-
tent of homes.

Although the survey was not designed to specif-
ically test for the role of affect, the results also raise
the question of how managers (and others) weight
probabilities when multiple attributes are at risk and
have different affective content. Our results suggest,
for example, that managers make tradeoffs between
potential damage to homes and watershed, and man-
agers weight the risk to these attributes differently.
An open theoretical and empirical question, then, is
how affect and risk attitudes relate to preferences
(i.e., utility functions) for multiple attributes, which
builds on multiattribute utility theory and multicrite-
ria decision analysis with uncertainty.(43,44)

A practical implication of these findings is that
we do not know if choices made by managers, even
when they deviate from strategies that would min-
imize expected losses, reflect broader social prefer-
ences. Experimental evidence has shown that risk at-
titudes of managers may not deviate greatly from risk
attitudes of the general public,(45) but it is not known
if this result would hold when multiple attributes are
at risk or in a fire management context.

Our results imply significant potential for im-
proved risk management in wildfire suppression de-
cision making. In particular, it appears that more ef-
ficient allocations can be realized if managers choose
strategies that use fewer resources for fires that
present relatively little risk. Restraining the commit-
ment of suppression resources on low-risk incidents
could reduce personnel exposure to risk and suppres-
sion expenditures, and allow for more flexibility in al-
locating appropriate resources to fires during times of
high fire activity. Given the emerging consensus that
the trend in USFS expenditures on wildfire manage-
ment is unsustainable,(5) avoiding overallocations of
resources to low-risk incidents may help the USFS
more cost effectively meet its fire and nonfire man-
agement goals.

Although the potential exists for improved risk
management of wildland fires, this is not a trivial
task. First, institutional constraints and incentives are
a barrier to improvement. For example, the deci-
sion to use wildland fires to attain beneficial resource
impacts, which is perceived to be riskier than the
decision to aggressively suppress a fire, has in the
past been shown to lack agency support.(9,36) Canton-
Thompson et al.(9) found that fire managers felt
they would receive little agency support, and might
be held personally liable, if the suppression strate-
gies they chose were ineffective. Furthermore, fire
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managers may not have an incentive to constrain
costs because wildfire suppression activities are of-
ten funded through emergency funds and a national
funding pool.(9,14,46)

Second, Calkin et al.(16) argued that the absence
of formal risk-management training within the USFS
and interagency fire training programs may impede
risk-based wildfire management practices. Maguire
and Albright(14) were more cautious, arguing that
training may not be fully effective in mitigating deci-
sion biases because these biases have been observed
even in well-trained individuals.(47) In this study,
managers at higher pay grades or who had managed
more fires in their career did not have significantly
different risk attitudes than less experienced man-
agers; agency administrators (separate from other
fire managers) showed statistically different choice
patterns with respect to risk, but generally not statis-
tically different over- or underweighting of risk fac-
tors relative to loss-minimizing strategies.12

Finally, it may be necessary to consider strat-
egy choices as allocation decisions among multiple
fire events. This would require greater responsibility
among higher level managers for deciding which fires
receive more or fewer suppression resources (e.g.,
at the area or regional level) and less autonomy for
incident-level managers. However, it is not known
whether suppression resource allocations made by
higher level managers in response to risk would be
substantively different.

This study is subject to several limitations, some
of which should spur further research. First, we mea-
sured fire manager risk preferences using a stated
preference survey instrument; future research might
explore fire manager attitudes toward risk using
observational data. Also, the conclusions are lim-
ited to the target population surveyed—wildland fire
managers—and we caution against extrapolating re-
sults beyond this group of respondents. Some in-
formation about incident-level decisions and risk
management is available in the web-based WFDSS,
although significant investments in data collection
would be necessary to use this information for

12Results are available from the authors upon request. Analyses
of choices by individual characteristics were limited to the cate-
gorical model (due to lack of convergence of the maximum like-
lihood function in the probability weighting function model). For
agency administrators, responses to risk of damage to the water-
shed exhibited statistically different over- or underweighting for
a few probability categories. In general, these responses showed
less bias but still differed significantly from choices that would
minimize expected losses from fire.

research purposes. WFDSS data could allow for an
applied study of how the content of risk communica-
tion is related to risk attitudes, similar to experimen-
tal studies by Keller et al.(48)

Second, we measured preferences over a lim-
ited range of probability values and levels of values
at risk, and the probabilities did not encompass val-
ues near zero or one.13 For this reason, we interpret
probability weighting results primarily as reflections
of sensitivity to changes over moderate probabil-
ities. A more comprehensive account of manager
risk preferences would include attitudes toward low-
probability, high-consequence events, similar to ex-
periments using hypothetical earthquake risk,(49) or
extending lottery experiments by Holt and Laury(50)

to multiple attributes.
Finally, risk preferences are a single component

within a large suite of decision biases and mental
heuristics that may contribute to less efficient fire
management outcomes; additional research on fram-
ing, discounting, status quo bias, and the role of in-
centives in contributing to these decision biases has
potential to suggest possible opportunities for im-
proving wildfire manager decision processes.
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