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Chapter 1
Introduction: A New Look at Wildfire
Management Expenditures

Abstract In the United States, increased wildland fire activity over the last
15 years has resulted in increased pressure to balance the cost, benefits, and risks
of wildfire management. Amid increased public scrutiny and a highly variable
wildland fire environment, a substantial body of research has developed to study
factors affecting the cost-effectiveness of wildfire management activities. This
book examines the state-of-the-art in the economics of wildfire management. The
introductory chapter presents the broad goal of the book: to take stock of research
to-date on the economics of wildfire management and examine a way forward for
answering remaining research questions. Subsequent chapters review existing
research, present new empirical analyses of fire management expenditures, and
examine potential applications of expenditure models for decision making.

Keywords Wildfire management � Suppression expenditures � USDA forest
service � Expenditure models � Decision support

The federal land management agencies of the United States [the USDA Forest
Service (USFS) and the Department of Interior (DOI)] are struggling to deal with a
changing wildland fire environment. Over the past two decades, both the magni-
tude and the variability of the area burned by wildfire have increased substantially
(Calkin et al. 2005; Gebert et al. 2007; Westerling et al. 2006) with the causal
factors attributed to past suppression efforts (Arno and Brown 1991), drought
conditions (Collins et al. 2006; Crimmins and Comrie 2004; Gedalof et al. 2005;
Westerling et al. 2002, 2003), and climate change (Flannigan et al. 2000; West-
erling et al. 2006). Rapid population growth in the wildland-urban interface creates
further suppression challenges (Cardille et al. 2001; Gill and Stephens 2009;
Mozumder et al. 2009). Coincident with these trends, 10-year average Federal
suppression expenditures have increased from about $600 million a decade ago
(1990 through 1999) to about $1.4 billion over the past decade (2003–2012)
(inflated to constant 2012 dollars). As a result, scrutiny of wildland fire manage-
ment by oversight agencies such as the Office of Management and Budget (OMB)
and the Government Accountability Office (GAO) has intensified.

M. S. Hand et al., Economics of Wildfire Management, SpringerBriefs in Fire,
DOI: 10.1007/978-1-4939-0578-2_1, � The Author(s) 2014

1



Because large fires are responsible for the bulk of fire suppression expenditures
(USDA Forest Service et al. 2003), interest in understanding the factors that
influence expenditures on large wildfires increased along with wildland fire
expenditures. Initial research to develop statistical models to either predict fire
expenditures or investigate causal factors of expenditures occurred in the 1980s
and 1990s (e.g., Gonzalez-Caban 1984; Steele and Stier 1998). But much of the
early research into fire expenditures was primarily focused on determining the
optimal level for suppression once the pre-suppression budget (e.g., procuring and
maintaining equipment) had been determined [e.g., the National Fire Management
Analysis System (Lundgren 1999)] and the development of analytical tools for
planning efficient fire program investments [e.g., the Fire Economics Evaluation
System (Mills and Bratten 1982) and FIREPRO (Botti 1999)]. Research was also
conducted into the pre-positioning of suppression resources to minimize damage
from wildfires and constrain suppression expenditures (e.g., Fried et al. 2006).

However, as wildfire suppression expenditures began to take up a larger share
of the budget of land management agencies, pressure was put on the agencies by
Congress, OMB, and GAO to contain expenditures. After the 2000 fire season (the
first year the USFS spent over a billion dollars on suppression expenditures) and
the subsequent passage of the National Fire Plan, research into the costs of large
wildfires became more prevalent.1

The goal of this book is to take stock of research to date on the economics of
wildfire management and examine a way forward for answering remaining
research questions. Of particular interest are the following broad questions:

• What have we learned thus far about the costs of managing wildfires in the
United States, and how has this knowledge been used in a management and
policy context?

• What gaps remain in our knowledge about wildfire management costs and
expenditures in particular?

• How do we answer the persistent and difficult questions about the economics of
wildfire management that may help managers improve the effectiveness and
efficiency of management efforts in the future?

To answer these questions, the subsequent chapters review a broad literature on
wildfire management and extend existing empirical approaches for modeling the
determinants and consequences of wildfire management activities. The book is
focused on management costs, models of wildfire suppression expenditures, and
the application of empirical results to decision support and program planning

1 In this volume the term ‘‘expenditures’’ refers to direct monetary outlays for the purposes of
managing wildfire incidents. ‘‘Costs’’ refer more broadly to the negative impacts associated with
fire management, which may include direct expenditures on incident management. A full
accounting of costs would include a number of non-expenditure impacts that are outside of the
scope of this book (see, for example, Butry et al. 2001; Kochi et al. 2012). In most cases this book
will refer to ‘‘expenditures’’ unless the broader term is warranted or doing so would create
confusion with literature referenced in the text.

2 1 Introduction: A New Look at Wildfire Management Expenditures



efforts. In keeping with the vast majority of past research, the scope of the reviews
and analysis is limited to the Federal wildfire management program. Many of the
insights discussed in this volume may be applicable to fire management efforts at
State and local levels, although in many cases the data necessary to make these
connections is not available. Nonetheless, focusing on Federal wildfire manage-
ment, and in particular on the experience of the USFS, provides a rich description
of what is known and not known about wildfire management in the United States.

The outline of the book progresses from a broad survey of existing literature, to
extensions of empirical models of wildfire management expenditures, to potential
applications of expenditure models in a management planning context. The next
chapter provides a broad overview of how empirical models of wildfire manage-
ment expenditures have been developed and the insights these models are able to
provide. Despite a relatively recent history of development of expenditure models,
their use has become widespread in the Federal wildfire management arena. The
chapter then describes the various uses of these models in decision support, per-
formance evaluation, and land management planning.

Chapter 3 takes an econometric approach to examining trends in wildfire
suppression expenditures over time and spatial relationships in aggregate expen-
ditures among geographic regions. Micro-level regression models are then
employed to examine differences over time and between regions in the factors that
are related to expenditures on individual fires. Taken together, the aggregate and
micro analyses can describe overall trends in expenditures on wildfire suppression
and how the management of individual wildfires fits into broader trends.

Chapter 4 extends the empirical analysis of a spatially descriptive expenditure
model originally presented in Liang et al. (2008). Results from Liang et al. (2008)
indicate that using spatial data based on the entire burned area of a fire, rather than
data describing the ignition point, can yield a parsimonious expenditure model that
accounts for spatial relationships between fire observations. However, data were
only available for fires in the Northern Region; in Chap. 4, the model is expanded
to include data from the entire western United States for fires from fiscal years
2006 through 2011. This expanded regression analysis can indicate whether the
insights from Liang et al. (2008) can be generalized to other regions and whether
spatially descriptive data holds promise for improving expenditure models.

The potential for applying regression expenditure models to the analysis of land
management planning is demonstrated in Chap. 5. Using an example of land-
scape-level fuel treatments in the Deschutes National Forest, suppression expen-
ditures are predicted for simulated wildfires that burn in a treated versus untreated
landscape. The use of the regression expenditure model allows managers to gauge
how a fuel treatment program might affect suppression expenditures in the future
and weigh those effects along with the costs and benefits of treatments.

Finally, Chap. 6 summarizes the main findings of the book and points a way
forward for future research on topics related to the economics of wildfire man-
agement and management expenditures in particular. This chapter highlights some
of the remaining and persistent gaps in knowledge about wildfire management
expenditures and suggests some research directions for closing those gaps.

1 Introduction: A New Look at Wildfire Management Expenditures 3
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As with many aspects of wildfires, much remains to be discovered about the
costs of managing wildfires and how programs and policies can be designed and
implemented to improve the efficiency of management efforts. Yet remarkable
progress has been made in the relatively few years since wildfire suppression
expenditures have become a more pressing concern for public land management
agencies. This book aims to recognize these achievements and serve as a guide for
the next phase of research on the economics wildfire management.

4 1 Introduction: A New Look at Wildfire Management Expenditures



Chapter 2
Development and Application of Wildland
Fire Expenditures Models

Abstract Models of fire management expenditures can play a crucial role in the
management of wildland fire incidents. This chapter reviews the development and
uses of expenditure models, such as the Stratified Cost Index (SCI). Expenditure
models are used in decision support tools, budget planning tools, post-season
incident reviews, and land management planning. Fire expenditure models are also
useful for examining the decisions made by managers on fire incidents and factors
influencing suppression activities. Increased exposure to the effects of wildfire and
escalating suppression expenditures, particularly in the western United States,
suggests that there is a need for improved expenditure models in the future.

Keywords Wildfire management � Suppression expenditures � USDA forest
service � Department of interior � Stratified cost index � WFDSS � FPA � Fuel
treatments � Management strategy � External factors

2.1 Introduction

Models of wildfire suppression expenditures can play a vital role in managing the
costs of wildfire management. First, knowledge of the characteristics of large fires
that influence expenditures can be used to predict suppression expenditures for
pre-fire budgetary planning (such as the Fire Program Analysis System (FPA)
discussed in Sect. 2.3.1 and ), evaluating possible suppression expenditure savings
due to fuel treatments (discussed in Sect. 2.4 and Chap. 5), or as a performance
measure (discussed in Sect. 2.2). Such predictions can also be used in real-time to
provide knowledge of which fire ignitions are likely to become large and costly,
providing managers with information that could influence the strategies or tactics
used on the fire. For example, managers can identify how current suppression
expenditures on an ongoing fire compare with similar fires in the past using an
application in the Wildland Fire Decision Support System (WFDSS) (described in
Sect. 2.3.2). Also, knowing the factors that influence fire expenditures can provide

M. S. Hand et al., Economics of Wildfire Management, SpringerBriefs in Fire,
DOI: 10.1007/978-1-4939-0578-2_2, � The Author(s) 2014
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insight into which factors may or may not be able to be influenced by management
decisions (Sect. 2.5 highlights some of these studies).

This chapter focuses on the development of research on the costs of large
wildfires, highlighting the development and use of the Stratified Cost Index (SCI),
with some discussion of other suppression expenditure models. Limitations of the
SCI are discussed, as well as how the SCI has evolved over time and possible
advancements in modeling wildfire expenditures in the future. Finally, the limi-
tations of the current models and emerging developments in expenditure modeling
are discussed in the concluding section.

2.2 The Stratified Cost Index

In 1999, the Rocky Mountain Research Station began to explore the possibility of
developing models to predict expenditures on individual large wildland fires. In a
two-year effort, researchers finally gathered expenditures and fire characteristic
data for 218 large (greater than 121 hectares) wildfires reported in the Forest
Service’s fire occurrence database (National Interagency Fire Management Inte-
grated Database, NIFMID) for the years 1996–1998. Data gathering was hampered
by a number of problems. First, matching expenditures (found in the accounting
databases of the federal agencies) with fire characteristic information in NIFMID
was extremely time consuming and fraught with error as there was no common
identifying field between the two data sources. Second, one of the goals of the
study was to obtain all of the expenditures for each fire, federal as well as state and
local expenditures. For many large fires, several governmental entities can provide
resources and incur charges when fighting a wildfire; therefore, to obtain the total
suppression expenditures for the incidents in the dataset, it was necessary to obtain
expenditure information from each agency involved. However, with the exception
of the USFS and the Bureau of Land Management, the accounting systems for the
other federal land management agencies within the DOI made it very difficult to
collect suppression expenditure information at the fire level. As for state and local
expenditures on individual wildfires, most were not available electronically but
were contained in paper records kept in boxes, often in the basement of office
buildings. Preliminary results from this study showed promise but lack of confi-
dence in the quality of the data collected and the time-consuming nature of the
data collection process caused the research to stall.

However, as wildland expenditures continued to climb, pressure was put on the
land management agencies to contain expenditures associated with wildfire sup-
pression. The Government Performance and Review Act of 1993, as well as
ongoing efforts of the President’s Management Agenda, required that Federal
Programs develop and report outcome-based performance measures. Accordingly,
Conference Report on HR 4818, Consolidated Appropriations Act, 2005 required
the Secretaries (Department of Interior and Agriculture) to promptly establish
appropriate performance measures for wildland fire suppression and develop a
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report on performance measures planned for implementation in fiscal year 2006 to
be used on an inter-agency basis. Included in this language was the requirement
that the agencies develop a measure to report the percentage of fires, using a
statistically representative sample, not contained in initial attack that exceed a
‘‘stratified fire cost index’’ (SCI). This index was originally specified as expen-
ditures per acre over energy release component. After discussions between USFS
Fire and Aviation Management and researchers at the Rocky Mountain Research
Station (RMRS), it was decided the SCI would assess a variety of factors that
influence suppression expenditures, rather than focusing solely on energy release
component. In fact, the ‘‘Stratified Cost Index’’, as it came to be called, was simply
the redevelopment of the regression models first tested by the RMRS in the 1999
study.

For the new effort, data were collected on fires reported in NIFMID for fiscal
years 1995 through 2004 (fiscal year 1995 was the earliest year for which financial
information was still available). Only fires where the USFS was the recorded
protection agency were used because of the difficulty of obtaining expenditures by
all agencies involved in a wildfire (as discovered in the 1999 study). It was hoped
that by making this restriction the USFS would have incurred the bulk of the
expenditures on these fires, and the potential for underestimation due to not
accounting for the expenditures of other agencies would be lessened. This seemed
a reasonable assumption as the earlier study had indicated the USFS expended, on
average, more than 90 % of the money on fires when they were listed as the
protection agency in NIFMID (unpublished report on file at Rocky Mountain
Research Station).

The name ‘‘Stratified Cost Index’’ stuck, though it was not a very descriptive
name for the regression models that were developed.

Table 2.1 shows the list of variables used to develop the USFS expenditure
models. In 2007, an article was published on the development of these models
(Gebert et al. 2007). Also in 2007, RMRS conducted a study on the feasibility of
developing similar expenditure models for the DOI agencies to respond to the
congressional directive (Gebert 2007). The results of this study showed that
comparable models could be developed for the DOI with similar predictive power
to those produced for the USFS and development of models for the DOI was
undertaken.

Though the language in the original Congressional report stated that the
agencies should have a quantifiable performance measure, those involved in the
development of the SCI suggested another approach due to the complexity of
coming up with a single performance measure that takes into account the com-
plexities of fire management. They suggested that rather than using the expenditure
models to quantify the percentage of fires that exceeded the index, that those fires
that ended up with expenditures more than one standard deviation above their
expected expenditures be reviewed at the end of the fire season to determine the
reason why these fires were so expensive and to learn from them. However, the
agencies also needed a quantifiable performance measure, so the language in the
Congressional report was simply amended to revise the ‘‘index’’ from
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Table 2.1 Variables used in development of forest service expenditure regression equations;
dependent variable = Ln(expenditures/acre)

Fire characteristics Variable definition Source

Size
ln(total acres burned) Natural log of total acres within the wildfire perimeter NIFMID
Fire environment
Aspect Sine and cosine of aspect at point of origin in 45�

increments
NIFMID

Slope Slope percent at point of origin NIFMID
Elevation Elevation at point of origin NIFMID
Fuel type Dummy variables representing fuel type at point of origin.

Grass = NFDRS fuel model A,L,S,C,T,N;
Brush = NFDRS fuel model F,Q; Slash = NFDRS fuel
model J,K,I; Timber = NFDRS fuel model
H,R,E,P,U,G; brush4(reference category) = NFDRS
fuel model B,O

NIFMID

Fire intensity level Dummy variable for fire intensity level (FIL) category 1–6
(FIL 1 = reference category)

NIFMID

Energy release
component

Energy release component calculated from ignition point
using nearest weather station information (cumulative
frequency)

Calculated

Palmer drought
severity index

Average monthly PDSI for climate division containing fire
ignition

NOAA

Values at Risk
ln(distance to nearest

town)
Natural log of distance from ignition to nearest census

designated placea
Calculated

ln(total housing value
5)

Natural log of total housing value in 5 mile radius from
point of origin (census data)

Calculated

ln(total housing value
20)

Natural log of total housing value in 20 mile radius from
point of origin (census data)

Calculated

Reserved areas Dummy variables indicating whether fire was in a
wilderness area, inventoried roadless area, or other
special designated area (reference category = not in
reserved area)

Calculated

ln(distance to reserved
area boundary)

If in a reserved area, natural log of distance to area
boundary

Calculated

Detection time
ln(detection delay) Natural log of hours from ignition time to discovery time Calculated
(ln(detection delay))2 Square of In(detection delay) Calculated
Suppression strategy
Initial suppression

strategy
Dummy variables representing initial suppression strategy

(confine, contain, control)—reference
category = control

NIFMID

Resource availability
ln(average deviation) Natural log of the difference between the number of fires

burning in the region during the period of the specified
fire compared to the average in that region during the
same time of year

Calculated

Region Dummy variables for USFS region (reference category for
western model = Region 1, for eastern
model = Region 9

NIFMID

a All miles are air miles
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‘‘expenditures per acre/energy release component’’ to ‘‘the percentage of fires,
using a statistically representative sample, not contained in initial attack that
exceed a ‘stratified fire cost index.’ This index would take into account known fire
characteristics that affect expenditures; specifically, fire intensity, size, Forest
Service region and proximity to communities, using historical expenditures per
acre as a basis.’’

Hence, the use of the SCI as a performance measure for the Forest Service’s
expenditure containment efforts began, and since 2006, the SCI has been used to
identify fires whose actual expenditures exceeded ‘‘benchmark’’ or estimated
expenditures by more than one standard deviation (SD). The percentage of fires
within one SD is meant to provide a rough measure of the effectiveness of the
Forest Service’s expenditure containment efforts. For use as a performance mea-
sure, the regression models used are essentially ‘‘stuck in time’’. That is, the
regression models are based on fires from 1995 to 2004 and have not been updated.
If the model were re-estimated each year with new data, the number of fires falling
outside one or two standard deviations would not be expected to change. However,
by staying with the original model, if expenditure containment measures are
working, one would expect the distribution of large fires to shift to the left over
time. Therefore, this leftward shift would cause fewer fires to show up as
exceeding one standard deviation. In addition to the performance measure itself,
fires that exceed one and two standard deviations are also likely candidates for
further expenditure review after the fire season has ended.

To date, it is difficult to discern with certainty whether expenditure containment
efforts are reducing the incidence of unusually high-expenditure fires. For large
USFS fires from 2007 to 2012, there has been no clear trend in the percent of fires
exceeding the SCI predictions by 1 or 2 standard deviations (Fig. 2.1). The SCI
predictions are based only on comparisons of expenditures per acre, so it is pos-
sible that expenditure containment is affecting other fire outcomes, such as fire
duration. However, given that the aggregate trend in expenditures has been
increasing, there is no evidence to suggest that expenditure containment efforts
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have resulted in decreases in expenditures on large wildland fires. Trends for these
outcomes are discussed in more detail in Chap. 3

2.3 Current Uses and Applications of Wildland Fire
Expenditure Models

The suppression expenditure model described in the previous section is a useful
tool for understanding how different environmental and socio-economic charac-
teristics relate to wildland fire expenditures. To date, suppression expenditure
models have supported a variety of planning and decision making tools. Expen-
diture models can be incorporated within a suite of fire and land management
planning tools and can provide managers with valuable information about the
consequences of fire management activities.

2.3.1 Fire Program Analysis

The Fire Program Analysis (FPA) is a federal inter-agency approach to planning
and budgeting for a suite of fire management activities. The broad mission of FPA
is to provide managers with a process and appropriate tools to make strategic
budget and planning decisions for a wide range of fire management activities (Fire
Program Analysis 2010). The potential expenditures on large fire suppression are
only one aspect of FPA but have significant budgetary impacts. FPA incorporates
suppression expenditure models as one method for examining the effectiveness of
management activities. Well-specified expenditure models can provide detailed
information about the effects of investments in fuel treatments and preparedness on
large fire suppression expenditures.

Expenditure models are currently incorporated in FPA by applying a version of
the SCI (Gebert et al. 2007) to large fires that arise under different management
scenarios. The Large Fire Module of FPA is designed to examine how different
management scenarios affect the likelihood, size, behavior (e.g., flame length), and
costs of large fires (Fire Program Analysis 2012). Within this module, the sup-
pression expenditure model can calculate differences in expenditures as the
number of fires and their characteristics change under different scenarios. For
example, the expenditure model would be used to estimate the change in expected
suppression expenditures if a fuel treatment program results in a reduction in the
expected number and intensity of large fires.

The use of expenditure models in FPA represents a shift toward using expen-
diture estimates as an indicator of cost effectiveness, rather than as a measure of
performance itself. For example, one of the broad goals within FPA is to reduce
the probability of occurrence of large and costly fires (Fire Program Analysis
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2012). Reductions in large fire suppression expenditures are not a direct goal of
FPA, but examining changes in suppression expenditures can highlight the bud-
getary consequences of reducing the incidence of large fires.

2.3.2 Decision Support: The Wildland Fire Decision Support
System

Expenditure models are an important component of the Wildland Fire Decision
Support System (WFDSS) currently used by federal wildland fire managers.
WFDSS is an integrated suite of tools that allows fire managers to assess and
manage risk, plan strategies with real-time incident information, and document
decisions and management actions (Noonan-Wright et al. 2011; Pence and Zim-
merman 2011). The primary purpose of WFDSS is to assist incident managers and
other administrators in the development of risk-informed management strategies
(Calkin et al. 2011b).

A part of the WFDSS suite of tools is a module to estimate the suppression
expenditures for a given incident using an expenditure model based on the SCI.
Models are separately developed for USFS fires that occur in the eastern and
western regions, as well as for each DOI agency (National Park Service, Fish and
Wildlife Service, Bureau of Indian Affairs, and Bureau of Land Management). The
model parameters are updated each year by adding new data from the previous
year to records dating back to fiscal year 2004, and include explanatory variables
that are found to be significant for each agency and can be queried into WFDSS
automatically using latitude and longitude points.1

The SCI implemented in WFDSS is a streamlined model that allows managers
to quickly estimate a range of likely total suppression expenditures for a given
incident. The original SCI model developed by Gebert et al. (2007) uses the fire
ignition point to describe characteristics of each fire. In WFDSS, once an ignition
point is available for an incident, the SCI module calculates the relevant charac-
teristics to generate an expenditures prediction based on the likely size of the fire
entered by the user. The output shows managers the median expenditures for their
incident, as well as a range of potential expenditures.

The expenditures module in WFDSS serves multiple purposes for managers at
various levels in fire management. First, expenditure estimates support budget
planning by giving managers an initial estimate of how much similar fires have

1 Some variables from the original SCI model would be difficult to include in WFDSS with
acceptable accuracy, or in certain models are found to be insignificant predictors of expenditures.
For example, fire intensity (flame length) and distance to the nearest town are omitted in all the
WFDSS cost models, and region indicator variables are omitted in the National Park Service and
Fish and Wildlife Service models. At a minimum, all of the models include fire size (entered by
WFDSS users to generate model predictions) and fuel type at ignition (determined by ignition
point latitude and longitude).
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cost in the past. Second, expenditure estimates can serve as part of an early
warning of incidents that are likely to be very costly. This may allow higher-level
administrators to plan resource allocations based in part on potential expenditures.
Additionally, estimates can be used by incident-level managers to identify when an
ongoing fire is trending towards unexpectedly high expenditures. Managers can
respond by making adjustments to ongoing strategies or improving the decision
documentation of why current fire expenditures diverge from past fires (Pence and
Zimmerman 2011).

2.4 Policy and Program Analysis: Assessing the Effects
of Fuel Treatments and Forest Restoration
on Suppression Expenditures

The link between wildfire suppression expenditures and hazardous fuel reduction
is poorly understood. Though it is assumed that removing hazardous fuels from
forests will reduce or remove the possibility of catastrophic wildland fires in areas
that have been treated, even this basic premise is disputed by some, particularly in
areas that historically have infrequent high–severity fires (Bessie and Johnson
1995; Schoennagel et al. 2004; Reinhardt et al. 2008). In fact Reinhardt et al.
(2008) state ‘‘It is a natural mistake to assume that a successful fuel treatment
program will result in reduced suppression expenditures. Suppression expenditures
rarely depend directly on fuel conditions, but rather on fire location and on what
resources are allocated to suppression. The only certain way to reduce suppression
expenditures is to make a decision to spend less money suppressing fires’’. Also,
Rideout and Ziesler (2008) suggest that wildland fire suppression and fuels
treatments are not necessarily substitutes with clear tradeoffs. Investments in both
treatments and suppression reduce fire damages and have complementary effects in
reducing damages and expenditures.

In the real world, it is difficult to analyze the effect of fuel treatments on sup-
pression expenditures because of the complexity of the factors influencing both
wildfires and wildfire expenditures. However, modeling efforts, where some of these
complexities can be controlled for, is one way to assess how fuel treatments may
affect suppression expenditures. By linking models that predict fire extent and
behavior, pre-and post-fuel treatment, with fire expenditure models such as the SCI,
the possible effects of fuel treatments on suppression expenditures can be analyzed.

This type of modeling is currently underway, most notably in connection with
the Collaborative Forest Landscape Restoration Program (CFLRP). An important
objective of the CFLRP, created by the Omnibus Public Land Management Act of
2009, is to ‘‘facilitate the reduction of wildfire management costs, including
through reestablishing natural fire regimes and reducing the risk of uncharacteristic
wildfire.’’ Given this emphasis on reducing fire management expenditures and the
varying degrees of fire modeling and economic analysis capacity among CFLR
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teams, USFS economists and researchers came up with a standardized modeling
approach and a spreadsheet tool [the Risk and Cost Analysis Tool (R-CAT)] to
estimate expenditure savings from hazardous fuel management treatments funded
by the program.

The modeling approach used in the R-CAT process combines the SCI model with
the wildfire simulation model FSIM (Finney et al. 2011b) to predict pre- and post-
treatment suppression expenditures. Estimated suppression expenditure savings are
derived from the reduction in simulated final fire size due to treatment. These
estimates are entered into the R-CAT spreadsheet, along with the costs of treatments
and revenue generated, an estimate of the length of time that the treatments will be
effective, and the timing of the treatments over the ten-year life of the project. The
spreadsheet can then be used to calculate fire management savings, as opposed to
suppression expenditure savings alone. Though the R-CAT process does not esti-
mate changes in other fire management costs, such as changes in expenditures on
small fires, reductions in Burned Area Emergency Response (BAER) costs, or
potential reductions in per acre suppression expenditures due to being able to fight
fire less aggressively in the treated areas, these potential savings can also be entered
into the spreadsheet if there is sufficient justification for doing so.

The first pilot study of this effort was done for the Deschutes NF CFLR project
and is described in more detail in Chap. 4 and Thompson et al. (2013d). Results
showed a substantial reduction (around 35 %) in suppression expenditures.
However, after accounting for the high costs of planned mechanical fuel treat-
ments, overall fire management expenditures increased.

The results from the Deschutes pilot study highlight several important issues in
terms of interpreting the results of any analysis related to hazardous fuel treat-
ments and reductions in fire suppression expenditures. First, anticipated ‘‘savings’’
depend upon the metric being used. The success of hazardous fuel reduction in
terms of saving money differs depending upon whether success is measured by
suppression expenditure savings or fire program management savings. Fire pro-
gram management savings are heavily influenced by the cost of treatments and the
revenues generated from commercial activities, irrespective of suppression
expenditure savings. Second, several other mechanisms by which suppression
savings could be realized were not included explicitly in the Deschutes analysis
including changes in fire intensity allowing for improved suppression efficacy,
increased initial attack success leading to fewer large fires, and rehabilitation
savings associated with less severe fires. For instance, results did show fewer large
fires post-treatment, which was accounted for in the annualized results, but the
effect on small fires per se was not analyzed. Finally, the results do not reflect
‘‘savings’’ in terms of reduced resource damage or enhanced ecological conditions,
both important, if not primary, reasons for conducting hazardous fuel reduction.

Looking at the problem from a different perspective, Houtman et al. (2013)
examined potential suppression expenditures savings and avoided timber losses
associated with a ‘‘let it burn’’ policy rather than an active suppression policy. In
that study, they integrated a wildfire spread model (Finney 2004) with a forest
vegetation growth model to simulate wildfire spread coupled with changes in
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vegetation conditions. Using a study area on the Deschutes NF, several hundred
different sample pathways, in terms of fires and growth events, were simulated to
assess the effect on suppression expenditures in the future. Future suppression
expenditures for large fires (greater than 121 hectares) were estimated using the
SCI model. Smaller fires were estimated using average expenditures for the
Deschutes NF. Though the results varied, some of the potential future scenarios
did demonstrate a higher present value of the landscape resulting from the let-burn
management choice, particularly if not accounting for the value of the lost timber.
Not surprisingly, the greatest benefits in terms of suppression expenditure savings
occurred when the current fire was large and occurred early in the time horizon.

2.5 Explaining Fire Management Decisions
with Expenditure Models as a Research Tool

Suppression expenditure models have made significant advances in describing
relationships between fire expenditures and landscape characteristics, geography,
and socio-economic factors. Yet at a basic level, expenditures reflect management
decisions to deploy suppression resources when responding to a dynamic spatio-
temporal fire environment. Expenditure models are increasingly able to give
researchers and managers a window into these decisions and allow for tests of
hypotheses related to economic decision making and resource allocation in a
wildland fire context.

2.5.1 Management Decision Making and Expenditures

Because suppression expenditures reflect management decisions at multiple levels
to assign resources to a fire incident, suppression expenditure models may yield
insights into the underlying mechanisms that drive resource allocation decisions. A
better understanding of how management decisions are made can suggest strate-
gies and tools to improve decisions and the cost-effectiveness of fire management.

A key area of management decision making that may determine expenditures is
the choice of overall suppression strategy. Strategies may vary broadly from
aggressive direct suppression efforts meant to contain a fire quickly and limit
damage, to monitoring efforts that largely allow the fire to take its natural course
when few highly valued resources are at risk. These types of strategies will call for
different time-paths of resource allocation as managers weigh tradeoffs over fire
size, duration, intensity, ecological impact, and damage to valued assets.

Gebert and Black (2012) examined the suppression strategies ranging from
direct (full) suppression to strategies that primarily seek to allow the fire to achieve
resource benefits. As expected, fires using the most aggressive strategies tended to
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result in shorter duration fires with smaller burned areas, but with higher expen-
ditures per acre and per day (due to more intensive suppression effort over a
shorter time and smaller area). However, total suppression expenditures were
about the same for fires using the least aggressive suppression strategy compared
with those using full suppression strategies; the longer duration of less aggressive
suppression efforts offset the per acre and daily expenditures savings.

The relationships between strategy choice and expenditures (and other fire
outcomes) can provide some basic guidance to managers on the consequences of
different strategies. However, they also highlight that expenditures alone cannot
capture all of the factors that managers consider when making strategic decisions.
Suppression expenditures can be incorporated into models of optimal suppression
strategies to provide a link between expenditures, fire growth, and damage or
benefits caused by the fire (Gorte and Gorte 1979; Donovan and Rideout 2003).
Petrovic and Carlson (2012) showed that incorporating the effects of different
suppression strategies on expenditures (Gebert and Black 2012) can help identify
priority areas for intensive suppression and help to efficiently allocate suppression
resources between fires.

Expenditure models can also provide evidence of whether the tools provided to
managers are effective. The intent of decision support systems such as WFDSS is
to improve overall efficiency and risk management during an incident (Calkin et al.
2011b), and not necessarily constrain expenditures. Hesseln et al. (2010) suggest
that the use of geo-spatial tools, such as digital fire progression maps and geo-
spatial fire analyst units, during an incident may improve efficiency but not nec-
essarily reduce expenditures. They find that expenditures were not statistically
different for incidents where geo-spatial tools were used but tended to be closer to
an efficient cost-minimizing frontier when compared with other incidents. Geo-
spatial tools may improve information about fire behavior and landscape charac-
teristics but can be costly investments. Results suggest that suppression resources
are being more efficiently allocated to achieve better fire outcomes at a given level
of expenditures.

2.5.2 External Factors and the Socio-Political Environment

Within fire management organizations, incentive structures, policies and regula-
tions, and socio-political pressure can affect how decisions are made during an
incident. Factors external to the conditions and environment for a given incident
may play a large role in how resources are allocated within and between incidents.
Even after accounting for many of the biophysical factors and landscape charac-
teristics that are related to fire expenditures, much variation in expenditures
remains unexplained. This suggests that human factors including the characteris-
tics of the local land managers and assigned incident management team as well as
social and political influences may play a substantial role in determining fire
expenditures.
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Because the allocation of suppression resources to a fire incident involves a
series of decisions by individual managers, examining the incentives that drive
manager decisions may help explain variations in expenditures. Donovan and
Brown (2005) suggest that manager incentives are a contributing factor resulting in
the build-up of hazardous fuels that cause larger, more dangerous, and more costly
fires. This line of reasoning suggests that a budgeting process whereby expendi-
tures are paid largely from national accounts rather than from local accounts may
encourage overuse of suppression resources on a given fire and over the course of a
fire season. This limits the amount of fire on the landscape that can naturally treat
and reduce hazardous fuels, which leads to larger and more expensive fires in the
future. The authors identified two factors that create an incentive for overuse of
suppression resources. First, budgets for suppression are paid out of national funds,
rather than from budgets at the local level; a manager in a local unit does not bear
any of the opportunity cost for using additional suppression resources because they
are not paid out of the local fund. Second, management decisions tend to discount
beneficial effects of fire for treating the build-up of fuels. That is, managers may
only consider the potential damages of additional fire on the landscape and not the
potential future benefits of a less aggressive suppression response that allows for
more extensive burning.

The disincentives faced by managers to contain expenditures have been rec-
ognized as a potential barrier to more efficient risk management of wildland fire
(Calkin et al. 2011d). However, the focus on suppression budgeting in Donovan
and Brown (2005) may understate the problem. Risk management for wildland fire
includes a broad array of land management activities, and incentive-compatible
suppression budgeting may not address incentives for other proactive measures to
reduce risks from fire (Thompson et al. 2013a).

Thompson et al. (2013a) suggest that risk management for wildland fires could
benefit from the application of actuarial principles to fire program funding. An
actuarial approach could encourage both suppression expenditure containment and
efficient management of risk. Suppression expenditure models may be an impor-
tant component of this process; Thompson et al. (2013a) use a version of the
expenditure model developed by Gebert et al. (2007) to estimate suppression
expenditures for simulated fires on national forest units in two regions. The dis-
tribution of expenditures on simulated fires shows that significant differences in
expenditures can be expected between and within regions. These results indicate
that suppression expenditure modeling can provide valuable information about the
expected benefits of fire program investments.

Expenditure models may help reveal how the incentives faced by managers can
be altered by social and political pressures from outside the fire management
organization. Fire managers themselves recognize that such pressures exist and can
affect suppression expenditures (Canton-Thompson et al. 2008). A common
example of this is the relationship between housing and other private property and
suppression expenditures. Development in Wildland-Urban Interface (WUI) areas
has resulted in more people and homes within or closer to fire-prone areas, par-
ticularly in the western United States. This trend has been cited as a primary factor
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that increases suppression expenditures (OIG 2004). The U.S. Forest Service and
other federal fire management agencies do not have a specific mandate to protect
private property; however, social and political pressure from local residents and
their representatives may encourage managers to increase suppression efforts.

The proximity of development and private property tends to be associated with
higher suppression expenditures. The regression-based models of suppression
expenditures show that total and per-acre expenditures tend to be higher when
more housing is closer to fire incidents (Gebert 2007; Yoder and Gebert 2012) or
when private land is a greater share of the burned area (Liang et al. 2008). But
these studies provide only indirect evidence that manager incentives are being
altered through social pressure to increase suppression response. The results may
represent an effort by managers to increase investments in suppression when
highly valued resources are at risk (and which are likely correlated with devel-
opment in WUI areas).

A more direct investigation of the effect of social and political pressure was
carried out by Donovan et al. (2011). Using regression-based expenditure models,
the authors associated the volume of newspaper coverage of fire incidents and the
seniority of Congressional representatives in the district where incidents occurred to
suppression expenditures. They found that more newspaper coverage and more
senior Congressional representatives were associated with higher expenditures,
even after controlling for other fire characteristics that typically drive expenditures.

To the extent that social and political pressure plays a role in determining
suppression expenditures, it likely operates through altering manager responses to
risk and the tradeoffs managers make over different fire outcomes (including
expenditures). For example, Calkin et al. (2013) found that when choosing among
suppression strategies, managers appear to place little weight on suppression
expenditures when homes are at risk and may actually seek out more expensive
strategies. Further, the authors found that there is a divergence between choices
managers would likely make under realistic conditions, and the choices they would
prefer to make if social and political pressures were absent. A follow-up study
found that manager decisions may be tied in large part to risk preferences
(Wibbenmeyer et al. 2013).

2.6 Conclusion

The Stratified Cost Index (SCI) and subsequent expenditure models have been
developed largely in response to large and increasing federal expenditures for
wildland fire management. As fire management expenditures have increased over
the past decade, so too have calls to better understand the factors that may explain
expenditures. This understanding can help determine which factors may be under
management control and how agencies involved in wildland fire management can
more cost-effectively manage fires.
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Expenditure models will need to continue to provide improved links between
expenditures, management strategies, and fire outcomes. Indeed, much of the
recent work on expenditure modeling has sought to better link expenditures (and
other fire outcomes) to the decision making processes that commit suppression
resources to fire management efforts (Gebert and Black 2012; Donovan et al.
2011). Expenditure models are ultimately an attempt to evaluate management
strategies in terms of expected net value change, including suppression expendi-
tures, resource damages, and risks to human life and safety. Donovan and Rideout
(2003) identify that net value change for a fire is dependent on pre-determined
levels of pre-suppression and fuels management investments. Thus, a goal of
expenditure modeling is to better understand how suppression efforts change large
fire spread and potential outcomes to highly valued resources, the interactions of
suppression spending on pre-suppression and fuel treatment levels, and how
firefighter and public safety is affected by alternative strategies.

The need for accurate and reliable expenditure models is only likely to increase
in the future. (Chapter 3 in this volume explores past performance issues with
expenditure models, and Chap. 4 describes advances in model development to
improve accuracy.) Increased development, particularly in the western United
States, will result in larger populations in closer proximity to forests (USDA Forest
Service 2012). Climate change is likely to increase frequency and severity of fires
in these same geographic areas (Westerling et al. 2006), which could result in a
large increase in the exposure of human populations to risks of wildland fire.

Increases in exposure to wildland fire could precipitate a concomitant increase
in expenditures. Given that fire management budgets already account for large
portions of budgets for agencies involved in wildland fire management, expendi-
ture models may be able to play an important role in improving cost effectiveness
in the future. However, it is also possible that development and climate changes
will alter the expenditure relationships that have been discovered since the original
SCI was first developed. That is, what we currently know about how fires are
managed and their costs may change in response to the altered relationships
between human populations and fire-prone landscapes.
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Chapter 3
Regional and Temporal Trends
in Wildfire Suppression Expenditures

Abstract This chapter explores regional and temporal patterns of wildfire
suppression expenditures. A key question addressed is whether expenditure dif-
ferences across time or between regions are explained by differences in fire
characteristics, differences in management responses to fire, or unobserved factors.
Three analyses are conducted: A time-series analysis of aggregate expenditures at
the regional level to discern year-over-year trends due to random processes; an
analysis of trends in cost-performance metrics based on the Stratified Cost Index
model; and, a micro-level regression model that examines the determinants of
suppression expenditures over time and between regions. In the latter case,
introducing year- and region-specific interactions with fire characteristics in
expenditure regressions can indicate whether observations of higher (or lower)
expenditures in certain years and regions can be attributed to variation in fire
characteristics or to unobserved differences between years and regions. Taken
together, these analyses highlight the complex relationships between expenditures,
fire characteristics, climate and weather, and human factors in determining
suppression expenditures.

Keywords Expenditure trends � Expenditure performance measures � Stratified
cost index � Regression decomposition � Regional trends � Augmented Dickey-
Fuller � Trend � Drift � Random walk

3.1 Introduction

This chapter explores regional and temporal patterns of suppression expenditures.
Despite the constant presence of fire on the landscape, fire seasons can exhibit
enormous variations in the extent and severity of fires, the effects of wildfires on
humans, and the costs of managing fires. Further, regional variations in climate
and weather ensure that management of wildfires can vary between regions and
from one year to the next.

M. S. Hand et al., Economics of Wildfire Management, SpringerBriefs in Fire,
DOI: 10.1007/978-1-4939-0578-2_3, � The Author(s) 2014
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Examining U.S. Forest Service expenditures suggests that there are significant
variations in expenditures between regions and across time (Fig. 3.1). Total
expenditures are higher over the most recent decade than in the previous decade,
although there doesn’t appear to be a consistent year-over-year trend towards
increasing expenditures. At a regional level, Region 5 (California) tends to have
the largest expenditures in any given year. However, regional ‘‘hot spots’’ in a
particular year may push other regions higher if fire activity is particularly heavy in
a region. For example, Region 6 (Northwest) in 2002, Region 1 (Northern Region)
in 2000 and 2003, and Region 3 (Southwest) in 2011 all showed spikes in
expenditures corresponding to heavy fire activity.

To provide a more detailed analysis of regional and temporal trends, aggregate
expenditures are examined using time-series statistical techniques and the Strati-
fied Cost Index (SCI) model. Of particular interest is whether differences in
average expenditures across regions and years can be explained by differences in
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Fig. 3.1 Aggregate fire suppression expenditures from 1977 to 2012
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fire characteristics (e.g., fire conditions becoming more severe over time), or by
differences in the relationships between fire characteristics and expenditures (e.g.,
a more costly response to changes in fire conditions). The first explanation (con-
ditions becoming more severe) is biophysical in nature, whether the increase is due
to increasing fuel loads from past suppression efforts or from the effects of climate
change. As such, it would require a different set of management responses geared
more toward manipulation of or adaptation to the biophysical environment. The
second is more ‘‘human’’ centered (responses to increased settlement near fire-
prone landscapes, social and political pressures, etc.); leading to management
responses geared more toward changing human behavior, organizational incen-
tives, and institutional controls.

Fig. 3.1 continued
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3.2 Methods and Data

To examine trends in suppression expenditures over time and between regions, two
general techniques are used. First, we take a broad look at aggregate expenditures
using detailed time-series analysis at the regional level. Time-series techniques can
help discern year-over-year trends in expenditures from changes due to random
processes and are useful for describing the behavior of expenditure observations (if
not the structural determinants of observed trends).

The second approach uses micro-level data to examine how fire characteristics that
are related to expenditures may explain trends over time and between regions. We use
the results from SCI-model predictions of per-acre fire expenditures to determine
whether expenditures are increasing or decreasing relative to historical averages. We
also develop a version of the SCI regression model to explore how fire characteristics
can explain differences in expenditures over time and between regions.

3.2.1 Aggregate Expenditure Trends Over Time

The time-series analysis tests whether expenditures are increasing or decreasing
over time in any (or all) regions after accounting for random factors. More spe-
cifically, we examine the following three questions about trends in suppression
expenditures: (1) Do observations of past expenditures help predict future
expenditures? (2) Do expenditures tend to increase or decrease by a fixed amount
each year? (3) Are year-over-year changes in expenditures increasing or
decreasing over time? Answering the first question can indicate the degree to
which expenditures change according to decisions and conditions that determined
expenditures in previous years. The second question can show whether expendi-
tures are moving in a certain direction regardless of decisions and conditions in
previous years. Finally, the third question is useful for understanding whether
expenditures follow a trend that is increasing or decreasing over time.

A series of three augmented Dickey-Fuller tests are used to answer the ques-
tions posed above: (a) a random walk; (b) a random walk with a drift; (c) a random
walk with a drift and deterministic trend (Pfaff 2008). The tests are designed to
indicate whether expenditures over time behave as a stationary process. A sta-
tionary time series implies that expenditures over time are random around a fixed
mean and with a fixed standard deviation, whereas a non-stationary series exhibits
expenditures with a non-constant mean or standard deviation (or both).

A random walk process of regional expenditures can determine whether past
realizations of expenditures predict future expenditures:

DCkt ¼ cCk;t�1 þ
Xp�1

i¼1
dkiDCk;t�i þ ekt; ð3:1Þ

where DCkt represents the first difference (i.e., Ckt - Ck,t-1) of aggregate expen-
ditures ($) of region k in year t, c and dki are parameters to be estimated, and p is
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the order of autoregression. The c parameter can be interpreted as the effect of last
year’s aggregate expenditures on the changes in expenditures observed this year,
and the dki parameters indicate the effect of previous years’ changes in expendi-
tures on this year’s observed change in expenditures. The number of previous
years to include in the regression (i.e., the order of autoregression, p) was selected
using Bayesian information criterion to find the model that best fits the data.1

To test whether expenditures increase or decrease by a fixed amount each year,
a constant term b0 is added to Eq. (3.1), resulting in:

DCkt ¼ b0 þ cCt�1 þ
Xp�1

i¼1
diDCk;t�i þ ekt: ð3:2Þ

Including a deterministic time trend requires adding a parameter (b1) that
describes the increase or decrease in expenditures that occurs over time (t):

DCkt ¼ b0 þ b1t þ cCk;t�1 þ
Xp�1

i¼1
dkiDCk;t�i þ ekt: ð3:3Þ

All three models were estimated with Feasible General Least Squares procedure
(Greene 2003, p.209) using regional and total USFS suppression expenditures
from 1977 to 2012, adjusted for inflation.

The null hypothesis of the stationarity test is the same for each equation: c = 0.
Rejecting the null hypothesis indicates that the series is stationary and observations
of past expenditures help explain future changes in expenditures. Not rejecting the
null hypothesis (i.e., the time series is non-stationary and has a unit root) indicates
that knowledge of past expenditures does not help predict future changes in
expenditures. If the null hypothesis is not rejected, tests for the significance of the
drift and/or deterministic trend models can be performed using Eqs. (3.2) and (3.3).2

3.2.2 Regional Spatial Relationships in Expenditures Over
Time

To investigate the potential presence of spatial relationships among regional
expenditures over time, we examine the relationship between aggregate expen-
ditures of border-sharing (neighboring) regions. One way to study this relationship

1 An autoregressive order for each region between 2 and 5 best fits the data according to the BIC.
Results available from the authors upon request.
2 These tests are a direction for future research. Details of the tests for drift and deterministic
trends can be found in many time-series textbooks, for example Enders (2008). For the purposes
of testing for stationarity, the estimated parameters of the trend, drift, and past changes do not
have an interpretable meaning like they do in conventional time series models, for example
autoregressive moving average models. Including past changes in Eqs. (3.1), (3.2), and (3.3)
ensures the model residuals are white noise with no autocorrelation.
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quantitatively is to construct a spatial neighborhood structure and estimate a
space–time model of the first differences with a three-stage iterative approach
(Pfeifer and Deutsch 1980). However, this kind of model usually involves the
estimation of a large quantity of parameters due to the neighborhood structure as
well as the orders of autoregression and moving average terms. With only 35
observations in each series of differenced expenditures, excessive loss of degrees
of freedom is inevitable, even if only first-order spatial neighbors were considered.

The approach taken here is to conduct an Engle-Granger test for co-integration
(Engle and Granger 1987). This test can determine whether the expenditures in
two neighboring regions tend to move together in the long term (i.e., whether there
is a long-run relationship between expenditures in the two neighboring regions3).
Co-integration tests have been used extensively to test how closely the prices in
different markets move together and provide evidence for spatial market structure
(Goodwin and Piggott 2001; Goodwin and Schroeder 1991). In the present case,
co-integration can indicate whether spatial relationships have an influence on
aggregate suppression expenditures at the regional level.

The test is comprised of two steps: 1. Estimate Ordinary Least Squares (OLS) for
the following regression: Cit ¼ hCjt þ et; 2. Perform stationarity test on the resid-

uals: êt ¼ Cit � ĥCjt, with an augmented Dickey Fuller test that contains a drift and
trend:

Dêt ¼ q0 þ q1tþ aêt�1 þ
Xk�1

i¼1
liDêt�i þ ut ð3:4Þ

Here, Cit is the aggregate expenditure of region i in year t and h; q0; q1; a; and li

are parameters to be estimated. If a = 0 (êt is stationary), then expenditures in the
two regions are co-integrated, i.e., they move together in the long run.

3.2.3 Regional and Temporal Relationships in the SCI
Model

The SCI model can be used to examine trends in individual fire expenditures over
time and between regions. We examine predicted fire expenditures and SCI model
parameter estimates to answer two broad questions:

• Has expenditure containment performance improved over time, and are there
significant differences in performance between regions?

3 Region 10 and Region 13 are omitted from the spatial co-integration tests. Region 10 is
comprised only of Alaska, and thus doesn’t share any contiguous borders with other regions.
Region 13 is an identifier for suppression expenses that originate from the Washington, DC
headquarters or are otherwise not assigned to a specific geographic region. Expenditures associated
with Region 13 tend to be high, because national resources, such as helicopters and air tankers, as
well as national contracting expenses, such as catering services, are charged to Region 13.
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• Are differences in expenditures due to different characteristics of fires or to
different relationships between explanatory factors and expenditures?

To answer the first question, annual expenditure performance metrics for large
fires managed by the USFS are compared between regions and over time. The
original SCI model was developed in part to provide a broad performance measure
for USFS expenditure containment efforts (see Chap. 2). That is, the SCI can be
used to measure which fires in a given season were more or less expensive than
average fires with similar characteristics and whether expenditure containment
efforts are effective over time. The SCI model described in Gebert et al. (2007)
closely matches the model used by the USFS for assessment of expenditure per-
formance, where actual expenditures per hectare (EPH) are compared to
model-estimated expected EPH.

The expenditure assessment model measures the outcome of each large fire
(greater than 121 hectares) as the total agency expenditures per hectare. For each
fire, the SCI regression model parameters are used to calculate the expected EPH
for any fire based on the fire characteristics in the model, and to compare expected
EPH to actual EPH. Using the standard deviation in EPH from the estimation
sample, fires are identified where actual EPH exceeds expected EPH by one or two
standard deviations. The frequency of fires exceeding one or two standard devi-
ations in EPH is summarized by region for fiscal years 2006–2012.

To answer the second question, a decomposition of SCI-type regression
parameters is used to provide insight into the sources of previously unexplained
expenditure differences between regions and across time. Previous studies have
highlighted categorical differences in expenditures between regions and over time.
For example, suppression expenditures per hectare are higher on average for fires
in California and the Northwest Region (Washington and Oregon) than in other
regions (Gebert et al. 2007). Donovan et al. (2011) found that expenditures vary
between regions, although the differences for California and the Northwest are no
longer significant after controlling for media coverage and Congressional senior-
ity. Yoder and Gebert (2012) found that expenditures are higher in certain years
but do not appear to follow a consistent time trend.

Because previous studies controlled for other factors thought to drive expen-
ditures, regional and temporal expenditure differences may be accounted for by
unobserved variables or structural differences in how fires are managed. A simple
pooled regression of USFS and DOI large fires illustrates the differences in
expenditures per hectare by landscape characteristics, geographic region, admin-
istrative agency, and year. Interaction terms for key categorical variables are
introduced to examine the degree to which categorical differences are due to
structural differences in how expenditures are determined. These interactions can
indicate where structural heterogeneity is an important determinant of expendi-
tures and where remaining unobserved factors account for expenditure differences.

The regression model is based on the SCI model in Gebert et al. (2007), and
related studies using similar techniques (e.g., Liang et al. 2008). In addition to
landscape characteristics, the model controls for geographic regions, year, and
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administrative agencies with primary management responsibilities. The basic
model is expressed as:

EPHi ¼ bX
0

i þ cDOIi þ dG
0

i þ aFY
0

i þ ei; ð3:5Þ

where EPHi is an observation of the natural log of total federal expenditures per
hectare for fire i, Xi is a vector of landscape characteristics (including a constant)
calculated at the ignition point of each fire, DOIi is a categorical variable indi-
cating fires where a DOI agency had primary management responsibilities (instead
of USFS), Gi is a vector of geographic area categorical variables, and FYi is a
vector of fiscal year categorical variables. The e term is a random disturbance that
is assumed to be distributed with a mean of zero and constant variance.4

The geographic area (G) and year (FY) categorical variables are of primary
interest for examining structural differences in the expenditure regression. For a
categorical variable with a statistically significant regression coefficient in the
basic model, interactions with the other model variables can be used to test the
hypothesis that category-specific regression coefficients are a significant deter-
minant of expenditure differences. The interaction model for a generic categorical
variable is:

EPHi ¼ bX
0

i þ u Z
0

i � Ci

� �
þ ei; ð3:6Þ

where Ci is a generic categorical variable, Xi includes all landscape characteristics
and categorical variables (including Ci), and Zi is the subset of variables from Xi

that are interacted with Ci.
Individual interaction coefficients in u can be tested for significance using

conventional t-tests. These tests can be interpreted as showing whether the
expenditure response to a particular fire characteristic is different for the category
of interest as compared with the rest of the population. However, it may be that the
regression model as a whole is significantly different for the category of interest.
Testing the hypothesis that all of the interaction terms are jointly significantly
different from zero is carried out with a likelihood ratio statistic (Greene 2003):

LR ¼ �2� ln
Lr

Lu

� �
; ð3:7Þ

where Lu is the value of estimated likelihood function for the full (unrestricted)
model in Eq. (3.6), and Lr is the value of the estimated likelihood function for the
basic (restricted) model in Eq. (3.5) (where all of the interaction terms are

4 The assumption of spherical disturbances appears to be a reasonable one for this application;
Gebert et al. (2007) and Liang et al. (2008) did not find evidence of heteroskedasticity or (in the
latter study) spatial auto regressive errors. In the present study, controlling for a general non-
spherical disturbance process (using White-Huber sandwich estimator) resulted in very little
change in standard errors and no change in the interpretation of results. Results available from the
authors upon request.
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restricted to equal zero). The test statistic is Chi squared distributed with degrees
of freedom equal to the number of restrictions (i.e., the number of parameters in u

in Eq. (3.6)).
To aid in the analysis of the categorical variables, and to avoid specifying an

unwieldy number of interaction terms, the geographic areas and years are grouped
into low-, moderate-, or high-cost categories based on the initial regression model
from Eq. (3.5). Consistent with previous studies, initial regressions identified
California and the Northwest as the high-cost regions. Moderate-cost regions
include the Southwest and Great Basin regions; the Northern Region, Rocky
Mountain, Eastern, and Southern regions make up the low-cost regions.5 High-cost
years include 2004, 2010, 2011, and 2012, moderate-cost years include 2005 and
2008, and low-cost years include 2006, 2007, and 2009. In the interaction speci-
fication (Eq. 3.6), the high-cost categories for geographic areas and years are
interacted with the other variables in the regression.

The regression model is estimated using a dataset of large fires managed by
either the USFS or a DOI agency. Expenditure data (in constant 2012 dollars) are
drawn from USFS and DOI agency financial databases and matched with geo-
graphic data from the ignition point of each fire using Geographic Information
System (GIS) layers maintained by the Wildland Fire Decision Support System
(WFDSS). The final data set is a combined set of observations that are used to
generate the expenditure models in the WFDSS SCI module in use for the FY 2013
fire season.6 Table 3.1 describes the data used for estimation.

3.3 Results

3.3.1 Aggregate Expenditure Trends Over Time

As shown in Table 3.2, the hypothesis that expenditures are non-stationary (c = 0)
cannot be rejected for at least two of the three models in all cases. We also found
that for all models where c is not significantly different from zero, the drift and
deterministic trend were also not significant at conventional confidence levels.
Thus, annual aggregate expenditures appear to be non-stationary and best
described as random walks, which is consistent with the observed upward change
over time. This implies that at the aggregate level, (1) the mean and/or variance of
fire suppression expenditures changed over time from 1977 to 2012, and, (2)

5 For the purposes of this analysis observations in Alaska are omitted. Relatively few Alaska
fires are managed by the USFS, which confounds results with respect to the DOI categorical
variable. Also, it appears that an expenditures model for Alaska may vary significantly from a
model for the contiguous 48 states.
6 The WFDSS SCI model includes geographic area categorical variables, but does not control for
differences between years.
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expenditures exhibited an unpredictable path, so knowledge of past expenditures
would not help predict future movements.7

There are 15 pairs of regions that share borders, and eight pairs are co-inte-
grated at the 95 % confidence level: Region 1 and Region 2, Region 1 and Region
4, Region 1 and Region 6, Region 3 and Region 5, Region 3 and Region 8, Region
4 and Region 5, Region 4 and Region 6, and Region 5 and Region 6 (Table 3.3).
This result implies that the movement of expenditures in Region 2 was relatively
independent of the surrounding regions while expenditures in Region 1 seemed to

Table 3.1 Descriptions of regression variables

Variable Description Mean Std.
Dev.

LNEPH (dep. var.) Natural log of total federal expenditures per hectare
burned, adjusted for inflation (2012 $)

5.5 1.8

LNHECTARE Natural log of total burned hectares 5.81 1.62
ERC Relative energy release component (0–100 scale) 81.1 19.7
GRASS Binary indicator of grass fuels at ignition 0.46 0.498
BRUSH_FMD Binary indicator of brush (chaparral) or fuel-model D

(Southern rough) fuels at ignition
0.269 0.444

BRUSH4 Binary indicator of brush-4 (dense brush) fuels at
ignition

0.034 0.18

TIMBER Binary indicator of timber fuels at ignition 0.237 0.425
LNELEV Natural log of elevation at ignition 6.76 0.824
LNTOT20 Natural log of total population within 20-mile radius of

ignition
7.31 3.1

WILD Binary indicator of whether ignition point is within a
designated wilderness area

0.064 0.244

LNWILD_DIST Natural log of distance from ignition point to nearest
wilderness area boundary (if WILD = 1)

0.054 0.252

LNTOWN_DIST Natural log of distance to the nearest town with
population of at least 50,000

2.44 0.76

DOI Binary indicator of whether fire was managed by a DOI
agency

0.78 0.414

LOW_COST_GEOG Low cost regions (binary): Northern, Rocky Mountain,
Eastern, Southern

0.397 0.489

MID_COST_GEOG Moderate cost regions (binary): Southwest, Great Basin 0.419 0.493
HIGH_COST_GEOG High cost regions (binary): California, Northwest 0.184 0.388
LOW_COST_YEAR Low cost fiscal year (binary): 2009 0.415 0.493
MID_COST_YEAR Moderate cost fiscal years (binary): 2005, 2008 0.226 0.418
HIGH_COST_YEAR High cost fiscal years (binary): 2004, 2010–2012 0.359 0.48

7 Dickey-Fuller tests may suffer from a lack of statistical power in some cases, which may
account for the small number of rejections (DeJong et al. 1992). Results confirm that differencing
the expenditures time series (i.e., so the dependent variable is the change in expenditures) is
necessary for spatial and non-spatial time-series modeling to avoid spurious regression.
Stationary tests performed on the first differences of all series indicated that all expenditures
series were integrated of order 1 (i.e., were stationary).
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Table 3.2 Test statistics for Augmented Dickey-Fuller stationary tests of regional and total fire
suppression expenditures (C) from 1977 to 2012

Random walk (Eq. 3.1) sa p

R1 -1.1273 3
R2 -1.709 2
R3 0.054 2
R4 -1.0943 2
R5 0.8494 5
R6 -1.1352 2
R8 -0.3155 4
R9 0.031 5
R10 -1.7865 2
R13 1.2144 2
Total -0.2415 2
Drift (Eq. 3.2) s U1b p
R1 -2.094 2.2094 3
R2 -2.6988 3.748 2
R3 -1.237 1.1736 2
R4 -2.7243 3.8752 2
R5 -2.3055 2.6954 2
R6 -2.2763 2.6067 2
R8 -1.6363 1.4722 4
R9 -2.0651 2.3364 4
R10 -2.5574 3.2704 2
R13 0.1715 0.8943 2
Total -1.6639 1.6546 2
Drift and trend (Eq. 3.3) s U2c U3d p
R1 -3.8786* 5.0393 7.5436* 2
R2 -3.2315 3.5992 5.2856 2
R3 -3.1771 4.0201 5.5044 2
R4 -4.4283* 6.7462* 9.9022* 2
R5 -4.9254* 8.1874* 12.2246* 3
R6 -2.7409 2.5412 3.7951 2
R8 -5.2656* 9.329* 13.8771* 3
R9 -6.6854* 15.1129* 22.4376* 3
R10 -2.4429 2.1286 3.1928 2
R13 -1.5476 2.0539 2.1010 2
Total -4.3216* 6.5041* 9.3609* 3

Notes p indicates autoregressive order selected using minimum BIC
* indicates significance at 95 % confidence level
a Hypothesis: c = 0. Critical values at 95 % confidence level for s in the three models are -1.95,
-2.93, -3.50, respectively (McLeod et al. 2011)
b Hypothesis: (b0, c) = (0, 0). Critical value at 95 % confidence level is U1* = 4.86
c Hypothesis: (b0, b1, c) = (0, 0, 0). Critical value at 95 % confidence level is U2* = 5.13
d Hypothesis: (b1, c|b0) = (0, 0|b0). Critical value at 95 % confidence level is U3* = 6.73
For concision, b0, b1; and di are not shown in the table
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change with most of its neighbors. In general, the results indicate that expenditures
in the western regions tend to move together, which is consistent with fire activity
and expenditures responding to climate patterns that affect a broad geographic area
in the western United States (Westerling et al. 2006).

3.3.2 Regional and Temporal Relationships in the SCI
Model

3.3.2.1 SCI as a Performance Measure: Comparing Predicted
to Actual Expenditure Outcomes

Based on data from fiscal years 1995 to 2004, the SCI model was first used to
examine expenditure performance after the FY 2006 fire season. Table 3.4 sum-
marizes expected and actual EPH comparisons for FY 2006 through FY 2012. Since
FY 2006, the percentage of fires exceeding expected expenditures has remained
relatively stable, between 19 and 25 % exceeding one standard deviation, and
between 2 and 6 % exceeding two standard deviations. An exception was in FY
2010, when nearly 40 % of large fires had actual EPH at least one standard deviation
above expected, and 19 % exceeding two standard deviations. However, only 78
large fires were evaluated in this year, making it difficult to assess whether the higher
percentage of ‘‘outliers’’ represents a significant difference from other years.

Examining EPH performance across regions does not show that any particular
region has substantially deviated in recent years from previous expenditure
structures when comparing actual to expected EPH. This also suggests that no
particular region is driving the national performance rates. Comparing regions
across all years, USFS regions had between 13 and 28 % of large fires exceed

Table 3.3 Test statistics for co-integration tests (Eq. 3.4) of fire suppression expenditures of
border-sharing neighbors

R1 R2 R3 R4 R5 R6 R8 R9

R1 -5.928 -3.5141 -6.1839 -3.3838
R2 -3.3859 -3.4905 -3.228 -3.3976
R3 -1.3359 -5.6297 -6.372
R4 -3.7034 -4.0353
R5 -4.9234
R6
R8 -3.1231

Notes Hypothesis test: a = 0
Regions in rows are the dependent variable in the first step of co-integration test; regions in
columns are the independent variable in the first step of co-integration test
Critical value at 95 % confidence level is -3.50. Shaded cells indicate that the hypothesis is
rejected at the 95 % confidence level, i.e., expenditures in the two regions are co-integrated
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expected EPH by more than one standard deviation, and between 2 and 13 %
exceed expected EPH by more than two standard deviations. The Rocky Mountain
region stands out with the largest share of large fires greater than two standard
deviations above expected EPH. However, the small number of large fires eval-
uated in each region can mean that a few fires in any given year that exceed
performance thresholds can result in large changes in percentages.

In summary, there is little evidence to suggest a trend over time in the per-unit
expenditures (EPH) of managing USFS fires. Addressing the first research question
in this chapter, expenditure performance does not appear to be improving over the
time period that the SCI has been used as an evaluation tool. Further, no particular
region stands out as a high or low performer on an EPH basis. It is possible that
significant variation in fire activity from one year to the next and between regions
masks temporal or regional trends. Observations from additional years may help
identify these trends in the future.

3.3.2.2 Regression Decomposition of SCI Model Parameters

The basic regression results of EPH on fire size, landscape characteristics, and
categorical variables are listed in Table 3.5. As has been found in previous studies,
larger fires tend to have lower expenditures per hectare, fires burning in grass tend to

Table 3.4 Percent of USFS large fires with actual expenditures per hectare exceeding one or two
standard deviations above expected expenditures per hectare, by fiscal year and region

Number of large fires evaluated Percent outliers

[1 SD [2 SD

a. Annual fiscal year totals (all regions)
2006 158 20.9 3.8
2007 164 18.9 3.7
2008 170 24.1 5.9
2009 127 22 1.6
2010 78 39.7 19.2
2011 178 20.8 5.6
2012 192 24.5 3.1

b. Regional totals (all years)
Northern 127 13.4 2.4
Rocky Mountain 70 28.6 12.9
Southwest 202 26.7 5.4
Great Basin 165 24.2 3.6
California 210 26.2 6.2
Northwest 96 18.8 3.1
Southern 167 22.8 5.4
Northern 30 20 3.3
Total (all years and regions) 1,067 23.2 5.2

3.3 Results 31



be the least expensive, and those burning in timber tend to be the most expensive.
Fires that ignite within a designated wilderness area have higher EPH, but EPH is
inversely related to the distance of the ignition point from the wilderness area
boundary. Finally, fires managed by the DOI have lower EPH than USFS fires.

Table 3.5 Expenditure per hectare regression coefficients for pooled and interaction models

Pooled model (no
interactions)

High-cost geog. area
interactions

High-cost year
interactions

Variable Population coefficients
LNHECTARE 20.329 (0.013) 20.346 (0.014) 20.318 (0.016)
ERC 0.011 (9.9e-5) 0.011 (0.001) 0.010 (0.001)
BRUSH_FMD 0.379 (0.047) 0.348 (0.052) 0.303 (0.059)
BRUSH4 0.747 (0.107) 0.765 (0.119) 0.881 (0.134)
TIMBER 0.608 (0.054) 0.547 (0.060) 0.587 (0.068)
LNELEV 0.715 (0.031) 0.725 (0.034) 0.750 (0.039)
LNTOT20 0.047 (0.008) 0.049 (0.009) 0.044 (0.010)
WILD 0.606 (0.135) 0.732 (0.163) 0.501 (0.167)
LNWILD_DIST 20.514 (0.130) 20.612 (0.154) -0.265 (0.173)
LNTOWN_DIST 0.053 (0.034) 0.070 (0.037) 0.031 (0.042)
DOI 21.10 (0.054) 20.848 (0.061) 21.28 (0.070)
MID_COST_GEOG 0.465 (0.053) 0.435 (0.054) 0.463 (0.067)
HIGH_COST_GEOG 1.10 (0.056) 3.28 (0.720) 1.05 (0.070)
MID_COST_YEAR 0.189 (0.049) 0.156 (0.055) 0.188 (0.050)
HIGH_COST_YEAR 0.311 (0.043) 0.325 (0.046) 0.523 (0.537)
Constant 0.659 (0.261) 0.419 (0.286) 0.637 (0.328)

Variables with interactions Interaction term coefficients
LNHECTARE 0.072 (0.030) -0.040 (0.026)
ERC -0.003 (0.003) 0.002 (0.002)
BRUSH_FMD 0.301 (0.124) 0.219 (0.098)
BRUSH4 -0.031 (0.260) -0.325 (0.222)
TIMBER 0.315 (0.139) 0.097 (0.114)
LNELEV 20.207 (0.083) -0.105 (0.065)
LNTOT20 20.042 (0.021) 0.005 (0.017)
WILD 20.574 (0.284) 0.103 (0.285)
LNWILD_DIST 0.532 (0.280) -0.413 (0.264)
LNTOWN_DIST -0.063 (0.085) 0.067 (0.071)
DOI 21.11 (0.129) 0.439 (0.110)
MID_COST_GEOG – 0.001 (0.108)
HIGH_COST_GEOG – 0.080 (0.119)
MID_COST_YEAR 0.069 (0.121) –
HIGH_COST_YEAR 0.033 (0.115) –
Log likelihood -10,026.7 -9,956.6 -10,002.1
R2 0.388 0.402 0.393
LR stat (d.f. = 13) 140.3 49.3

Obs. = 5,697. Standard errors in parentheses. Coefficient estimates in boldface are statistically
significant at the 95 % level
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The decomposition analysis proceeds by estimating Eq. (3.6) with the high-cost
geographic areas category as the C variable, and again with the high-cost years
category as the C variable. In both instances there is evidence that the expenditure
structure is different for the high-cost categories. Likelihood ratio tests reject the
joint hypothesis that all of the interactions are not significantly different from zero
(i.e., that the pooled model without interactions is the appropriate model). This
suggests that a portion of expenditure differences is related to structural differences
in how fires are managed in high-cost geographic areas and in high-cost years.

For high-cost geographic areas, interaction coefficients are significant and
positive for fire size (LNHECTARE) and distance to wilderness boundaries. This
means that the negative effect of increases in fire size and greater distances to
wilderness boundaries are smaller for the high-cost regions, which increases
expenditures in those regions. Also, fires that burn in brush/southeast understory
pine (known as Fuel Model ‘‘D’’ or FMD) and timber are significantly more
expensive for the high-cost regions.

Not all interactions with geographic regions are positive, indicating lower
expenditures per hectare associated with some fire characteristics in high-cost
regions. For example, the increase in expenditures normally associated with
greater housing value within 20 miles of ignition (LNTOT20) is eliminated in
high-cost regions. This may suggest that expenditures in high-cost regions are not
sensitive to variations in housing values. That is, in high-cost regions (particularly
California), fires may be more likely to have high expenditures regardless of
property values at risk.

Although the coefficient decomposition for high-cost areas helps to describe the
structural differences in how expenditures are determined, it also does not fully
explain regional expenditure differences. Indeed, the categorical variable coeffi-
cient for high-cost areas is now significantly larger than in the pooled model. This
suggests that there are still unobserved characteristics of fires in California and the
Northwest that are positively associated with EPH, and that the effect of these
factors (and the underlying differences between regions) is larger than previously
thought.

A possible explanation for this result is that the combined effect on EPH of the
interaction terms for high-cost areas is negative on average. That is, ignoring the
different expenditure structures results in underestimates of the differences
between the high-cost areas and other areas. Ignoring interactions can bias con-
clusions about how fire characteristics are related to expenditures per hectare. For
example, the relationship between EPH and housing value (LNTOT20) is larger
for all regions after controlling for the high-cost area interaction; ignoring the
offsetting relationship with housing value in high-cost areas produces a downward
bias on the LNTOT20 coefficient in the pooled regression.

The coefficient decompositions for high-cost years yield a more straightforward
interpretation of the expanded expenditure structure. The only statistically sig-
nificant interaction terms are those for the brush/FMD fuel models and the DOI
categorical variables, both of which are positive. This suggests that in the high-cost
years (2004, 2010–2012) fires with these characteristics are managed differently,
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and more expensively, than in other years. Further, incorporating the interactions
appears to fully explain the expenditure differences between high-cost and other
years. The remaining intercept term for high-cost years is now statistically
indistinguishable from zero.

Although the decomposed model can identify the source of the expenditure
differences between high-cost and other years, it cannot distinguish the reason
these differences exist. It is not clear why fires managed by DOI were more
expensive in some years (and the past three years in particular), or why fires that
ignite in certain fuels would be more expensive to manage in certain years. A topic
for future research remains to identify unobserved characteristics that are posi-
tively correlated with EPH and are more likely to occur for DOI fires and brush/
FMD ignitions in certain years. Similarly, the reason for different expenditure
responses to certain variables by region is as yet unexplained, and requires more
detailed investigation in the future.

3.3.2.3 Summary

The decomposition of SCI-type regressions for suppression expenditures per
hectare suggests two general conclusions: First, expenditure models appear to be
more complicated than previously thought, with the structure of how fires are
managed from an expenditure perspective varying geographically and over time.
Second, significant work remains to identify the underlying causes of these dif-
ferences. Between regions, incorporating coefficient interactions actually increased
the magnitude of unexplained expenditure differences between regions. For annual
differences, factors that drive differences in the expenditure structure in particular
years are difficult to identify.

3.4 Conclusion

Though this chapter has brought up as many questions as it answered, it has shed
additional light on some important questions that need to be answered to under-
stand the rising expenditures on wildland fire. Results indicate that the general
overall trend in aggregate suppression expenditures may largely be due to factors
outside the control of the land management agencies. Our time series analysis of
annual aggregate suppression expenditures is consistent with the observation that
expenditures have indeed risen over time. However, year-over-year expenditures
follow an unpredictable path that does not adhere to a consistent time trend.
Further analysis indicates that expenditures in the western regions tend to move
together, which is consistent with fire activity and expenditures responding to
climate patterns that affect a broad geographic area in the western United States.
Only Region 2 expenditures seem to move independently of the rest of the western
Regions.
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However, results also show that when looking at the expenditures on individual
fires, differences among regions are still largely unexplainable. The analysis of
per-fire expenditures indicated that, after taking into account the interaction of
high-cost regions with other fire characteristics, differences in expenditures
between high-cost regions (Northwest and Pacific Southwest) and the lower-cost
regions are actually amplified. This leads to more questions about what unob-
servable characteristics (that differ between the high-cost and low-cost regions) are
not being explained by the model. Conversely, for high-cost years, incorporating
the interactions appears to fully explain the expenditure differences between high-
cost and other years. However the interaction terms show that in high-cost years,
fires managed by the DOI and fires burning in a fuel model of brush/FMD are more
expensive. The question then becomes, why?

Determining the answers to these questions is becoming increasingly important.
The increasing trend in federal expenditures experienced by land management
agencies in recent decades, coupled with declining federal budgets, magnifies the
need to determine why wildfire suppression expenditures are increasing. If
reducing suppression expenditures or slowing the increase in expenditures is a
high priority, knowing the reasons for increasing expenditures can help land
management agencies focus expenditure-containment efforts in ways likely to be
most effective. If the increases are largely due to factors outside the control of the
agencies (like climate and weather), management efforts may be more focused on
when and where to fight fires, rather than on hazardous fuel manipulation or
specific strategies and tactics. If increasing expenditures are due to changes in
vegetation (like increased fuel loads, insect infestations, etc.), then some type of
vegetative manipulation may also be helpful. However, if increasing expenditures
are more likely due to human factors such as social/political pressures, risk
aversion leading to overuse of resources, or increasing populations in the WUI,
then the answer may lie more in how to change the behavior and incentives facing
fire managers and landowners than in changing the biophysical environment.

When looking at the SCI analyses that have been required of agencies over the
past several years (number of fires exceeding expected expenditures by more than
1 or 2 standard deviations), results show little change over time. This could
indicate that measures taken to contain expenditures in the past decade have been
tempered by other factors affecting expenditures. More research is needed to
understand the complex relationships between expenditures, fire characteristics,
climate and weather, and human factors to determine the best way to deal with
rising suppression expenditures.
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Chapter 4
Modeling Fire Expenditures
with Spatially Descriptive Data

Abstract A regression model of suppression expenditures based on spatially
descriptive fire characteristics in the United States Forest Service, Northern Region
(Region 1) is expanded to include all six regions of the western United States.
Spatially descriptive landscape and fire characteristics are calculated using
available final burned area perimeters for large wildfires (greater than approx. 121
hectares). These characteristics are used as independent variables to describe
variations in total suppression expenditures for 419 fires. Hierarchical partitioning
is employed to develop a parsimonious regression model, and results are checked
for spatial autocorrelation. Results suggest that spatially descriptive data is useful
for explaining variations in suppression expenditures, and spatial data with
regional controls can account for spatial error patterns observed in the dependent
variable. Spatially descriptive models have the potential to be used for a variety of
applications where expenditure estimates are needed and planning and manage-
ment activities rely on spatially explicit information that can be used in expen-
diture models. However, finer-scale geospatial data is necessary to integrate
spatially descriptive expenditure models with spatially explicit fire management
planning tools (such as outputs from fire simulations).

Keywords Regression expenditure models � Spatial autocorrelation � Hierarchical
partitioning � Spatial characteristics � Fire perimeters

4.1 Introduction

In their Region 1 model, Liang et al. (2008) identified two primary factors that
determine expenditures on wildfire suppression efforts: fire size and the share of a
fire’s burned area that was privately owned. Fires with larger size or with more
private land area in their perimeter were found to be more expensive to control in
the Northern Region. In contrast to previous studies that examined the role of fire
characteristics based on the ignition point, Liang et al. (2008) calculated fire
characteristics for the entire burned area of each fire observation. A parsimonious
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model using relatively few explanatory variables was developed to explain a large
share of sample variation in suppression expenditures. The results suggest that the
spatial composition of landscape characteristics and how managers respond to
different spatial arrangements of landscape characteristics are important determi-
nants of expenditures.

In this chapter we explore relationships between spatially explicit landscape
characteristics and suppression expenditures in a larger spatial scale. Using the
approaches of Liang et al. (2008) as a guide, which examined expenditures for 100
fires in the Northern Region (which includes Montana and parts of northern Idaho,
North Dakota, and South Dakota), we specify a model of suppression expenditures
for the entire western United States based on spatial characteristics within each
fire’s burned area. Data are drawn from fires with ‘‘ignition point’’ data available,
similar to data used in the SCI model (Gebert et al. 2007). Landscape character-
istics, such as fuel types, land ownership, and protected status, are calculated based
on the area within the final fire perimeter.

The expenditure model for the western United States can indicate whether the
findings based on a single region—the Northern Region—are applicable to other
regions or the nation as a whole. This analysis is aimed at determining whether
spatially descriptive characteristics of fires have a consistent impact on expendi-
tures across the western United States or whether region-specific effects dominate.
Further, the results can be compared to comparable ignition point models to assess
whether more detailed spatial and geographic data will improve the performance
of expenditure models. These results can have implications for decision support
tools, such as the Wildland Fire Decision Support System (WFDSS, Calkin et al.
2011b) that include predicted expenditure modules, post-season evaluation of
expenditure performance, and the evaluation of how landscape changes (such as
fuel treatments) may affect suppression expenditures of future fires.

4.2 Insights from the Region 1 Model

In the Region 1 model, Liang et al. (2008) studied suppression expenditures on
large wildland fire spent by the USFS. Among 16 potential characteristics repre-
senting fire size and shape, private properties, public land attributes, forest and fuel
conditions, and geographic settings, only fire size and private land had a significant
influence on suppression expenditures. A parsimonious model to predict sup-
pression expenditures was developed with hierarchical portioning (Chevan and
Sutherland 1991), which shows that fire size and percentage of private ownership
within the fire perimeter explained 58 % of variation in expenditures.

With the average fire size (925 ha), suppression expenditures dramatically
increased as the proportion of private land within the burned area increased from 0
to 20 percent. Suppression expenditures peaked at around $3 million with 20 % of
private land. As this percentage continued to increase, suppression expenditures
started to slowly decline and stabilized in the neighborhood of $1 million. With the
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average percentage of private land within burned area (10 %), suppression
expenditures increased monotonically from around $280,000 to $28 million, as
fire expanded in size from 148 to 22,000 ha. The results suggested that efforts to
contain federal suppression expenditures need to focus on the highly complex,
politically sensitive topic of wildfires that transition between federal and private
lands. Detailed descriptions of data, methods, and findings can be found in Liang
et al. (2008).

4.3 A Spatial Expenditure Model for the Western United
States

Expanding the spatial expenditure model to include all of the western United
States can provide additional insights about suppression expenditures. Conclusions
from a single region may not apply to a wider geographic scope due to spatial
heterogeneity and regional differences in strategic wildfire management. The
expanded model is developed in a similar manner as the Region 1 model discussed
above to facilitate comparisons of conclusions and insights with the original
model. For broader applicability, some variables differ from the Region 1 appli-
cation. These include several of the forest and fuel conditions variables from the
Region 1 model (e.g., surface-to-area volume, packing ratio, moisture content, rate
of spread, flame length, fine fuel load) that have been replaced by spatial fuel
model and energy release component (ERC) variables.

4.3.1 Data

Observations are drawn from USFS large fires (with final burned area greater than
121 hectares) from fiscal years 2006—2011 that have final burned area perimeters
available. Individual fire records are drawn from NIFMID. Fire perimeters gath-
ered from the National Interagency Fire Center (NIFC) incident FTP service were
overlaid with several geospatial data layers to calculate geospatial characteristics
for each fire (see Table 4.1 for data sources).

Records of fires that were part of a fire complex, that is, two or more individual
fires managed as a single incident, are dropped from this analysis because it is not
possible to accurately apportion total expenditures on the complex to the indi-
vidual component fires. The final calibration dataset is comprised of spatially
explicit attributes of 419 fires in the western region (Table 4.1).

The response variable in this analysis is the natural log of total USFS sup-
pression expenditures (lnfs_exp), adjusted for inflation to 2012 dollars. Expendi-
ture data is drawn from USFS financial databases and NIFMID, which tracks
financial data for fires where Federal agencies have the primary management

4.2 Insights from the Region 1 Model 39



Table 4.1 Description of variables studied in this chapter (obs = 419). Variable names in bold
are selected from preliminary regressions to be included as candidate variables for the hierar-
chical partitioning analysis

Variable Description Source Mean SD

lnfs_exp Natural log of USFS expenditures, in 2012
$ (Dep. Var.)

FFIS 13.8 1.99

lngis_ha Natural log of final burned area in
hectares, calculated from final GIS
perimeter

NIFC FTP 8.09 1.48

one_day Binary indicator of one-day duration
(based on fire occurrence discovery
and strategy-met dates)

NIFMID 0.062 0.242

erc_max Maximum relative energy release
component value between discovery
date and strategy-met date within the
final burned area

Calculation based
on Abatzoglou
(2013) data

92.7 13.2

erc_std Standard deviation of relative energy
release component values between
discovery date and strategy-met date
within final burned area

Calculation based
on Abatzoglou
(2013) data

14.1 11.4

ln_avelev Natural log of the mean elevation (in ft.)
within the final burned area

LANDFIRE 7.37 0.442

Special designated areas WFDSS
wild_burn Binary indicator of whether the fire burned

any area within a designated
wilderness area

0.317 0.466

wild_sh Share of final burned area that was within
a designated wilderness area

0.202 0.359

ira_burn Binary indicator of whether the fire burned
any area within an inventoried roadless
area

0.487 0.500

ira_sh Share of final burned area that was within
an inventoried roadless area

0.223 0.331

slp_1 Share of final burned area with slope class
1 (\20 %)

LANDFIRE 0.374 0.304

usfs_sh Share of final burned area in USFS
ownership

WFDSS 0.818 0.293

timber_spa Share of final burned area with timber fuel
models (FBFM8, FBFM9, FBFM10)

LANDFIRE 0.378 0.300

Housing value U.S. Census
lnhouse8_in Natural log of value of housing (000’s of

$) between fire perimeter and 8-km (5-
mile) radius of final perimeter

4.66 5.88

lnhouse16_8 Natural log of value of housing (000’s of
$) between 8- and 16-km radius of
perimeter

7.14 6.05

lnhouse32_16 Natural log of value of housing (000’s of
$) between 16- and 32-km radius of fire
perimeter

11.4 4.32

(continued)
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responsibility. All of the fires included in the estimation data set were primarily
managed by the USFS, and the USFS expenditures account for about 88 percent of
total expenditures on these incidents.

Potential explanatory variables were developed to provide a more detailed
spatial description of variables previously either reported or calculated from the
ignition point in the original SCI model. The variables describing spatial char-
acteristics fall into three categories: summary variables, composition variables,
and distribution variables. Summary variables represent a value (usually the mean)
that summarizes a given characteristic over the spatial extent of a fire’s burned
area (e.g., average elevation). Composition variables describe the portion of the
burned area that fall into different categories of a characteristic (e.g., slope classes,
or land ownership categories). Distribution variables describe how a characteristic
is distributed across the burned area, or how a characteristic varies in space (e.g.,
aggregate housing value at different distances from the burned area).

The Energy Release Component (ERC) is an approximation of dryness of the
U.S. National Fire Danger Rating System (Deeming et al. 1977) calculated from a
suite of meteorological and site specific variables. ERC is used by U.S. federal
land agencies both operationally (e.g. Predictive Services), in simulation models
that predict fire size and probability (Finney et al. 2011a, b), as well as fire
expenditure estimation (Gebert et al. 2007). Within the model, ERC was calculated
using two variables: The maximum daily ERC value over the course of the fire

Table 4.1 (continued)

Variable Description Source Mean SD

Aspect classes LANDFIRE
asp_123 Share of final burned area in N, NE, and E

aspects
0.362 0.181

asp_456 Share of final burned area in SE, S, or SW
aspect

0.397 0.184

USFS regions NIFMID
reg_1 Binary indicator for Northern region

(reference category)
0.105 0.307

reg_2 Binary indicator for rocky mountain
region

0.069 0.254

reg_3 Binary indicator for Southwest region 0.279 0.449
reg_4 Binary indicator for great plains region 0.193 0.395
reg_5 Binary indicator for California region 0.239 0.427
reg_6 Binary indicator for Northwest region 0.115 0.319

Data sources FFIS Foundation Financial Information System, which is being replaced by the
Financial Management Modernization Initiative (FMMI), available at http://info.fmmi.usda.gov/,
accessed 9/3/2013; NIFMID National Interagency Fire Management Integrated Database,
maintained at the USDA National Information Technology Center in Kansas City, MO; NIFC
FTP—available at ftp://ftp.nifc.gov/Incident_Specific_Data/, accessed 7/24/2013; WFDSS
Wildland Fire Decision Support System databases available at http://wfdss.usgs.gov/wfdss/
WFDSS_Data_Downloads.shtml, accessed 7/24/2013; LANDFIRE—version 1.2.0 available at
http://www.landfire.gov/lf_120.php, accessed 7/24/2013
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(erc_max), and the standard deviation of ERC during the fire (erc_std). ERC can
vary over time during a fire depending on changing weather conditions. Many fires
in the estimation sample had periods of moderate ERC values, reflecting weather
conditions that may be favorable for suppression activities. Quiescent periods of
weather have been shown to be correlated with increased likelihood of fire con-
tainment (Finney et al. 2009), which can affect expenditures by shortening fire
duration (Gebert and Black 2012).

4.3.2 Methods

The expanded spatial model largely follows the modeling approach set out in
Liang et al. (2008) for Region 1. We begin with preliminary ordinary least squares
(OLS) regressions of total USFS expenditures on spatially explicit landscape
characteristics and other controls (like regional identifiers). Candidate explanatory
variables were identified from the preliminary regressions based on statistical
significance and insights from previous research. We then conduct a hierarchical
partitioning (HP) analysis to identify a subset of variables that account for the
greatest share of variance in suppression expenditures. The resulting parsimonious
regression models are evaluated for spatial autocorrelation.

Hierarchical partitioning (Chevan and Sutherland 1991) provided key insights
into expenditure structures for Region 1, including identifying the independent and
combined contribution of fire size, private land and developed areas, and other
landscape characteristics to the goodness-of-fit of suppression expenditure models.
Prior to conducting hierarchical partitioning, preliminary regression models were
used to identify a list of 12 candidate variables that were significantly related to
expenditures at the 95 % level or higher (Table 4.1). The hierarchical partitioning
regressions and analysis were executed using the hier.part package (Walsh et al.
2003) in the R system (R Core Team 2013). Based on the hierarchical portioning,
the explanatory variables with an independent contribution to the overall good-
ness-of-fit greater than 1/12 (8.33 %) were selected to compose the final parsi-
monious model (Table 4.2).

4.3.3 Results

Hierarchical partitioning candidate variables are listed in Table 4.2 along with
their independent contribution to goodness-of-fit (R2). As in the Region 1 model,
fire size (lngis_ha) accounts for the greatest share of goodness-of-fit at about 22 %.
Average ERC during the fire contributes about 11.8 %, indicating that variation in
weather and fuel conditions helps explain expenditure variations between fires.
The Region 5 (California) dummy variable and the housing value variables also
contribute around 10 % to goodness-of-fit, whereas no other variable contributes
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more than 8 %. In total, fire size, average ERC, the Region 5 dummy, and the
housing value variables account for about 63 % of overall goodness-of-fit.

It is noteworthy that private land variables were not candidate explanatory
variables, whereas in the original Region1 model (Liang et al. 2008) private land
was associated with higher expenditures and contributed about 11 % to goodness-
of-fit. Initial regressions indicated that private land was not significantly related to
expenditures. The only jurisdiction category that was significantly related to
expenditures was the share of burned area under USFS ownership (which tends to
be positively related to expenditures).

Regression estimates are presented in Table 4.3 for the full model and the
parsimonious model where variables that contribute less than 8.3 % to goodness-
of-fit have been dropped. Overall the models perform similarly to the Region 1
models, with the parsimonious model explaining about 52 % of variation in
expenditures, and the full model explaining about 66 %. All of the coefficients in
both models are highly significant and of the expected sign.

Fire size is positively associated with expenditures, similar to previous findings.
The magnitude of the coefficient is on the low end of the range reported in the
Region 1 model Liang et al. (2008). In the expanded parsimonious model, the
coefficient implies that for the average fire a 10 % increase in fire size results in a
6.5 % increase in expenditures.

Maximum ERC is positively associated with expenditures in both the full and
parsimonious models, indicating that more extreme weather and fuel conditions
increase expenditures. ERC was not a variable included in the Region 1 model,
although the Region 1 model controlled for several forest and fuel condition
variables. These variables individually (or as a group) did not contribute greatly to
the explanatory power of the Region 1 model. In the expanded model, it may be
that the calculation of ERC summarizes forest, fuel, and weather conditions in a
way that is more closely related to fire behavior (e.g., how intense a fire is likely to
burn) and fire management (e.g., how difficult it is to suppress a fire).

Table 4.2 Percentage
independent contribution to
the overall goodness-of-fit
(R2) calculated by
hierarchical partitioning.
(Dep. Var. = lnfs_exp;
obs. = 419). Variables in
bold which have independent
contribution greater than 1/12
(8.33 %) were selected to
compose the parsimonious
model

Variable Independent contribution (%)

lngis_ha 22.31
one_day 5.61
erc_max 11.79
erc_std 4.973
ln_avelev 5.09
wild_sh 4.29
usfs_sh 4.90
timber_sh 6.00
lnhouse8_in 9.50
lnhouse16_8 8.49
reg_5 10.74
reg_6 6.31
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Although the standard deviation in ERC was dropped from the parsimonious
model, in the full model greater variation in ERC during the fire was significantly
associated with lower expenditures. This finding is consistent with periods of
quiescent and moderate conditions providing opportunities to contain a fire earlier
and reduce expenditures (Finney et al. 2009).

Housing values are a significant predictor of expenditures in the expanded
models. Greater total home values in proximity to the fire are associated with
greater expenditures. However, there does not appear to be a distance gradient for
the effect of housing values on expenditures. The coefficients for the two housing
value variables (lnhouse8_in, lnhouse16_8) are roughly equal in both models,
suggesting that housing value at risk within 8 km of the final burned area has the
same effect as that between 8 and 16 km from the perimeter.

The housing value results are in contrast to the Region 1 results, in which
housing value and wildland-urban interface land were not significantly associated
with expenditures after controlling for fire size. This result likely indicates dif-
ferences in the expenditure structure for the other regions compared to Region 1.
The average housing value within 8 km of the fire perimeter is roughly equal in the
Region 1 sample and the expanded sample (about $100,000); the different results
may be due to regional differences in the distribution of housing values within the
8 km buffer, or regional differences in how managers respond to threatened
structures or unoccupied private timber and range lands.

An important result from Liang et al. (2008) was that after controlling for
spatial characteristics in the model, residuals did not exhibit spatial autocorrela-
tion. This suggests that the model independent variables are capable of adequately
controlling for spatial relationships among individual fire observations, at least for

Table 4.3 USFS fire expenditure models for the Western regions only (Dependent Vari-
able = lnfs_exp; number of observations = 419)

Variable Full model Parsimonious model

Coeff. Robust S. E. Coeff. Robust S. E.

lngis_ha 0.705 0.041 0.646 0.046
one_day -0.684 0.301
erc_max 0.037 0.006 0.041 0.006
erc_std -0.014 0.006
ln_avelev 0.396 0.189
wild_sh -0.992 0.183
usfs_sh 1.34 0.262
timber_sh 1.01 0.234
lnhouse8_in 0.032 0.012 0.032 0.014
lnhouse16_8 0.038 0.012 0.035 0.013
reg_5 1.92 0.178 1.28 0.152
reg_6 1.55 0.207
constant -0.307 1.45 4.12 0.575
R2 0.661 0.518
RMSE 1.1734 1.386
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fires in the Northern Region. In the western U.S. model, greater geographic scope
and spatial heterogeneity among observations could introduce spatial
autocorrelation.

Spatial autocorrelation among sample observations was estimated using a
nonparametric spatial correlogram function (Bjørnstad and Falck 2001). This
method incorporates a smoothing spline to measure the correlation between values
of the dependent variable or model residuals from sample pairs of observations
over a continuous distance function, without assuming any functional form a
priori. A bootstrap approach with 500 replications was used to determine the 95 %
confidence intervals (i.e., the 2.5 and 97.5 % quantiles) of the mean spatial cor-
relogram distribution (Efron and Tibshirani 1993).

Prior to estimating the fire expenditure models, the dependent variable lnfs_exp
exhibits spatial autocorrelation, as the mean spatial correlogram was significantly
above zero when the distance between pairs of sample was less than 400 km
(Fig. 4.1a). In contrast, the fully specified and parsimonious (HP) models were
able to control for the spatial autocorrelation. This finding is likely due to the
inclusion of regional dummy variables in the fully specified and parsimonious
models, which explain a significant amount of spatial variation in expenditures.1

The residuals from the full model display a spatial correlogram that is not sig-
nificantly different from zero over its range (Fig. 4.1b), and those from the par-
simonious model display a correlogram that is significant only over a small range
(\50 m). This finding suggests that residuals from the full and parsimonious
models are in general spatially independent. That is, the models were able to
control for the spatial autocorrelation in expenditures, making predictions and
inferences more reliable.

4.4 Model Interpretation and Applications

The expanded spatial model of suppression expenditures is useful for providing
insights on how spatial variation and arrangement of landscape characteristics are
related to expenditures. Previous models that use landscape characteristic data
based on the ignition point (e.g. Gebert et al. 2007) are well-suited to explaining
expenditure differences when the primary source of variation between fires is
captured at the ignition point. When these models were developed, spatial
descriptions of fire characteristics using final fire perimeters were not widely
available, and ignition-point data represented the best available data to describe
wildfires. The general hypothesis that has motivated the use of spatially explicit
data is that variations in landscape characteristics within a fire, and differences

1 See Chap. 3 in this volume for a more detailed discussion of regional variations in
expenditures.
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between fires in how these characteristics are arranged within a fire perimeter, can
affect how managers respond to fires and thus expenditures.

The fully specified model for the western United States indicates that spatial
patterns of landscape characteristics are important determinants of expenditures.
For example, the composition of land ownership, fuels, and protection designa-
tions (e.g., wilderness areas) within the burned area are significantly associated
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Fig. 4.1 Spatial autocorrelation of a response variable values, b residuals from the full model,
and c residuals from the parsimonious model selected by hierarchical partitioning. Solid lines
represent mean spatial correlogram, and broken lines represent 95 % confidence
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with expenditures in a way that is not accounted for by ignition-point data. The
spatial model allows for conclusions to be made about how marginal changes in
composition affect expenditures (e.g., the effect on expenditures of burning
additional area in timber fuels), rather than distinctions among categories of fires
(e.g., whether or not the fire started in timber fuel types).

The spatial model also lends itself to more nuanced analyses of how policies,
forest programs, and suppression strategies may affect expenditures. The ignition
point SCI has been used to estimate the potential change in suppression expen-
ditures resulting from a fuel treatment program (Thompson et al. 2013d) and a
strategy that promotes allowing wildfires to burn for achieving resource benefits
(Houtman et al. 2013). In these applications, the primary factor that affected a
change in expenditures was a change in final fire size. The fully specified spatial
model implies that for fires of equal size and the same ignition-point fuel, a fire
that burns a lower share of timber is likely to be less costly. The use of the spatial
model in determining the potential suppression savings from fuel treatment pro-
grams or beneficial fire policies is currently limited due to the absence of mapped
fuel treatment project boundaries and the coarseness of the current fuel models
(i.e. timber, brush, grass). Research is currently underway to explore the influence
of fuel treatments and past fires on suppression expenditures using spatially
explicit data. This requires spatial fuel treatment and fire history data as well as
more refined fuel models to relate changes in landscape characteristics that affect
fire behavior to management decisions and, ultimately, fire expenditures.

A spatial model of expenditures may also be useful for improving expenditure
estimates in decision support systems. The Wildland Fire Decision Support System
(WFDSS) is increasingly incorporating fire simulation models that provide fine-
scale geographic information about potential fire activity under varying conditions
and strategy choices (Calkin et al. 2011b, d). These tools may improve the effi-
ciency of fire management efforts (Hesseln et al. 2010). The spatial model could
provide more details in the expenditure consequences of potential fire outcomes
and provide managers with an early warning of when fire growth in certain areas
may increase or constrain expenditures.

4.5 Conclusion

The expenditure models originally presented in Liang et al. (2008) represented the
first analysis (to our knowledge) of how spatially explicit descriptions of landscape
characteristics are related to wildfire suppression expenditures. Although limited in
scope to a small set of fires in the Northern Region, the results indicated the
potential of spatially descriptive expenditure models to improve wildfire cost
estimation. The models presented in this chapter suggest that spatially descriptive
expenditure models are also useful for the entire western United States.

There is an increased interest in spatially explicit descriptions of wildfire out-
comes, particularly suppression expenditures. Examples of potential uses include
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forecasting suppression expenditures based on spatial variation in landscape
characteristics and the likelihood that fire occurs in different locations (e.g. Preisler
et al. 2011), examining the expenditure consequences on fuel treatment programs
(Thompson et al. 2013d), developing risk-based suppression budgets (Thompson
et al. 2013a), improving our understanding of the implications of climate change
on land management budgets, and providing more detailed information to aid in
decision support systems [e.g., WFDSS, (Calkin et al. 2011c)]. In all of these
cases, the underlying mechanisms and models that drive differences in fire out-
comes (and thus expenditures) are inherently spatial in nature. Developing spa-
tially descriptive expenditure models can leverage the trove of spatial data
associated with these applications, and provide more informative analyses for
managers and decision makers.

Although the spatial expenditure model in this chapter represents an expansion
on previous spatial efforts, much research remains to bring spatially descriptive
models into more widespread use. First, we have not attempted to compare the
performance and predictive ability of the spatial model to the existing ignition-
point models. These models (e.g. Gebert et al. 2007) perform reasonably well and
can be used in a wide variety of applications; it is not yet known whether spatial
models can offer a significant improvement. Second, the spatially descriptive
models have thus far relied on relatively coarse-scale geographic data. Future
applications would benefit from fine-scale data that can distinguish the impacts on
expenditures from landscape and vegetative patterns and the effects of fuel treat-
ments and past fire perimeters that are important for suppression efforts. For
example, the data used in this chapter cannot distinguish public–private land
intermix and in-holdings, or heterogeneity of vegetation types. Finally, future
research may benefit from exploring factors that affect how fire managers commit
and use resources during an incident. Suppression expenditures are ultimately a
consequence of decisions to order and use personnel and equipment over the
course of a fire. Understanding the factors that influence these decisions, including
spatial characteristics, may provide a clearer link between expenditures and
landscape characteristics.
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Chapter 5
Linking Suppression Expenditure
Modeling with Large Wildfire Simulation
Modeling

Abstract Land management agencies face uncertain tradeoffs regarding invest-
ments in preparedness and pre-fire management versus future suppression
expenditures and impacts to valued resources and assets. This chapter illustrates
one potential method for linking suppression expenditure models with fire simu-
lation models in order to estimate suppression expenditures and evaluate alter-
native risk mitigation strategies. A case study application in the Deschutes
National Forest illustrates how fire simulation outputs can be linked with geo-
spatial information from other databases to calibrate a model of wildfire sup-
pression expenditures. The resulting output can describe the expenditure
consequences of different spatial and temporal arrangements of fuel treatments. In
the case study example, fuel treatments that reduce median fire sizes on the
landscape by 5.25 % yield suppression expenditure savings of 5.03 % over a ten-
year time span. Within the treated areas only, effects of fuel treatments on fire size
and expenditures are larger as more fires interact with the treated portions of the
landscape. The approach illustrated in the case study allows analysts to address a
variety of salient wildfire management and policy questions, including compara-
tive assessments of alternative wildfire management strategies and comparisons of
expected suppression expenditures across landscapes and geographic areas.

Keywords Fuel treatments � Wildland fire simulation � FSIM � Stratified cost
index � Treatment expenditures � Tradeoffs � Deschutes national forest

5.1 Introduction

Land management agencies face uncertain tradeoffs regarding investments in
preparedness and pre-fire management versus future suppression expenditures and
impacts to valued resources and assets. The expected expenditures on and impacts
of fire are not equal across landscapes or across regions, suggesting opportunities
exist for efficiency gains by prioritizing risk mitigation investments where net

M. S. Hand et al., Economics of Wildfire Management, SpringerBriefs in Fire,
DOI: 10.1007/978-1-4939-0578-2_5, � The Author(s) 2014
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wildfire management expenditures and detrimental impacts can be minimized
(Butry et al. 2010). Prospective evaluation of likely mitigation effectiveness
facilitates analysis of tradeoffs across land management objectives and wildfire
management expenditures.

A number of factors are thought to influence suppression expenditures,
including incident management strategy, location of the ignition and its proximity
to human communities and private property, climatic and weather conditions, fuel
types, and fire-related characteristics such as size, behavior, and duration (Calkin
et al. 2005; Gebert and Black 2012; Gebert et al. 2007; Gude et al. 2013; Liang
et al. 2008; Yoder and Gebert 2012). The estimation of expected suppression
expenditures can serve as a performance benchmark against which to evaluate
actual expenditures (Gebert et al. 2007; Thompson et al. 2013a) and can help to
forecast budgetary demands (Abt et al. 2009; Preisler et al. 2011; Prestemon et al.
2008). Further, a suppression expenditure model can facilitate the assessment of
how wildfire management actions may affect, or can be designed to affect, future
suppression expenditures (Fitch et al. 2013; Thompson et al. 2013d; Prestemon
et al. 2012).

Figure 5.1 presents a conceptual model for analyzing interactions between
wildfire management actions, wildfire activity, and suppression expenditures.
Fundamentally the process entails modeling first how management actions will
affect the extent and intensity of wildfires, and second how these changes will
affect suppression expenditures. A key logical element is the linkage of factors
influencing suppression expenditures with factors that can be impacted through
wildfire management actions. These actions could include pre-fire investments in
ignition prevention programs, response capacity, and hazardous fuels reduction, as
well as changes in strategic incident response. Insofar as management actions and
influencing factors are well represented in wildfire models or can be sufficiently
captured with expert judgment, potential impacts to suppression expenditures can
be estimated. This basic analytical framework can be brought to bear across
geographic (landscape to national) and temporal (single incident to multiple fire
seasons) scales.

The likely direction and magnitude of potential suppression expenditure
impacts will depend on the wildfire management context and mitigation objectives
and may entail the consideration of spatiotemporal tradeoffs. Ignition prevention
programs and enhancing response capacity both aim to reduce suppression
expenditures by excluding fire from the landscape, although fuel accumulation
could lead to increased future wildfire activity. Evaluating the impacts of alter-
native fuel treatment and incident response strategies is more complicated, owing
to the wide range of possible objectives. Strategies oriented towards resource
protection objectives and limiting the spread of fire (e.g., Ager et al. 2010) could
reduce fire sizes leading to reduced suppression expenditures. The degree to which
fuel treatments can measurably influence wildfire extent will depend on the type,
spatial pattern, and areal extent of treatments (Collins et al. 2010). To the contrary,
strategies oriented towards restoration objectives (e.g., Ager et al. 2013) could
seek to promote ecologically beneficial fire on the landscape, focusing more on

50 5 Linking Suppression Expenditure Modeling



reducing burn severity and subsequent resource damage. Reduced severity could
lead to moderated incident response strategies that use significantly fewer fire-
fighting resources, although longer incident durations could still lead to high
expenditures (Gebert and Black 2012).

This chapter illustrates one potential method for linking suppression expendi-
ture models with fire simulation models in order to estimate suppression expen-
ditures and evaluate alternative risk mitigation strategies. First, the modeling
framework is described, as are the specific wildfire and suppression expenditure
models that we use. The modeling framework we present is most suitable for
evaluating management actions and strategies that aim to reduce the occurrence
and areal extent of large wildfires, as opposed to those that aim to restore wildfire
to fire-adapted ecosystems. The fire modeling component is similar to the work of
Cochrane et al. (2012) who used simulation modeling to explore how previously
implemented fuel treatments may have influenced final fire sizes. Second, we offer
results from a case study on the Deschutes National Forest in Oregon, United
States (Thompson et al. 2013d), examining scenarios that vary landscape fuel
conditions and the frequency of large wildfire occurrence. Lastly we discuss
challenges and opportunities for future applications linking wildfire simulation and
suppression expenditure models.

5.2 Wildfire and Suppression Expenditure Modeling

The foundation of the wildfire and suppression expenditure modeling approach is
the simulation of escaped large wildfire occurrence, growth, and containment
across the planning scale of interest. Wildfire simulation outputs can then be
assimilated with geospatial information from other databases and fed into the
wildfire suppression expenditure model. It is important to note that the choices and
assumptions behind modeling the effects of management actions on wildfire

Fig. 5.1 Influence diagram
of wildfire management
actions and their relation to
primary factors driving
wildfire extent and intensity
as well as suppression
expenditures. Boxes in light
gray are management actions,
and boxes in dark grey are
analytical outputs of interest.
Figure modified from Calkin
et al. (2011a)
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activity may exert a significant influence on suppression expenditure results. For
instance, changes to fire behavior fuel models and canopy characteristics are
particularly important when evaluating fuel treatment strategies.

A stylized process for estimating suppression expenditures under various
wildfire management scenarios follows five steps:

1. Obtain or generate spatial data for modeling wildfire on the reference
landscape.

2. Simulate wildfire under current landscape conditions and management policies
(existing conditions simulation).

3. Update landscape conditions and/or management policies appropriately to
reflect mitigation strategies; re-simulate wildfire (post-treatment simulation).

4. Feed fire modeling outputs and other data into suppression expenditure model.
5. Compare expected suppression expenditures under existing and post-treatment

conditions.

Figure 5.2 depicts the major modeling inputs and outputs, and their interactions
in this modeling framework. The specific models we use were developed and are
currently used by the USFS and DOI agencies: FSIM, a stochastic large wildfire
modeling system (Finney et al. 2011b); and SCI, a suppression expenditure
regression model (Gebert et al. 2007). Both FSIM and SCI are intended for
modeling ‘‘large’’ wildfires, typically defined as greater than 121 ha in size. FSIM
combines sub-models for fire weather, occurrence, spread, and containment in
order to estimate wildfire extent and intensity across thousands of simulated fire
seasons. Each simulated season can result in zero, one, or many large wildfires,
depending on historical fire occurrence patterns and the extent of the simulated
landscape. Key spatial inputs to FSIM are landscape variables relating to fuels and
terrain conditions (surface fuel model, canopy cover, canopy height, canopy base
height, canopy bulk density, elevation, slope, and aspect). In addition to outputting
information on individual fire sizes and perimeters, FSIM also aggregates simu-
lation results to quantify annualized burn probabilities, which are crucial for
complementary risk-based assessments (Thompson et al. 2013c; Scott et al. 2012).

The coupling of FSIM with SCI enables an ensemble approach to expenditure
estimation that accounts for uncertainty surrounding the conditions driving wild-
fire occurrence and spread. Aggregating expenditures on a seasonal basis allows
for exploration of the range of variation of possible suppression expenditures for
particularly active fire seasons. These two models are especially well suited to
evaluate suppression expenditure impacts of hazards fuels treatments. FSIM
controls make it possible to hold the number and location of ignitions, fire weather
conditions, and suppression effort constant across different simulations. This
allows for the effects of fuel treatments to be isolated (apart from a degree of
stochasticity induced via random spotting); post-treatment changes in expenditures
are driven primarily by fuel-treatment related changes in fire size.

52 5 Linking Suppression Expenditure Modeling



5.2.1 Case Study: Deschutes National Forest, Oregon, U.S.A

As a case study we turn to an analysis performed on the Deschutes National Forest
in Oregon, U.S.A, the details of which are presented in Thompson et al. (2013d).
We first illustrate the use of FSIM and SCI to estimate likely suppression
expenditures given current landscape conditions, using results from 10,000 sim-
ulated fire seasons. We then illustrate how we modeled potential suppression
expenditure impacts associated with different wildfire management scenarios.

Figure 5.3 presents a map of the fire modeling landscape, comprising about
209,000 hectares. The outlined area represents the boundaries of the Deschutes
Collaborative Forest Project (DCFP), identified as a priority landscape for wildfire
risk mitigation. The fire modeling landscape includes a buffer around the DCFP
study area in order to account for remote ignitions that could grow large and burn

Fig. 5.2 Flowchart of primary wildfire and suppression expenditure modeling components
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into the project area and into treated locations. Areas highlighted in grey in the
map represent proposed or implemented fuel treatment locations, many of which
are proximal to the communities of Sisters and Bend.

Nearly half of the DCFP landscape is projected to receive fuel treatment during
the planning period from 2010 to 2019. Forest staff provided spatial data on
vegetation and fuel layers for existing conditions (EC), and additionally provided
information on treatment type, treatment polygons, and expected post-treatment
(PT) fuel conditions. For modeling purposes we used a single fire modeling
landscape to capture the cumulative effect of all planned treatments, based on the
assumption that the effective lifespan of treatments extends across the analysis
period. Running FSIM and SCI on the EC landscape quantifies expected sup-
pression expenditures absent pre-fire management intervention. Comparing
expected suppression expenditures on the EC and PT landscapes depicts expected
expenditure impacts associated with the hazardous fuels reduction treatments.

Fig. 5.3 Deschutes
collaborative forest project
(DCFP) study location, with
areas of implemented and/or
proposed fuel treatments
highlighted. Figure from
Thompson et al. (2013d)
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A secondary analysis considers how suppression expenditures might change
with varying frequencies of large wildfire occurrence. This scenario could reflect
varying levels of investment in ignition prevention programs or initial attack
capacity. Further, the scenario could serve as a forecast of potential future
expenditures under a changing climate with increased wildfire activity (although,
at present we do not model vegetation or fuel changes associated with climatic
variables). The scenarios we consider model 1, 3, or 5 escaped large wildfires per
year. Using Monte Carlo sampling techniques we can estimate the variability in
total suppression expenditures surrounding any given number of escapes. As
described earlier this aggregated analysis can help identify just how extreme and
high-cost fire seasons could become.

5.2.2 Case Study Results

Simulation results for wildfire extent and suppression expenditures tend to align
well with historical observations and expectations. Figure 5.4 graphs suppression
expenditures against fire size for all simulated fires on the EC landscape, showing
a positive correlation between size and expenditures. The substantial variance in
expenditures for a given fire size is indicative of the influence of other locational
variables such as distance to a town, proximal housing value, and fuel type. Due to
a limited historical record within the study area itself we compared simulation
results to large wildfire data for the entire Deschutes National Forest, over the
years 2000–2011. A consequence is the inclusion of historical wildfires that ignited
in remote areas where suppression expenditures are generally lower. Across the
fire modeling landscape the simulated mean and median fire sizes were 3,855 and
1,192 hectares, respectively, compared to historical values of 3,905 and 870
hectares. Simulated mean and median suppression expenditures were $8,990,166
and $5,071,995, respectively, compared to historical values of $6,169,476 and
$2,876,921. Again, the higher simulated results are due at least in part to the
proximity of the DCFP to the communities of Sisters and Bend, and the positive
influence of housing value on suppression expenditures.

The first management scenario explores the impact of landscape-scale fuel
treatments by comparing simulation results on the EC and PT landscapes. Across
the entire study area the mean and median fire size dropped by 4.52 and 5.25 %,
respectively, and the mean and median suppression expenditures by 6.57 and
5.03 %. Within treated areas the signal was much stronger, leading to 17.05 and
22.22 % reductions in mean and median wildfire size, respectively, and to 15.83
and 17.55 % reductions in mean and median suppression expenditures. Assess-
ment of treatment efficacy is tied the spatial scale of analysis: as the size of
analysis area increases so too does the proportion of fires that never interact with a
fuel treatment, thus dampening the magnitude of the treatment effect. Here we
adopt a conservative approach and assess all simulated fires within the entire fire
modeling landscape.
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In total 5,673 simulated wildfires grew to the large wildfire threshold (121
hectares) on either the EC or the PT landscape. In 396 cases, the ignition on PT
landscape didn’t grow sufficiently large and is assumed contained by initial attack
efforts; in 6 of these instances the opposite occurred (the ignition grew to become
large only on the EC landscape). Of the remaining 4,841 ignitions, 3,319 fires grew
smaller on the PT landscape (average size reduction = 685 hectares), and 1,522
grew larger on the PT landscape (average size increase = 14 hectares). Thus,
although the variability associated with spotting can result in different fire sizes on
the EC and PT landscape for the same ignition, the magnitude of the treatment
effect is quite apparent. Further, not only did fuel treatments tend to reduce the size
of and expenditures on large wildfires, but treatments also reduced the likelihood
of an ignition growing to become ‘‘large.’’ Assuming equal initial attack effort on
the EC and PT landscapes for all ignitions, the result is a net suppression
expenditures savings in these instances.

Figure 5.5 presents changes in simulated annual burn probabilities across the
EC and PT landscapes. Reductions in burn probability are evident, especially
within treated areas and in areas proximal to fuel treatments (Fig. 5.3), due to
reductions in rate of spread and final fire size. Burn probabilities do increase in
some areas due to stochastic spotting, although the magnitude of these increases is
small relative to reductions elsewhere on the landscape. Figure 5.6 presents a
smoothed expenditure savings surface comparing expected suppression expendi-
tures associated with each ignition location. The spatial pattern of expenditure
savings is similar to patterns of burn probability reductions, with wildfires that
ignited within or proximal to treated areas showing the greatest reductions.

Comparing the EC and PT landscapes on an annualized rather than per-fire
basis captures those fire seasons in which no large fires occur and those fire
seasons in which multiple large fires occur. Distributions of annual area burned
and annual suppression expenditures can therefore evince high variability across

Fig. 5.4 Relationship
between simulated fire size
(x-axis) and suppression
expenditures (y-axis), for
escaped large wildland fires
on the existing conditions
(EC) landscape
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simulated fire seasons. At least one large wildfire occurred on either the EC or PT
landscape on 3,629 out of the 10,000 simulated fire seasons. A total of 3,626
seasons on the EC landscape had at least one large wildfire, which dropped to
3,463 on the PT landscape, again confirming that after treatment some ignitions
don’t grow to become large (and further that in rare instances—in this case 3
seasons—small wildfires on the EC landscape can grow to exceed 121 hectares on
the PT landscape). The largest number of wildfires to occur in a single simulated
season on either landscape was 7, with the EC landscape averaging 0.57 and the
PT landscape 0.53 large wildfire ignitions per season, a 6.88 % decrease. Mean
annual area burned on the EC and PT landscapes were 2,184 and 1,942 hectares
per season, respectively, an 11.09 % decrease. Lastly, mean annual suppression

Fig. 5.5 Reductions in
annual burn probability
(calculated as the EC
landscape values minus the
PT landscape values, for burn
probabilities at each pixel),
across the fire modeling
landscape. Figure from
Thompson et al. (2013d)
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expenditures were $5,094,727 and $4,432,626 per season on the EC and PT
landscapes, respectively, a 13.00 % decrease.

Figure 5.7 presents an empirical probability density function for the change in
annual suppression expenditures between the EC and PT landscapes. The distri-
bution is conditional on large wildfire occurrence (i.e., seasons with zero wildfires
are excluded). The majority (2,547 of 3,629, or 70.18 %) of fire seasons show
expenditure savings, averaging $2,614,530. Most of these seasons show only small
or moderate expenditure savings, however: the 25th percentile is $27,897, the
median is $498,368, the 75th percentile is $3,018,429, and the 90th percentile is $
7,850,444. A smaller fraction (856 of 3,629, or 23.59 %) of fire seasons actually
lead to expenditure increases, which again is due to modest increases in fire sizes
due to stochastic spotting. The magnitude of suppression expenditure increases is

Fig. 5.6 Smoothed surface
of suppression expenditure
savings (calculated as the EC
landscape values minus the
PT landscape values, for
expenditures associated with
each ignition location), across
the fire modeling landscape.
Results are presented in log
scale, illustrating vast
differences in the magnitude
of modeled expenditure
savings (large) and
expenditure increases (small)
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far smaller, with mean and median suppression expenditure increases of $44,629
and $11,936, respectively.

Analysis of annualized results allows for probabilistic statements about the
likelihood of the fuel treatments influencing future suppression expenditures.
Firstly, there is a 36.29 % chance of seeing any large wildfires across the land-
scape. Secondly, in seasons that do experience at least one wildfire, expenditure
savings are realized 70.18 % of the time. There is therefore a 25.47 % annual
chance of seeing suppression expenditure reductions of any magnitude. Referring
to the percentile values presented in the above paragraph, there is a 12.75 %
chance of saving at least $498,368, a 6.37 % chance of saving at least $2,220,084,
and only a 2.55 % chance of saving at least $7,850,444.

The second management scenario explores the impact of increasing frequency
of large wildfire occurrence on the EC and PT landscapes. These results are in
effect annualized, but with a predetermined number of large wildfires per year
rather than a simulated number of fires per year. Figure 5.8 presents empirical
cumulative distribution functions for annual suppression expenditures on the EC
and PT landscapes, over one, three, and five escaped large wildfires per year. As
with Fig. 5.7, results are conditional on the number of large wildfires. On the EC
landscape, the likelihood of seeing five large wildfires in a given season (0.29 %)
is nearly two orders of magnitude lower than the likelihood of seeing one large
wildfire (22.82 %), although these probabilities could change in the future. Hor-
izontal distances between any two expenditure curves represent expected expen-
diture savings at a given percentile value. The curves shift to the right as the
amount of wildfire increases, indicating higher expected annual suppression
expenditures.

Moving between these 1–3–5 curves in Fig. 5.8 indicates the potential savings
associated with investments in prevention and preparedness, or conversely

Fig. 5.7 Empirical
probability density function
(PDF) for change in annual
suppression expenditures
(calculated as the EC
landscape values minus the
PT landscape values, for
expenditures associated with
each simulated wildfire
season with at least one large
wildfire)
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indicates potential expenditure increases associated with disinvestments or with a
changing climate (we should note that a changing climate could also influence fire
extent not just occurrence, a phenomenon we do not model). Moving between EC
and PT curves for a single escape are fairly close together, but the horizontal
distance between the EC and PT curves increases with an increasing number of
wildfires per year. Increased wildfire on the landscape increases the likelihood of
wildfires interacting with fuel treatments, and thus increases the expected efficacy
of fuel treatments. An indirect but important implication of this result is that the
likely efficacy of fuel treatments is greatest when treatments are placed in areas
that are most likely to experience wildfire.

5.3 Discussion

The modeling techniques presented here illustrate an application of the SCI model
paired with a wildfire simulation model for evaluating likely suppression expen-
ditures on various landscapes, as well as for evaluating the likely expenditure
impacts of various wildfire management and risk mitigation strategies. In turn this
approach allows analysts to address a variety of salient wildfire management and
policy questions, including comparative assessment of alternative wildfire man-
agement strategies, comparing expected suppression expenditures across land-
scapes and geographic areas, and possibly comparing expected suppression
expenditures for direct protection areas and other agreements that span ownership
boundaries. Fundamentally the modeling results can be used to help determine
whether the up-front cost of fuel treatment activities are likely to be outweighed or
at least partially offset by future, uncertain suppression expenditure savings.

Fig. 5.8 Empirical
cumulative distribution
function (CDF) for annual
suppression, on both the EC
and PT fire modeling
landscapes, assuming 1, 3, or
5 large wildfires per fire
season

60 5 Linking Suppression Expenditure Modeling



Results will be dependent on the fire modeling techniques used, as well as the
approach to quantifying marginal changes in wildfire activity associated with
management actions, which will come with a degree of error and uncertainty.
Sensitivity and scenario analyses can examine a range of potential suppression
expenditure impacts given uncertainty surrounding treatment efficacy and future
wildfire activity. Whether suppression expenditures actually change will depend
largely on the decisions of fire managers, as well as other factors potentially
influencing their decision-making process (Calkin et al. 2013; Donovan et al.
2011; Wibbenmeyer et al. 2013; Wilson et al. 2011). In the case of fuel treatments,
whether incident managers are aware of the presence and likely efficacy of fuel
treatments will in large part dictate potential changes in incident response,
although fire behavior observations could still indirectly lead to different responses
than might have occurred had the treatments not been implemented.

A critical variable to be incorporated into the analysis is the likelihood of a
treatment ever interacting with fire. This variable will in turn drive the likelihood
of measurable suppression expenditure savings. Hence the utility of stochastic
wildfire simulation and burn probability modeling techniques are seeing increasing
use across the wildfire management spectrum (Finney et al. 2011a; Bar Massada
et al. 2009; Thompson et al. 2013c). The case study results on a fire-prone land-
scape indicated that landscape-scale fuel treatments could lead to reduced wildfire
sizes and expected suppression expenditures, and yet the likelihood of seeing
expenditure savings in any given fire season was just one in four.

Another important variable in the analysis is the spatial scale at which treatment
effects are evaluated. The fire modeling landscape by necessity extends beyond the
scale of treated areas alone, to account for off-site ignitions that can burn into
treated areas and affect on-site burn probabilities. As described earlier, the larger
the spatial scale, the greater the proportion of fires that may never impact fires, so
treatment effects may appear dampened. One option is to record net savings in
absolute rather than relative terms, which in effect ignores wildfires where there
are no discernible treatment effects and is not as influenced by scale. Another
option could be to delineate a ‘‘fireshed’’ for fuel treatments as the area within
which simulated ignitions could reach treated areas (Thompson et al. 2013b). All
wildfire ignitions within this fireshed would then be included in the assessment,
regardless of whether or not they grew to interact with treated areas.

It is critical to align the analytical framework with the landscape context and
the wildfire management objectives. A variety of modeling approaches exist, with
varying levels of suitability for addressing specific questions. Fuel treatments, for
instance, can have a wide variety of objectives, some of which may have little
direct bearing on reducing suppression expenditures. The modeling technique
illustrated here addressed expenditure impacts from changes to fire size, but not
changes to fire intensity or burn severity. The current SCI model does not directly
assess the expenditure impacts of fire intensity or burn severity, which would limit
its use for such applications. Fitch et al. (2013) present an alternative framework
that could help identify expenditure impacts where fuel treatments, or other
management actions, lead to lower severity wildfires.
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An additional limitation of the approach described here is that fire size is
modeled independently of expenditures. That is, the modeling framework
sequentially generates wildfire outcomes, then uses those outcomes to estimate
expenditure outcomes. Effective wildfire incident management efforts are likely to
alter the course of fires and potentially affect final fire size. Yoder and Gebert
(2012) jointly model fire size and expenditures based on ignition point charac-
teristics (like the SCI model does for expenditures alone). This approach accounts
for the possibility that suppression effort can affect fire size, but does not capture
how the spatial distribution of changes in fuel conditions may affect incident
management efforts. Fire growth potential and final size are complex functions of
topography, fuels, weather, and containment effort; changes to these factors are not
well represented in an expenditures model based on ignition characteristics alone.

Future work could bring in a number of extensions and refinements. First, as
introduced earlier, alternative expenditure modeling approaches could be more
suitable or more appropriate contextually. Spatial expenditure models that better
account for landscape characteristics, and mechanistic rather than statistical
models that better account for firefighting resource usage over the duration of the
wildfire could both lead to improved expenditure estimation. Second, expanded
modeling of wildfire management activities, especially initial attack modeling and
suppression response could be brought to bear. An ability to comprehensively
model the consequences of investments across the wildfire management spectrum
could better inform tradeoff analysis and lead to optimization approaches. Ulti-
mately linking suppression expenditure models with wildfire simulation models
could lead to an improved ability to understand and manage the financial impacts
of large wildfires.
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Chapter 6
Outlook and Future Research Directions
for the Economics of Wildfire
Management

Abstract This chapter summarizes the findings on the state-of-the-art for wildfire
management economics research. The previous chapters have demonstrated that
there is considerable complexity in describing the determinants of large fire sup-
pression expenditures, and much remains to be known about the costs of fire
management. Future research directions are summarized, including community
responses to perceived fire risk, managerial incentives and risk preferences, and
socio-political factors in fire management decisions. Current trends in large
wildfire activity and management expenditures suggest that further economic
research may be useful in improving the effectiveness and efficiency of wildfire
management.

Keywords Wildfire suppression � Suppression expenditures � Cost effectiveness �
Manager incentives � Risk perception � Risk management � Net value change

Wildfire activity and its associated damages and management expenditures have
increased in recent years in the United States and throughout the world. Several
factors account for these increases, including increased human development within
fire prone areas, fuel buildup through land use change and past wildfire suppres-
sion, and increased frequency and severity of extreme fire weather due to global
climate change.

This book has focused primarily on management expenditures for wildfires
managed by the USFS—the governmental agency with the largest wildfire man-
agement responsibility in the United States. As the previous chapters demonstrate,
there has been considerable progress toward understanding the factors that
influence management expenditures for large wildfires. Yet uncertainties and
difficulties remain due to the heterogeneous nature of wildfires themselves. Large
wildfires show substantial variability in terms of geographic setting, fire behavior,
values at risk, socio-political environment, and management response.

The fundamentals of wildfire economics were laid out almost a century ago
when Sparhawk (1925) developed the Cost Plus Loss (CPL) model. CPL shows
that the optimal wildfire management program minimizes management expendi-
tures plus resource loss due to wildfire. Improvements to the Sparhawk model have
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been recommended, such as replacing CPL with Cost Plus Net Value Change
(C ? NVC) and the recognition that optimal budgets for pre-suppression, sup-
pression, and Net Value Change cannot be simultaneously determined (Donovan
and Rideout 2003). Yet the fundamental concept behind CPL and C ? NVC
remains sound; cost-effective investments in wildfire suppression are those that
aim to minimize programmatic costs and wildfire-related net loss.

Wildfire expenditure models studied in this book (such as the SCI) are currently
able to provide a wealth of information that can be used to evaluate programmatic
costs in a CPL or C ? NVC framework. Major findings described in the preceding
chapters indicate the advances, potential uses, and limitations of expenditure
models in this regard, including:

• Regression expenditure models are reasonably good at identifying primary
factors related to management expenditures using variables readily available in
Agency reporting systems, though considerable unexplained variation remains
(Chap. 2).

• SCI-type models have become well established as a tool to examine manage-
ment performance (on individual fires and for a fire season as a whole) and
provide decision support during an incident. The models are best considered as
coarse filters for identifying fires with above average expenditures, and there
may be instances when higher than average expenditures cannot be explained by
observable factors, such as potential risk or socio-political influences. In these
cases, thoughtful review of management decision making may help reduce
unnecessary expenditures in the future (Chap. 2).

• Aggregate regional expenditures over time follow an unpredictable path that
does not adhere to a consistent time trend, and regional expenditures in the West
tend to move together. This suggests that increases in aggregate expenditures
over time are not inexorable and leaves open the possibility that observable
factors, such as climate variations and the geographic distribution of fires in a
given year, help determine year-over-year expenditures (Chap. 3).

• Differences in regional expenditure structures persist and are difficult to explain
with observable data, whereas differences in expenditure structures between
high- and low-cost years are explained by differences in observable fire char-
acteristics. Results indicate that expenditure containment efforts may benefit
from focusing on management activities in specific regions (i.e., California and
the Northwest) and exploring the role of human factors (e.g., risk biases, social
and political pressures) that are not captured in regression expenditure models
(Chap. 3).

• Spatially descriptive fire characteristics are useful for explaining variations in
fire expenditures in the western United States and can account for spatial
relationships (i.e., autocorrelation) between observations. These models may be
useful for applications where the spatial arrangement of landscape characteris-
tics that affect fire behavior and expenditures may be important (e.g., analysis of
fuel treatment costs and benefits) (Chap. 4).
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• Expenditure models can be paired with fire simulation models to help quantify
the expenditure consequences of land management activities (e.g., landscape-
scale fuel treatment programs). In an example application, expenditure models
are capable of describing how fuel treatments may affect future suppression
expenditures when fuel treatments affect the expected size of future fires. This
suggests that cost-effective planning of fuel treatment investments involve
tradeoffs between treatment costs, changes in future suppression expenditures,
and effects on public and private resources (Chap. 5).

In light of these general findings, the challenge for managers, policy makers,
and researchers is to begin to fill in the gaps in knowledge about the determinants
of wildfire management expenditures and how public agencies can plan wildfire
management programs for more cost-effective outcomes. Potentially fruitful lines
of research could consider how additional socio-political factors are related to
suppression expenditures, such as expectations of management partners involved
in fire management, community characteristics, and managerial experience and
risk preferences.

Future research may benefit from engaging with emerging social science
research that attempts to better understand how communities respond to perceived
fire risk. Within the USFS, local line officers (e.g. District Rangers and Forest
Supervisors) are responsible for developing fire management strategies and dele-
gating the operational authority to the Incident Management Teams. Managerial
incentives (Donovan and Brown 2005; Thompson et al. 2013a) and managerial
biases and risk perception may be important in this process (Wilson et al. 2011;
Wibbenmeyer et al. 2013), yet the role of such factors in decision making and
strategic choices are only beginning to be understood in a wildfire management
context.

Fundamentally, there is limited understanding of how fire suppression actions
lead to the conclusion of fire events (Finney et al. 2009; Holmes and Calkin 2013).
Within this book we have focused on the use of econometric regression models to
understand wildfire suppression expenditures. Alternative models such as pro-
duction theory may hold promise, but the range of large wildfire strategies makes it
difficult to determine what essentially is being produced by teams managing a fire
(Holmes and Calkin 2013).

This book has demonstrated that there is considerable variation in large fire
suppression expenditures, and that there remains substantial uncertainty regarding
many of the factors driving these expenditures. Yet estimating the net value
change due to fire is even more challenging (Venn and Calkin 2011; Thompson
and Calkin 2011). Given the current trends in large wildfire activity and the
impacts of wildfire management on public agencies’ budgets, economic research is
greatly needed to improve the effectiveness and efficiency of wildfire management.
Increased residential development within fire prone areas and the potential for
increased wildfire activity due to climate change require a comprehensive exam-
ination of how different fire management investments in prevention, preparedness,
fuel treatment and large fire suppression can best achieve societal goals.
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