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Abstract Both satellite imagery and spatial fire effects

models are valuable tools for generating burn severity

maps that are useful to fire scientists and resource man-

agers. The purpose of this study was to test a new mapping

approach that integrates imagery and modeling to create

more accurate burn severity maps. We developed and

assessed a statistical model that combines the Relative

differenced Normalized Burn Ratio, a satellite image-based

change detection procedure commonly used to map burn

severity, with output from the Fire Hazard and Risk Model,

a simulation model that estimates fire effects at a landscape

scale. Using 285 Composite Burn Index (CBI) plots in

Washington and Montana as ground reference, we found

that an integrated model explained more variability in CBI

(R2 = 0.47) and had lower mean squared error

(MSE = 0.28) than image (R2 = 0.42 and MSE = 0.30)

or simulation-based models (R2 = 0.07 and MSE = 0.49)

alone. Overall map accuracy was also highest for maps

created with the Integrated Model (63 %). We suspect that

Simulation Model performance would greatly improve

with higher quality and more accurate spatial input data.

Results of this study indicate the potential benefit of

combining satellite image-based methods with a fire effects

simulation model to create improved burn severity maps.

Keywords Burn severity mapping � Fire effects �
Modeling � RdNBR

Introduction

Recognizing the importance of burn severity maps for a

variety of fire management applications, scientists and land

managers strive to develop more accurate and effective

mapping methodologies. Currently, the most widely used

approach to creating burn severity maps is with satellite

imagery-based change detection methods. Studies con-

ducted in a variety of landscapes have evaluated image-

based approaches to burn severity mapping in the US and

internationally (see French et al. 2008 for more detail).

Other studies have employed the approach to investigate

research questions requiring a spatial assessment of burn

severity (Miller et al. 2009b; Epting and Verbyla 2004;

Collins et al. 2007; Haire and McGarigal 2009; Dillon et al.

2011a). Additionally, the Monitoring Trends in Burn

Severity project is a multi-agency effort initiated to pro-

duce a national scale fire atlas based on satellite derived

burn severity maps (Eidenshink et al. 2007).

A field-based assessment of burn severity that is

designed to aid in calibration and validation of satellite-

based severity maps is the composite burn index (CBI)

(Key and Benson, 2006a). Many studies have found cor-

relations between CBI and burn severity measurements

derived from satellite imagery (see French et al. 2008).

Other studies have revealed relationships between image-

based metrics and specific measurable fire effects to sur-

face, understory, and overstory vegetation (Karau and

Keane 2010; Hudak et al. 2007; Miller et al. 2009a; Keeley

et al. 2008).

However, despite correlations between satellite-based

severity metrics and field-measured fire effects, image-

based tools use passive sensors that detect light reflectance;

they do not directly measure any biophysical process or fire

effect on vegetation (Jensen 1983). Simulation modeling,
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on the other hand, produces estimates of biophysical fire

effects. One example of a simulation model that can pro-

duce maps of predicted first order fire effects is the Fire

Hazard and Risk Model (FIREHARM). FIREHARM is a

cross-platform C?? program that functions as a land-

scape-scale spatial fire effects research model and gener-

ates maps of physically based estimates of fire effects such

as damage to trees, understory vegetation, litter, duff, and

soil at the spatial resolution of the input data (Keane et al.

2010). FIREHARM requires several input data layers to

compute spatial fire effects variables. The most important

model inputs for this study include digital maps of topog-

raphy, vegetation, and fuels, along with site-specific

weather and fuel moisture estimates. These inputs are

passed to the First Order Fire Effects Model (FOFEM;

Reinhardt et al. 1997) which includes a collection of

quantitative predictive equations gleaned from the body of

fire effects literature. FOFEM algorithms are embedded in

the FIREHARM program to simulate estimates of tree

mortality, fuel consumption, smoke emissions, and soil

heating. Modeling these direct fire effects enables mapping

of simulated wildfire effects and burn severity assessments

that can be tailored for specific management applications.

As FIREHARM simulates the effect of fire on ecosys-

tem components, it should not be confused with radiative

transfer modeling, an approach that simulates optical

properties of leaves or canopies that are used to classify

satellite imagery into burn severity maps (Chuvieco et al.

2006; De Santis et al. 2009, 2010). Though both methods

are referred to as ‘‘simulation modeling,’’ they are very

different; FIREHARM simulates ecosystem response,

while radiative transfer modeling simulates reflectance, and

thus ultimately relies upon information captured by a

remote sensing instrument. In this paper, the terms ‘‘sim-

ulation’’ and ‘‘modeling’’ refer to simulation of the direct

effect of fire on vegetation.

In a preliminary comparison of the two methods, Karau

and Keane (2010) found that both image-based and simu-

lation-based burn severity mapping approaches have

strengths and limitations associated with data availability,

user expertise, production time, and accuracy. Satellite

image-based methods provide a ‘‘view’’ of the change in a

landscape due to fire, while fire effects simulation model-

ing could provide land managers with biophysically based

estimates of fire effects across a landscape.

The purpose of this paper is to determine the potential of

simulation modeling to add value to spatial burn severity

assessments. We compared burn severity values estimated

from (1) simulation modeling techniques, (2) satellite

imagery-based mapping, and (3) an integration of both

technologies, focusing on fires in conifer forests of the

northwestern United States. Using the CBI field assessment

of burn severity (Key and Benson, 2006a) as field

validation, our objective was to merge the simulation and

image-based approaches to create a statistical model that

generates biophysically centered depictions of landscape

burn severity.

Methods

Study Areas

We selected 15 wildfires that burned in coniferous forests

of western Montana and central Washington between 2003

and 2009 to use in our comparison (Fig. 1). We chose fires

where both georeferenced CBI data and satellite-based

severity maps were available. These fires occurred in a

variety of coniferous forests from low elevation, dry pon-

derosa pine to upper elevation Englemann spruce-subal-

pine fir (Picea engelmannii-Abies lasiocarpa), and

lodgepole pine (Pinus contorta), with the majority of plots

located in Interior Douglas-fir (Pseudotsuga menziesii)

(Fig. 2). All sites can be described by a cool temperate

climate with minor maritime influence and have mean

annual temperatures ranging from 2 to 8 �C. All of our

sites experience similar seasonal timing of precipitation,

with relatively dry summers and most moisture coming as

snow in the fall to spring months. Annual precipitation

amounts, however, vary widely from 410 mm to over

2250 mm annually (McNab and Avers 1994; Western

Regional Climate Center 2012). While all fires selected for

this study burned during a similar time of year, differences

in elevation, vegetation, total fire size, and burning con-

ditions (Tables 1, 2) resulted in a wide range of fire effects

and burn severities to facilitate our comparison of field

data, simulation model output, and satellite imagery.

Field Reference Data

Our comparison of image-based and model-based burn

severity mapping methods required a field-based measure

of burn severity to serve as ground validation. Composite

Burn Index (CBI) is a ground-based, synoptic burn severity

measure that was developed to calibrate and validate

image-based burn severity mapping tools (Key and Benson

2006a). CBI is used in this study to compare the three

technologies: imagery, modeling, and their integration.

CBI consists of several visual estimates and descriptions of

fire damage on each of five distinct strata within the burned

area of the forest. These strata are layered vertically from

the forest floor upward and are: (a) the substrate, which

includes soil and rock cover, duff, and surface fuels;

(b) herbs, low shrubs, and trees less than 1 m; (c) tall

shrubs and trees up to 5 m; (d) subcanopy trees; and

(e) upper canopy trees. Each stratum incorporates four or
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five variables and ranks those variables on a continuous

scale between zero and three. Values for all recorded

variables across all strata are averaged to create a severity

index value for the whole plot ranging between zero

(unburned) and three (highest severity). Although CBI

includes fire effects to soils, the index is heavily weighted

to measuring fire effects to vegetation (Miller and Thode

2007).

CBI data for all 15 wildfires were evaluated using

standard methods described by Key and Benson (2006a) in

an Extended Assessment, where CBI was evaluated

approximately 1 year post-fire. We obtained CBI data for

Montana wildfires from studies on burn severity at the

USDA Forest Service’s Missoula Fire Sciences Laboratory

(Keane et al. 2010; Karau and Keane 2010; Dillon et al.

2011b). For the Washington wildfires, CBI data came from

field work conducted by researchers at the University of

Washington and the USDA Forest Service’s Pacific

Wildland Fire Sciences Laboratory (Cansler 2011; Kopper

2012; Prichard et al. 2010). We used the overall CBI rating

Fig. 1 Study areas showing locations of wildfires (stars) and weather stations (diamonds). CBI plot locations are not shown at this scale
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(continuous zero to three scale) from each plot, as the

response variable in our statistical modeling. We also

assigned each plot to a four category ordinal burn severity

class using standard break points in the CBI scale (Key and

Benson 2006a; Miller and Thode 2007).

Satellite Imagery

A common image-based methodology uses the Normalized

Burn Ratio (NBR), a linear combination of Landsat wave-

length bands four and seven calculated on single-date

imagery, to map fire severity. When NBR images are pro-

duced before and after a fire, the images can be differenced to

enhance the contrast between pre- and post-fire conditions,

resulting in the Differenced Normalized Burn Ratio (dNBR)

(Key and Benson 2006b). The dNBR has been successfully

correlated with the CBI, a field-based integrative assessment

of burn severity (Key and Benson 2006a).

Recent studies show that an adjustment to the dNBR cal-

culation removes bias from the amount of pre-fire vegetation

cover to provide a relative, rather than an absolute measure of

the changes in vegetation between pre- and post-fire imagery

(Miller and Thode 2007). This adjustment is the relative dif-

ferenced NBR (RdNBR), which is calculated as follows:

RdNBR ¼ dNBR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ABS prefireNBR
1000

� �

q ð1Þ

where ABS is the absolute value; dNBR is the pre-fire

NBR value minus the post-fire NBR value; and pre-fire

NBR value calculated by (Band4 - Band7)/(Band4 ?

Band7) of the Landsat TM image. For this study, we chose

to use RdNBR as opposed to dNBR, because RdNBR is a

relative measure of burn severity, and because it is more

regionally consistent in its relationship to field-measured

burn severity (Zhu et al. 2006; Miller and Thode 2007).

We obtained RdNBR for all 15 wildfires from the Moni-

toring Trends in Burn Severity (MTBS) website (http://

www.mtbs.gov/). The MTBS project provides consistent,

30-meter resolution burn severity data and fire perimeters for

all large fires in the United States ([405 ha in the western

U.S.,[202 ha in the eastern U.S.; Eidenshink et al. 2007).

Using standard USGS image processing methodology

(http://www.mrlc.gov/pdf/image_processing.pdf), MTBS

acquires and processes pre-fire and post-fire Landsat TM and

ETM? imagery, from which they produce two continuous

burn severity indices. We used the continuous RdNBR as the

predictor variable in the imagery-based statistical model.

FIREHARM Input Data

We obtained FIREHARM digital map inputs of topography

(elevation, slope, and aspect), vegetation (cover type and tree

attributes), and fuels (fuel loading models) from the National

LANDFIRE Mapping Project (www.landfire.gov). LAND-

FIRE is a joint project between the USDA Forest Service and

US Department of Interior that produces a consistent set of

30-meter resolution geospatial data layers representing

topography, vegetation, and fuels across the United States

Table 1 Characteristics of the wildfires from Montana and Washington

Fire_name State Area burned

km2 (acres)

Fire

year

Start

datea
Wind speedsa

km hr-1 (m hr-1)

100 %

containeda
Nearest weather

station

Total CBI

field plots

Bielenburg MT 5.99 (1,480) 2009 12-Jul-09 3–64 (2–40) 23-Oct-09 Pburg (20 km) 6

Cooney Ridge MT 104.17 (25,740) 2003 8-Aug-03 8–24 Gust48

(5–15 Gust30)

31-Dec-03 Lincoln (74 km) 26

Gash Creek MT 39.98 (9,880) 2006 24-Jul-06 2–24 G48 (1–15 G30) 8-Dec-06 Smith Creek (0.8 km) 5

Gird End MT 13.23 (3,270) 2009 9-Sep-09 14.5–24 (9–15) 26-Oct-09 Gird (6 km) 9

Jocko Lakes MT 143.91 (35,560) 2007 31-Aug-07 64 (40) 4-Dec-07 Pistol Creek (21 km) 13

Kootenai Creek MT 34.03 (8,410) 2009 12-Jul-09 3–24 (2–15) 31-Nov-09 Ninemile (55 km) 14

Lily Lake MT 8.17 (2,020) 2009 13-Aug-09 8–48 (5–30) 16-Oct-09 French Creek (40 km) 9

Mineral Primm MT 84.53 (20,890) 2003 6-Aug-03 5–48 G16 (3–30 G10) 31-Dec-03 Lincoln (77 km) 25

MP Boles Meadow MT 17.36 (4,290) 2003 8-Aug-03 8–16 G40 (5–10 G25) 23-Aug-03 Lincoln (77 km) 3

Tarkio I90 Complex MT 44.31 (10,950) 2005 4-Aug-05 5–32 G26 (3–20 G16) 17-Aug-05 Ninemile (13 km) 9

Camel Humps WA 0.53 (130) 2008 23-Jul-08 not available 1-Aug-06 Stehekin Airstrip (11 km) 28

Cold Springs WA 31.28 (7,729) 2008 12-Jul-08 5–45 G29 (3–28 G18) 1-Aug-08 Sawmill (96 km) 28

Flick Creek WA 28.53 (7,050) 2006 26-Jul-06 2–24 G40 (1–15 G25) 19-Oct-06 Stehekin Airstrip (5 km) 100

Tripod WA 241.64 (59,710) 2006 24-Jul-06 0–16 G21 (0–10 G13) 9-Nov-06 First Butte (0.8 km) 14

Tripod Spur Peak WA 465.88 (115,120) 2006 3-Jul-06 3–16 G16 (2–10 G10) 9-Nov-06 First Butte (0.8 km) 29

a Based on the National Incident Management Coordination Center (NIMCC) incident management situation reports
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(Rollins 2009). We obtained fuel loading input data from the

LANDFIRE FLM (Fuel Loading Model) product (Reeves

et al. 2006). FLMs are categories in a national classification

of fuelbeds that were built to meet the resolution of the

FOFEM model, and each FLM category has a unique set of

loadings for all fuel components needed to compute fuel

consumption and smoke emissions (Lutes et al. 2009; Sik-

kink et al. 2009). We computed fire behavior using the

LANDFIRE data layer derived from fire behavior fuel

models (Anderson 1982). To compute tree mortality, we

used tree data from the National Tree List database (Drury

and Herynk 2011), also linked to LANDFIRE. We used two

versions of the LANDFIRE data; for fires that occurred prior

to 2008, we used LANDFIRE 2001 ‘‘Refresh’’ (LF_1.0.5)

and for fires that occurred after 2008, we used LANDFIRE

2008 ‘‘Refresh’’ (LF_1.1.0).

The remaining FIREHARM inputs were site-specific

weather variables that control fuel moistures and burn con-

ditions (Table 2). We obtained local weather conditions

during the fire from the weather stations nearest to the fire;

distance from fire to weather station ranged from 0.8 to

96 km (Table 1). We calculated fuel moistures for the 1-,

10-, 100-, 1,000-hr, herb, and shrub components within Fire

Family Plus (Bradshaw and Tirmenstein 2010) using daily

weather observations for the fire dates. We calculated

moisture values for the fine fuels (1 and 10 h) within Fire

Family Plus using hourly moisture data from the Western

Regional Climate Center (Western Regional Climate Center

2012) starting 2 weeks prior to the date of the fire and

continuing until containment (minimum of 90 %). For this

we used the Nelson fuel moisture model (Nelson 2000;

Carlson et al. 2007), which is the most recently accepted

method to compute fine fuel moistures. We calculated duff

moistures using the Canadian Forest Fire Weather Index

System (Van Wagner and Pickett 1985) from daily data using

the date, dry bulb temperature, relative humidity, and pre-

cipitation amount and started on May 1 of each year to allow

for calibration. We set live foliar moisture at 100 % in Fire

Family Plus, and we set litter moisture equal to the 1-hr fuel

moistures. We averaged all weather and fuel values for the

duration of the fire to create a single value for each parameter

to populate FIREHARM’s weather and fuel moisture input

file.

Statistical Modeling

We built several statistical models using CBI as the

response variable. We used linear and nonlinear regression

to explore the relationship between CBI and RdNBR, and

we used multiple linear regression analysis to characterize

the relationships between CBI and simulated fire effects

variables, and CBI and an integration of RdNBR and

simulated variables. Exploratory data analysis showed

minimal differences in both the distribution of plots

throughout forest types (Fig. 2) and in the CBI-RdNBR

linear regression relationship for Montana versus Wash-

ington (Fig. 3), so we did not geographically stratify the

analysis. We used R (R Development Core Team 2010)

software for all statistical analyses.

RdNBR Linear and Nonlinear Models

Some studies that have assessed the relationship between

CBI and satellite-based burn severity indices have used CBI

as the response variable (van Wagtendonk et al. 2004; Cocke

et al. 2005; Holden et al. 2009; Soverel et al. 2010), while

others have used CBI as the predictor variable (in that case,

with the satellite index as the response) (Miller and Thode

2007; Miller et al. 2009a, b; Dillon et al. 2011a; Cansler and

McKenzie 2012). Although Cansler and McKenzie (2012)

make a strong case for why CBI should be used as the pre-

dictor, we used it as the response to facilitate the comparison

of technologies, because it is the one common variable across

the three approaches. This is supported by the fact that in

other studies that have evaluated the use of modeling and

satellite imagery to measure burn severity, CBI has been

used as the response in regression models (Chuvieco et al.

2006; De Santis et al. 2009, 2010). We evaluated both linear

and nonlinear models to represent the relationship between

CBI-RdNBR; we present results of the linear relationship

between CBI and RdNBR for thoroughness and consistency

with simulated and integrated models, which are also linear.

Assessment of model residuals indicated that residuals were

normally distributed for both linear and nonlinear CBI-

RdNBR models.

Simulated Variables Models

We selected the following FIREHARM outputs to build a

statistical model for simulated burn severity, because we

thought they best represented the gradients of burn

severity:

1. Tree mortality (%)–Mortality of all trees[10 cm DBH

1 year after a fire,

2. Soil heating–Average temperature in �C at 2 cm below

the soil surface,

3. Fuel consumption–Total biomass of all fuels consumed

during combustion (kg m-2),

4. Fire intensity–Average fireline intensity for fire dura-

tion (kW m-1)

All variables in the statistical models utilizing simulated

variables were also used in the construction of the inte-

grated model.

We used multiple linear regression to model the rela-

tionships between CBI and the outputs from FIREHARM.
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We present a model that includes all possible predictor

variables, along with a model that includes only those

predictors with statistical significance at p \ 0.05, as

determined through a stepwise multiple linear regression

approach. Assessment of model residuals indicated that

residuals were normally distributed for both simulated

variables models (full model and selected variables

model.)

Table 3 Evaluation statistics

for RdNBR-based, Simulation-

based, and Integrated models

Model Estimate Std. error t-value Pr([|t|) R2 AIC MSE

Simple Linear model (CBI * RdNBR) 0.417 477 0.306

Intercept 1.132 0.0639 17.470 \0.001

RdNBR 0.0014 0.0001 14.210 \0.001

Nonlinear model (CBI = a*RdNBR2 ? b*RdNBR ? c) 0.424 476 0.302

a -4.60E-07 2.34E-07 -1.961 0.05

b 0.0019 0.0003 6.567 \0.001

c 1.0001 0.0825 12.127 \0.001

CBI * FIREHARM output variables only-full set of predictors 0.072 616 0.487

Intercept 1.8020 0.3622 4.974 \0.001

Tree mortality 0.0047 0.0014 3.323 \0.01

Soil heating -0.0001 0.0022 -0.142 0.89

Fuel consumption -0.0033 0.0050 -0.647 0.52

Intensity 0.0001 0.0001 1.194 0.23

CBI * FIREHARM output variables only-Selected set of predictors 0.066 612 0.490

Intercept 1.5722 0.0870 18.080 \0.001

Tree Mortality 0.0055 0.0012 4.457 \0.001

CBI * FIREHARM output variables plus RdNBR-full set of predictors 0.479 453 0.273

Intercept 0.3745 0.2885 1.298 0.20

Tree mortality 0.0042 0.0011 3.940 \0.01

Soil heating 0.0020 0.0011 1.254 0.21

Fuel consumption 0.0062 0.0016 1.611 0.10

Intensity 0.0001 0.0001 1.057 0.29

RdNBR 0.0014 0.0001 14.773 \0.001

CBI * FIREHARM output variables plus RdNBR-Selected Set of Predictors 0.471 452 0.278

Intercept 0.8321 0.0827 10.066 \0.001

Tree mortality 0.0050 0.0009 5.389 \0.001

‘RdNBR 0.0014 0.0001 14.700 \0.001
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Integrated Models

We also modeled the relationship between CBI, RdNBR,

and the outputs from FIREHARM using multiple linear

regression. For the integrated modeling process, RdNBR

was forced into each tested model to ensure that the remote

sensing element was part of the model equation. As in the

simulation modeling approach, we present a full model,

and one that uses a selected set of variables based on

stepwise removal of nonsignificant predictors. Assessment

of model residuals indicated that residuals were normally

distributed for both integrated variables models (full model

and selected variables model.)

Mapping

We generated digital maps of predicted CBI using the

modeled relationships between CBI and RdNBR, CBI and

FIREHARM-simulated variables, and the CBI and the

Integrated Model. We classified field reference CBI and

CBI as predicted by the three models, into severity cate-

gories corresponding to ranges in CBI values as outlined

in Miller and Thode (2007),: ‘‘Unchanged’’ = 0 to 0.1,

‘‘Low’’ = 0.1–1.24,’’Moderate’’ = 1.25–2.24, and ‘‘High’’ =

2.25–3.0. Using 10-fold cross-validation and classification

error matrices, we quantified user’s accuracy, producer’s

accuracy, overall map classification accuracy, and Kappa

(k̂) (Congalton and Green 1999) by comparing CBI as

predicted by RdNBR, simulation, and integrated methods

to field-measured CBI.

Results

RdNBR Linear and Nonlinear Statistical Models

For our data, CBI clearly increases with increasing values of

RdNBR, and a nonlinear model appears to describe the

relationship between CBI and RdNBR better than the linear

model (Fig. 3). Furthermore, the nonlinear model had a

slightly higher coefficient of determination than the linear

model (R2 = 0.424 versus R2 = 0.417), and lower Akaike

Information Criterion (AIC = 476 versus AIC = 477), but

Mean Square Error was essentially the same (MSE = 0.302

versus MSE = 0.306) (Table 3).

Simulated Variables Statistical Models

Exploring the relationship between FIREHARM output

variables and CBI, we found that simulated tree mortality

generally increased with increasing CBI values, with a

cluster of plots showing high CBI values corresponding
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with maximum tree mortality (100 %) (Fig. 4). Correlation

between CBI and simulated tree mortality was weak and

positive (r = 0.26).There was not a clear relationship

between CBI and any of the other FIREHARM-simulated

output variables.

Models created with simulation output variables did not

produce strong predictive relationships (Table 3). When all

possible predictors were included in the model, only tree

mortality was significant at p \ 0.05, and it was the only

variable included in the model determined by the stepwise

multiple regression procedure. Coefficients of determination

for the simulated variables models were low (R2 \ 0.1), and

AIC and MSE values were high (AIC [ 616 and

MSE [ 0.48.)

Fig. 5 Maps of predicted CBI for two example fires. Left column:

Montana (Bielenburg), Right column: Washington (Tripod Complex).

Top Row: CBI predicted from RdNBR simple linear model, Middle

row: CBI predicted from FIREHARM-simulated model, Bottom row:

CBI predicted from Integrated model
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Integrated Statistical Models

Models that include both FIREHARM output variables

along with RdNBR (Integrated Models), had the highest

coefficients of determination and lowest AICs and MSEs of

all models in the study (R2 [ 0.47) (Table 3).The

Integrated Model with the full set of predictors that

included all of the Simulated Model output variables plus

RdNBR performed marginally better than the RdNBR

model only. Similar to the Simulated Model situation, only

tree mortality was significant at p \ 0.05 in the Integrated

Model that includes the full set of FIREHARM output

Fig. 6 Difference maps showing agreement and discrepancy between

the three maps of predicted CBI for two example fires. Left column:

Montana (Bielenburg), Right column: Washington (Tripod Complex).

Top row: Difference between CBI predicted using FIREHARM-

simulated variables and CBI predicted using RdNBR. Middle Row:

Difference between CBI predicted from RdNBR and CBI predicted

from the Integrated Model. Bottom Row: Difference between CBI

predicted from RdNBR and CBI predicted from the Integrated Model
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variables. The integrated model as selected from the step-

wise multiple regression procedure includes tree mortality

as modeled from FIREHARM and RdNBR. Both the

Integrated Model using the full set of FIREHARM output

and the model using the selected predictors have similar

coefficients of determination, AIC, and MSE (Table 3).

Map Comparison

Maps were created using 1) the nonlinear CBI-RdNBR

model, 2) the Simulated Model that includes the selected

set of predictors, and 3) the Integrated Model with the

selected set of predictors (Figs. 5, 6). Visual comparison of

the three fire severity maps showed that each method

produced different patterns of predicted CBI across the

landscape (See Fig. 5, for examples of predicted CBI maps

for two fires, one in Montana and one in Washington). The

moderate burn severity category dominates maps of CBI as

predicted by FIREHARM outputs. Difference maps further

substantiate discrepancies in spatial patterns of CBI as

predicted from the three models, however; maps created by

RdNBR, and the Integrated Model are quite similar

(Fig. 6).

Error matrices show that the Integrated model had the

strongest overall map accuracy with CBI field-measured

plots (62.5 %) and the strongest kappa (0.36), followed by

the RdNBR model (accuracy = 58.9 %, kappa = 0.30).

The map created with the Simulated Model had the

weakest overall accuracy (46.7 %) and kappa (0.00)

(Table 4). The Simulated Model had a very high pro-

ducer’s accuracy for the moderate burn severity class

(100 %); however, the user’s accuracy was only 47 %

for this class. The Integrated Model showed a similar

pattern, with a high producer’s accuracy for the moderate

category (85 %), and a moderate user’s accuracy for that

category (60 %). For the high severity class, among all

predictive models in the study, the Integrated Model had

the highest user’s accuracy (80 %), while the RdNBR

Model had the highest producer’s accuracy (57 %) for

that category.

Discussion

In this study, we explored the capability of a fire effects

simulation model to add value to spatial burn severity

assessments across forested landscapes; a process tradi-

tionally conducted using satellite imagery alone. While we

found the addition of simulated variables improves severity

mapping, we also found that the strengths and weaknesses

Table 4 Cross-tabulation of

field-measured CBI (columns)

and CBI as predicted by each of

the three models in a 10-fold

cross-validation (rows; RdNBR,

FIREHARM Simulation, and

Integrated Model)

Unchanged Low Moderate High Row total User’s accuracy

RdNBR

Overall Accuracy = 58.9 %, kappa = 0.30

Unchanged 0 0 0 0 0 0 %

Low 6 6 9 1 22 27 %

Moderate 1 36 104 43 184 57 %

High 0 1 20 58 79 73 %

Column total 7 43 133 102 . .

Producer’s accuracy 0 % 14 % 78 % 57 % . .

Simulated Model

Overall accuracy = 46.7 %, kappa = 0.00

Unchanged 0 0 0 0 0 0 %

Low 0 0 0 0 0 0 %

Moderate 7 43 133 102 285 47 %

High 0 0 0 0 0 0 %

Column total 7 43 133 102 . .

Producer’s accuracy 0 % 0 % 100 % 0 % . .

Integrated Model

Overall accuracy = 62.5 %, kappa = 0.36

Unchanged 0 0 0 0 0 0 %

Low 4 8 7 4 23 35 %

Moderate 3 34 113 41 191 60 %

High 0 1 13 57 71 80 %

Column total 7 43 133 102 . .

Producer’s accuracy 0 % 19 % 85 % 56 % . .
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in both RdNBR and simulation approaches also exist for

the integrated approach.

We chose RdNBR as our image-based burn severity

mapping method, because it is a measure of change that is

relative to pre-fire conditions, and thereby ostensibly affords

consistency across regions (Miller and Thode 2007). How-

ever, the coefficients of determination that we found for the

relationship between RdNBR and CBI were lower than those

reported in other RdNBR studies throughout a variety of

ecosystem types (Miller et al. 2009a, b; Miller and Thode

2007; Dillon et al. 2011a; Zhu et al. 2006; Cansler and

McKenzie 2012; Soverel et al. 2010). Regardless, RdNBR

was more successful at predicting burn severity than the

simulated variables were used in this study.

There are likely several reasons why the regression rela-

tionships between CBI and the FIREHARM-simulated

variables were weak. FIREHARM uses the latest fire

behavior and effects modeling technology in an integrated

platform. The algorithms at the core of the model are based

upon empirical studies or physical processes, and the FO-

FEM model is well vetted and has been used extensively in

fire effects research and management. However, FIRE-

HARM is a research tool currently under assessment for

management applicability, and it does have some limita-

tions: (1) FIREHARM always simulates a ‘‘head’’ fire (a fire

that spreads with the wind) which may lead to overestimation

of fire intensity in situations where flanking or backing fires

are more likely, (2) it does not address spatial relations (what

happens in one pixel is independent of what happened in

surrounding pixels), (3) input parameters may not match the

scale of analysis (e.g., fuel moisture content is specified for

broad areas, but moistures are highly variable locally).

Lastly, and perhaps most importantly, FIREHARM perfor-

mance ultimately depends on accurate spatial inputs, and it

appears LANDFIRE mapping products likely contain a high

level of uncertainty (Keane et al. 2013, 2006; Krasnow et al.

2009; Reeves et al. 2009); fuel loadings from the LAND-

FIRE FLM map are inaccurate because (1) surface fuel

characteristics vary at finer scales than the FLM map (Keane

et al. 2012) (2) FLMs were created from a limited dataset

(Lutes et al. 2009), (3) FLM mapping involved assigning an

FLM to a vegetation type, but fuels are rarely correlated to

vegetation conditions (Keane et al. 2013), and the vegetation

type categories were too broad for consistent and accurate

FLM assignment (Keane et al. 2006). The accuracy of the

LANDFIRE Tree List product is questionable for similar

reasons: (1) scale of variation in Forest Inventory Analysis

(FIA) tree data did not match the resolution of vegetation

type categories and LANDFIRE maps, (2) assignment of

FIA plots to vegetation types was incomplete, because there

was not a tree list for every vegetation type category, and (3)

the tree data was not rectified with the FLM fuels data (Drury

and Herynk 2011). To adequately improve the LANDFIRE

fuel model and tree list mapping products, the weaknesses, as

described above, would need to be addressed. Perhaps if the

scale discrepancies between the fuels and tree information

and map resolution were reconciled, and if sufficient field

reference data were available to adequately characterize

these variables, the map product accuracy would increase,

and FIREHARM simulation output would correspondingly

improve.

Along with improved surface and canopy spatial infor-

mation, finer scale weather inputs would likely increase

simulation model performance. In this study, weather sta-

tions used to estimate fuel conditions were often distant

from the fire (up to 96 km).

We also suspect that one of the primary reasons for the

weak relationships between modeled variables and CBI is

that the continuous simulated variables were used to

compute a qualitative, categorical index that was then

compared to CBI. FIREHARM predicts biophysically

dimensioned, individual fire effects that are not intended as

an integrated assessment of burn severity. Karau and Keane

(2010) showed that FIREHARM successfully predicted

surface fuel consumption spatially, but when model outputs

are pooled in attempt to relate them to an integrative

measure, such as CBI, the discrete information that the

model provides about each specific effect is diluted. CBI

tends to be tree-canopy centric, which is likely why tree

mortality output from FIREHARM was the only significant

predictor in the models that we tested.

It is not surprising that overall map agreement was

greatest between maps created with RdNBR, and the

Integrated Model as RdNBR is a major component of the

Integrated Model. Map accuracy assessment results dem-

onstrate the utility of an integrated burn severity mapping

methodology. These results mimic regression model results

in that the Integrated Model accuracies were strongest,

RdNBR Model accuracies were intermediate, and Simu-

lated Model accuracies were weakest; the Integrated Model

is more successful at mapping burn severity than the other

methods. The high user’s accuracy for the high severity

class in the Integrated model is noteworthy; this result

indicates that this model could prove useful for managers

wishing to identify critical areas threatened by post-fire

damage (e.g., Burned Area Emergency Response teams).

A problem with the general concept of ‘‘burn severity’’

is that a researcher or manager might be interested in

specific aspects of how a landscape is changed by fire;

however, it is cumbersome to compare a specific fire effect

to an index that integrates soil, substrates, herbs, shrubs,

intermediate trees, and large trees (French et al. 2008;

Morgan et al., in review). So, a proxy for burn severity,

such as CBI or RdNBR, may be too broad to be useful for

all situations. Managers may, in some situations, need to

spend time and resources to complete field evaluations of
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specific fire effects like tree mortality, fuel consumption,

and soil damage. However, a broad, integrative measure of

burn severity is sometimes desirable, if only to generate a

map that facilitates broad-scale rehabilitation prioritization.

Our results show that a combination of satellite information

and simulation modeling does a reasonable job of capturing

CBI for these purposes.

Conclusion

The results of Karau and Keane (2010) and the present study

demonstrate the potential utility of a fire effects simulation

model to predict individual fire effects (e.g., fuel consump-

tion) used in tandem with satellite imagery to predict an

integrated measure of burn severity at forest landscape

scales, though the system is still in research mode. FIRE-

HARM can provide estimates of surface fire effects whereas

imagery-based assessments are canopy centric. So, despite

model limitations and data quality challenges, we feel that

the extra effort required to implement FIREHARM is war-

ranted when the user needs information about surface fire

effects.

Although the relationships that we found between

landscape-scale burn severity estimates (satellite-based,

modeled, and integrated) were generally not very strong,

we were encouraged to see any performance gains from the

integrated model, given the poor accuracy of the FIRE-

HARM input data. We suspect that with higher quality and

more accurate spatial input data, the performance of the

simulation model could greatly improve, as would the

integrated burn severity product. In the present study, we

wished to assess the potential of an integrated burn severity

mapping process that uses spatial data that are readily

available to land managers; however, we suggest that

future model users scrutinize input data and familiarize

themselves with data limitations.

Replicating this study on small landscapes with accu-

rate, local level model input data and local weather would

allow further investigation of how data challenges limit the

integrated mapping approach. An added benefit of using

more accurate model input data is that FIREHARM could

be used prior to a fire event to estimate potential fire

effects, enabling strategic resource allocation to areas with

high potential for damage. With highly accurate input data,

we believe that integrating image-based and simulation-

based models for mapping burn severity, as well as using

simulation to provide maps of individual fire effects, could

provide fire managers with an innovative suite of tools to

assess the effects of fire on their landscapes, understand the

processes behind fire severity, and interpret severity maps

in an appropriate context.
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