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Limitations inherent to airborne laser scanning (ALS) technology and the complex sorting and packing
relationships of forests complicate accurate remote sensing of mid- and understory trees, especially in
denser forest stands. Self-similarities in rank-sized individual tree distributions (ITD), e.g. bole diameter
or height, are a well-understood property of natural, non-plantation, forests undergoing density depen-
dent self-thinning and thus offer an approach to solving this problem. Alternately, semi-arid conifer
forests of the southwestern USA that experience episodic wildfires and herbivory tend to exist as open
stands compared to forests where disturbances are less common. We found the ITD for semi-arid forest
plots with ALS-estimated canopy cover < 50% had a low rate of omission error for mid- and understory
ALS trees making distribution fitting of the mid- and understory ITD unnecessary. In dense semi-arid
forest plots (>50% canopy cover) the ITD correlated significantly with a tapered Pareto distribution, a
power law probability distribution that is not heavy right-tailed. Two-sample Kolmogorov–Smirnov tests
confirmed that observed vs. ALS-estimated overstory ITD parameters were not significantly different
regardless of canopy cover. Therefore an overstory ITD derived from ALS is sufficient for fitting a contin-
uous distribution function to estimate the ITD of the forest understory when the scale parameter is estab-
lished a priori. Foresters and ecologists interested in measuring and modeling stand dynamics from ALS
can use this approach to correct for stand density effects when developing ALS-derived single-tree
inventories. Canopy cover can be used as a proxy for stand density when developing a combined ITD with
area-based approaches for estimating understory in semi-arid forests.

Published by Elsevier B.V.
1. Introduction

Conventional forest inventories are based upon plot-based field
surveys which can be both economically and physically impractical
across large areas and in complex terrain. In contrast, today forest-
ers with access to the right technology and skill sets have the
capacity to census nearly every single tree at the landscape level
using airborne laser scanning (ALS) technology – known also as
Light Detection and Ranging (LiDAR) (van Leeuwen and
Nieuwenhuis, 2010; Maltamo et al., 2014). Producing a complete
forest inventory at the landscape level was considered an impossi-
ble undertaking before the advent of ALS. Despite their utility, a
current weakness of existing ALS inventory techniques is the
inability to differentiate all trees in the stand, in particular under-
story trees (Maltamo et al., 2004; Hudak et al., 2009; Gatziolis
et al., 2010; Frazer et al., 2011). Differentiation is difficult in under-
story trees which tend to be interconnected and obscured beneath
the overstory trees (Kaartinen et al., 2012; Wing et al., 2012).
Hybrid techniques involving individual tree crown (ITC) isolations
(Breidenbach and Astrup, 2014) and area based approaches
(Lindberg et al., 2010; Maltamo and Gobakken, 2014) have been
developed to obtain precision and accuracy comparable to field
measurements. Most of these ALS isolation and extrapolation tech-
niques were developed in productive temperate forests, which
tend to exhibit density dependent competition for space. Applica-
bility of hybrid techniques is uncertain in semi-arid forests, which
are by contrast resource limited, have low-productivity, and expe-
rience episodic disturbances.

To estimate tree size, e.g. biomass, biometricians measure trees
first by their primary size measures, e.g. diameter at breast height
(DBH), tree height, and canopy volume, and then apply allometric
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equations related to each measure. At the stand scale the critical
density of plants in space can be linked to the size of individuals
(Enquist et al., 1998, 2009; Deng et al., 2012). This behavior,
termed as Reineke’s (1933) stand density index (SDI) or the Yoda
et al. (1963) ‘�3/2 self-thinning rule’ (White, 1981; Westoby,
1984), assumes that as each tree grows to fill space with its canopy
and roots it competes for limited resources. Metabolic Scaling The-
ory (MST) (Enquist et al., 1998) predicts competitive thinning to be
the main source of tree mortality in the absence of exogenous pro-
cesses, resulting in ranked-size individual tree distributions (ITD)
following power laws (Enquist et al., 1998, 2009; West et al.,
2009; Deng et al., 2012). MST principles are based on thermody-
namic and hydraulic laws which extend from the individual tree
to the forest scale (Enquist et al., 1998, 1999; Enquist and Niklas,
2001, 2002; Niklas and Enquist, 2001; Niklas et al., 2003; West
et al., 2009; Deng et al., 2012). The allometry of a tree becomes pre-
dictable in part because each tree must maintain a bole diameter-
height proportionality based on its elastic buckling strength to
remain upright and support its branches (McMahon, 1973;
McMahon and Kronauer, 1976). Canopy and roots must also fill
enough volume space to support the tree’s metabolic demand
(Enquist et al., 2009; West et al., 2009; Savage et al., 2010;
Kempes et al., 2011). We assumed in the current study that
semi-arid forest trees compete chiefly for plant available soil water
rather than light, although both constraints are possible at cooler
higher elevations on more mesic sites.

Our chief aim was to determine whether the direct inventory
limitation of ALS can be addressed by considering density-depen-
dent relationships predicted to exhibit scale-invariant power-law
forms in their ITD (Enquist et al., 1998, 1999; Enquist and Niklas,
2001; Niklas and Enquist, 2001; Niklas et al., 2003; Deng et al.,
2012). Many semi-arid stands are open structured, and there was
also the question of whether the ITC isolation techniques are accu-
rate in such stands. The chief question revolves around whether
the observed semi-arid forest stands exhibit density dependence
and if so would we be able to estimate the ITD of the understory
trees using a scale-invariant function, i.e. a power law probability
distribution, after assuming an understory is present? If confirmed,
such a technique could improve the accuracy of forest inventories
over large semi-arid landscapes, with attendant implications for
estimating standing biomass, carbon sequestration, and species
composition.

There are various techniques for identifying ITC from ALS data
using canopy height models (CHM) (Lefsky et al., 1999, 2002;
Zimble et al., 2003; Zhao et al., 2009; Kaartinen et al., 2012; Koch
et al., 2014), including: (1) local maxima [with filtering] (Dralle
and Rudemo, 1996; Hyyppä et al., 2001, 2005; Persson et al.,
2002; Monnet et al., 2010), (2) variable area window (Popescu
et al., 2002; Popescu and Wynne, 2004; Swetnam and Falk,
2014), (3) hierarchical inverse watersheds (Chen et al., 2006;
Zhao and Popescu, 2007), and (4) spatial wavelet technique
(Falkowski et al., 2006, 2008).

1.1. Scale invariant rank-size frequency distributions

MST predicts that density-dependent forest ITD scale as inverse
square laws:

Dnk / xa
k ð1Þ

where Dnk is the number of individuals in a standardized area in a
given size class or bin, k, x is any primary size measure, and the
exponent a < 0 is negative, which for the example of bole radius is
a = �2 (Enquist et al., 2009). For linear binning a continuous func-
tion is given as:

f ðxÞBdn=dx / xa: ð2Þ
Continuous ITD functions should be approximated using a prob-
ability distribution function because there is a minimum size limit
x > xmin to the point at which the power law holds before the den-
sity diverges (as x ? 0) (Clauset et al., 2009); typically the xmin is
the size of the smallest individual tree. A Pareto distribution:

SðxÞ ¼ PrfX � xg ¼ x
xmin

� ��a
, should be used with continuous data

in this case (Newman, 2005; White et al., 2008; Clauset et al.,
2009). In practical applications a power law Pareto is unlikely to
be the best fit for a forest ITD because of divergence in both tails
of the distribution due to stand dynamics, e.g. physiological toler-
ances and disturbance, and physiological limits to tree size. Exog-
enous impacts such as trampling, wind throw, wildfire and
herbivory influence the ITD and result in both left- and a right-tail
truncation of the canonical power law distribution (Seuront and
Mitchell, 2008; Enquist et al., 2009; Swetnam, 2013). Examples
of other continuous distributions that account for divergence in
the right-tail include the tapered Pareto (Kagan and Schoenberg,
2001), truncated Pareto (White et al., 2008; Enquist et al., 2009),
and negative exponential and stretched exponential functions
(Clauset et al., 2009). In forestry applications ITD have been
reported using a negative or stretched exponential function and
in particular the Weibull distribution (Weibull, 1951; Dubey,
1967; Bailey and Dell, 1973; Maltamo et al., 2000, 2004). Truncated
Weibull distributions tend to model the left tail of the distribution
well (Maltamo et al., 2004); relatedly, both the two-parameter
Weibull (with a shape parameter <1) and Pareto distribution are
heavy right tailed (Newman, 2005). In the right tail of a forest
ITD we expect a decline in abundance at an exponential rate. For
our analyses we applied the tapered Pareto distribution (Kagan
and Schoenberg, 2001; Schoenberg and Patel, 2012), a power law
distribution that accounts for the observed behavior of the right-
tail in forest rank-size ITD.

2. Methods

Maltamo and Gobakken (2014) suggest the combination of an
ALS derived ITD and an area-based approach to estimate the full
ITD of a stand. Here we follow that approach, evaluating first
whether a tapered Pareto distribution (Pareto, 1896; Kagan and
Schoenberg, 2001) describes the ITD in a defined area of interest,
and then testing whether the ITD of the understory shares the
same scale-invariant parameters as the ALS derived overstory
ITD. We grouped our plots by canopy cover percentage to deter-
mine whether the self-similar properties of the ITD are a function
of density dependence.

2.1. Study areas

We incorporated both field datasets and ITC from ALS for two
semi-arid conifer-dominated forests in the southwestern USA.
The Valles Caldera National Preserve is located in the Jemez Moun-
tains west of Santa Fe, New Mexico at 35.9�N, 106.5�W (Fig. 1). Ele-
vations range from 2300 m above mean sea level (amsl) in
Redondo Meadow to 3431 m amsl atop Redondo Peak. The Valles
Caldera is a collapsed volcanic caldera with a rim approximately
19 km wide; within the caldera are resurgent domes over 200 m
high, locally referred to as cerros. Ponderosa pine (Pinus ponderosa)
is common in the lowest elevations (2100–2400 m amsl), with
some limber pine (Pinus flexilis) and Douglas-fir (Pseudotsuga men-
ziesii) on mesic sites. Gambel oak (Quercus gambelii) is common in
post-fire seral stands along with ponderosa pine and quaking
aspen (Populus tremuloides). North aspects tend to be dominated
by Douglas-fir and white fir (Abies concolor), with some subalpine
fir (Abies lasiocarpa) and Engelmann spruce (Picea engelmannii).
The highest elevation sites are dominated by Engelmann spruce.



Fig. 1. ALS study areas in Arizona and New Mexico. The Valles Caldera have 48 0.1 ha randomly located forest calibration plots; the Pinaleño Mountains have 78 0.05 ha plots
located in a gridded transect.
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The Pinaleño Mountains are located south of Safford, Arizona at
32.7�N, 109.9�W rising to 3267 m amsl at High Peak (Fig. 1). The
Pinaleño are characteristic of the Basin and Range province and
are comprised of a complex of steeply sided canyons with rela-
tively gentle high elevation uplands above 2700 m. Lower eleva-
tion (1830–2440 m amsl) forests of the Pinaleño are typical of
the Madrean Sky Islands (Whittaker and Niering, 1975; Niering
and Lowe, 1984). Forests above 2135 m amsl are distributed along
gradients of elevation and aspect. The flora of the Pinaleño shares
many species with the Jemez (Niering and Lowe, 1984; Muldavin
et al., 2006). In the Pinaleño lower elevations with ponderosa pine
and several oak species transition to dry mixed-conifer forests
dominated by Douglas-fir, southwestern white pine, and ponder-
osa pine with minor components of white fir and aspen. Above
2750 m amsl mesic mixed-conifer forests are dominated by Doug-
las-fir and white fir with minor components of southwestern white
pine, Engelmann spruce and corkbark fir (A. lasiocarpa var. arizo-
nica). Engelmann spruce and corkbark fir are dominant species at
the highest elevations, forming the southernmost spruce-fir forest
in North America. Post-fire communities of quaking aspen are
present throughout the upper elevations.
2.1.1. Plot observations
Plot centers were located with a differentially corrected global

positioning system, which logged points continuously during tree
surveys; absolute plot location after differential correction had
sub-meter accuracy in the horizontal plane. Ground-based primary
size observations collected in both study areas included DBH and
maximum height. Tree heights were measured with a Nikon For-
ester 550 laser range finder (Valles Caldera) and Laser Technology
Impulse 2000 Hypsometer (Pinaleño). Of 399 field surveyed tree
heights identified from the Pinaleño plot data, the ITC cross-valida-
tion had Pearson’s r = 0.984 and a mean square error (MSE) ± 81 cm
(SM Fig. 1). Variability in the relative locations of tree boles at
ground level vs. the point of the apical leader (tree lean) resulted
in locational differences in the CHM exceeding three meters hori-
zontal in some cases.

Forty-eight 0.1-ha radial plots were sampled in the Valles Cal-
dera in 2010 (Swetnam, 2013) (Fig. 1). A total of 1520 live and dead
trees were measured, and 3952 trees were counted (including
seedlings and saplings >15 cm tall). Within each 0.1 ha plot all
trees >18.5 cm DBH were measured; within a 0.01 ha inner plot
all trees >2.5 cm DBH were measured. The understory distribution
was extrapolated from the 1/10th area by multiplying the fre-
quency distribution by ten.

In the Pinaleño seventy-nine 0.05 ha radial plots were sampled
in 2008–2009 (O’Connor, 2013; O’Connor et al., in press) (Fig. 1). A
total of 2,862 trees were measured for DBH and height. Within
each plot all trees >20.0 cm DBH were measured; in a random
1/3 subplot area all trees >2.5 cm DBH were measured. The
understory distribution was extrapolated from the 1/3 plot area
by multiplying the frequency distribution by three.
2.2. ALS acquisitions

ALS data for the Valles Caldera and Pinaleños share similar flight
parameters and achieved comparable pulse return densities
(Table 1). The discrete point cloud data were considered suffi-
ciently dense [>8 points per meter square (ppsm)] to conduct rig-
orous assessments of canopy structure in complex terrain (Laes
et al., 2008, 2009; Gatziolis et al., 2010; Hudak et al., 2009). The
pulse returns have a footprint of �20–50 cm at ground level
assuming an average flight elevation of 1000 m above ground level
and beam divergence of 0.20–0.5 milliradians (Table 1). Because
the surface is not 100% illuminated by the laser pulses, we use
the ratio of pulse returns to estimate canopy cover within the sam-
ple plots (cover% = # returns >2 m ground level/total # returns)
(McGaughey, 2012).

CHMs (Lefsky et al., 1999) were generated at a consistent reso-
lution (0.333 m) in USFS FUSION (McGaughey, 2012) (SM Fig. 2).



Table 1
Study area ALS flight-parameters.

Scan characteristic Valles Caldera Pinaleño

Vendor/provider NCALM Watershed sciences
Acquisition date January 2010, July 2010 September 22–27, 2008
Scanner Optech Gemini Leica ALS50 Phase 2
Pulse rate 100 kHZ 70–90 kHz
Scan rate <100 Hz 52.2 Hz
Pulse returns 1–4, + 8-bit Intensity (0–255) 1–4, + 8-bit Intensity (0–255)
Scan angle 25 degrees 15 degrees
Divergence in milliradians (mrad) 0.25 mrad 0.22 mrad
Stated accuracy (vertical/horizontal) 7.0 cm/1.0 m 3.2 cm/1.0 m
Flight above ground level �1000 m 800–1300 m
Flight line overlap 50% side lap 50% side lap
l Pulses per square meter (ppsm) Leaf-off (Snow): 8.86 ppsm

Leaf-on, 7.36 ppsm Leaf-on: 5.91 ppsm
l Bare ground spacing (ppsm) 1.11 ppsm 0.98 ppsm
Acquisition Area Leaf-off:72,648 acres (29,400 Ha) 85,518 Ac (34,608 Ha)

Leaf-on: 186,811 acres (75,600 Ha)
R Pulse returns Leaf-off: 2,541,885,987 2,892,925,979

Leaf-on: 7,754,915,628
Units Meters Meters
Projection, datum WGS84, NAD83 WGS84, NAD83
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For all plots in both data sets the mean pulse return density (l)
was calculated to be 9.3 < l < 25.1 ppsm based on the density of
all returns in each plot divided by the plot area. At these pulse
return densities the CHM was assumed to have least one pulse
return per pixel. No smoothing or median filters were applied to
the initial CHMs. The plot extracted CHMs included some ‘salt
and pepper’ NoData pixels (SM Fig. 2), suggesting that the density
of the pulse return data was not uniform. However, these pixels
had little effect on tree height estimation and tree identification
because the Variable-Area Local Maxima (VLM) algorithm
(Swetnam and Falk, 2014) incorporates a disk-shape dilation for
each identified maximum.

ITC were identified from CHMs using the VLM algorithm
(Swetnam and Falk, 2014) in MATLAB 2012b (Mathworks, 2012).
ITC were determined by setting the expected minimum canopy
radius as: rcan = 0.1h, where h was the local maximum height
(Swetnam and Falk, 2014). For the frequency distribution analysis,
we grouped plots by 10% canopy cover classes and linearly binned
the distribution of observed tree height vs. the ALS derived ITC. We
report the absolute error:

Dh ¼ hVLM � hobs ð3Þ

where hVLM are the height of the ITC and the observed tree heights
hobs. The relative error is given as:

dh ¼ Dh
hobs
¼

hVLM�hobs

hobs
¼ hVLM

hobs
� 1: ð4Þ
2.3. Fitting the ALS-derived continuous distribution function

Taubert et al. (2013) reviewed potential biases and uncertain-
ties in fitting tree size data to power law, exponential, and Weibull
distributions by either least-squares regression or maximum like-
lihood estimation (MLE). Pre-binning data can lead to symmetric
variations around the true value of the distribution potentially
biasing least-squares regression (White et al., 2008; Clauset et al.,
2009; Taubert et al., 2013). The frequency distributions of trees
in our data are related to the dynamic life histories of the stands
and contain some observational errors. Here we were interested
primarily in calculating the best fit ITD for the field observation
to the ALS by the tapered Pareto (Kagan and Schoenberg, 2001;
Schoenberg and Patel, 2012). Using MLE to fit only the overstory
distribution would not account for the divergent behavior in the
left-tail of the distribution, resulting in a poorer fit than by least
squares.

We linearly binned the height ITD data in 1 m width bins, based
on the observation that bins smaller than 1 m resulted in an
increasing variation among bins. For the tapered Pareto the cumu-
lative distribution function (CDF) is given as:

FðhÞ ¼ 1� b
h

� �a

e
b�h

hð Þ; h > hmin ð5Þ

where a is the shape parameter, b is the scale parameter typically
known from the observed data (we use b = 1 m), and h is the point
at which the distribution begins an exponential decline away from
the log–log linear behavior of the Pareto (Kagan and Schoenberg,
2001; Schoenberg and Patel, 2012). The Probability Density Func-
tion (PDF) is given as:

f ðhÞ ¼
a
h þ 1

h

� �
b
h

� �a
e

b�h
eð Þ; h � hmin

0; h < hmin

(
ð6Þ

The h value is scale-dependent, decreasing for very large sample
sizes because the upper limit to the distribution is finite. The
tapered Pareto’s left-tail decreases hyper-exponentially in the
right-tail when it has a negative a parameter; for a = 0 the right-
tail of the distribution decreases exponentially (Kagan and
Schoenberg, 2001), and sub-exponentially decreases when a is
positive (Fig. 2).

We determined the a and h parameters of the tapered Pareto
(Eq. (6)) normalized with a constant, c � f ðhÞ for the full ITD by
least-squares regression using the MATLAB 2012b Curve Fitting
Tool (Mathworks, 2012). For our least-squares regressions we
report the estimated a as â, the estimated h as ĥ, and estimated c
as ĉ. We set the scale-invariant a parameter of the ALS derived
ITC to the a posteriori value of â from the observed ITD. We also
evaluate whether increasing degrees of canopy cover, a proxy
value for increasing stand density, affect the â; ĥ parameters.

2.4. Determining whether the ALS overstory ITD describes the
understory ITD

In order to evaluate whether the tapered Pareto distribution of
the ALS derived ITC for overstory share a self-similar distribution
with the observed understory ITD we conducted a two sample Kol-
mogorov–Smirnov (K–S) test (Massey, 1951; Wang et al., 2003).



Fig. 2. Examples of the tapered Pareto PDF f(x) with different shape (a) and (h)
taper parameters; the scale b parameter is set to 1 m for each. The x-axis is set to
the range of known tree heights (in meters) but could be changed to any range of
scales. When a = 0, the distribution declines exponentially (black line); when a < 0
the left-tail is truncated toward zero below xmin. Increasing the taper parameter h
makes the right-tail of the distribution heavier (dashed lines). Co-varying both a
and h changes the skew of the left-tail of the distribution.
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The two-sample K–S test is a nonparametric test for the equality of
two sample distributions sharing the same theoretical distribution
function (Massey, 1951; Wang et al., 2003). If the p-value of the
test is small, we can conclude that the samples come from different
distributions; if it is large we cannot reject them as being different.
The K–S statistic is:

D ¼ max jF1ðhÞ � F2ðhÞj ð7Þ

where F1and F2 are the distribution functions of the first and second
sample respectively. We tested whether the observed understory
ITD is the same as the tapered Pareto empirical CDF derived from
the ALS overstory ITD by conducting the two sample K–S tests of
both study areas.
3. Results

3.1. ALS ITD compared to the observed ITD

The estimated range of canopy cover from ALS in the plots var-
ied between �5% and 97% (Table 2). The VLM was generally accu-
rate at isolating all trees in the plots when cover percentage was
<50% (Figs. 3 and 4). The VLM was also generally accurate at isolat-
ing trees >10 m height regardless of cover percentage (Figs. 3 and
4). The height at which the VLM accuracy is reduced in the under-
story co-varies with increasing canopy cover.

There was a non-linear increase in the number of shorter trees
in the ITD with increasing canopy cover at both sites (Fig. 5). The
Pinaleño had higher canopy cover on average, with 46 of 79 plots
exceeding 60% cover, compared to 6 of 48 plots in the Valles Cal-
dera (Table 2). Further, in plots with a larger sample size the ITD
exhibited less variance between the linear bins, as might be
expected from a larger area of interest.

Absolute error (Dh) in the number of trees observed by the ALS
increased at both study sites below 10 m height (Fig. 6a). The rel-
ative error (dh) between the ALS and the observed for trees
between 8 m and 30 m was �14.5% ± the observed number
(Fig. 6b). Below 8 m height the rate of omission for both Dh and
dh increases rapidly as trees became increasingly difficult to dis-
criminate with the ALS data using the VLM algorithm. Above
30 m height dh errors tend to be large because of the small number
of samples, typically one or no observed trees; errors in these
height classes are due to omission errors of trees where the VLM
failed to isolate a canopy and commission errors from unrecorded
trees, likely along the edges of the plot boundary. The observed
MSE between the plot measured trees and the ALS was ±81 cm
(SM Fig. 1); for the 1 m linear bins (Figs. 3 and 4) it is likely that
some of the error is caused when trees are binned incorrectly into
a larger or smaller bin size.

3.2. Tapered Pareto distribution parameter estimation

For both study areas the ITD exhibited a close fit to the tapered
Pareto (Table 2). The scale parameters of the observed ITD tapered
Pareto PDFs [Eq. (6)] were similar across the same height range (1–
38 m) in the two study areas (â ffi �0:105� 0:304, r2 = 0.916 in the
Pinaleños and â ffi �0:106� 0:021; r2 ¼ 0:896 in the Valles Caldera
(Table 2)). Estimated â values were also similar across canopy
cover categories to those of the full ITD and ranged between
�0.278 and �0.074 in the Valles Caldera, and �0.177 and
�0.0001 in the Pinaleño (Table 2). The estimated taper parameter
ĥ for the full distribution was ĥ ffi 9:5� 4:8 m (Valles Caldera) and
ĥ ffi 9:7� 3:9 m (Pinaleño) (Table 2, Fig. SM5). The estimated nor-
malization constant ĉ was greater than the observed frequency of
stems n for the actual plot data in almost all cases (Table 2). The
ĉ consistently overestimated the actual stem frequency by �125%
(n ¼ 0:7992ĉ � 23:543; r2 ¼ 0:9997).

3.3. Comparing the ALS tapered Pareto to the observed understory ITD
with two-sample K–S tests of the empirical cumulative distribution
functions

The VLM algorithm accurately estimated the frequency of
almost all trees, including the understory, in stands with canopy
cover < 50%. Therefore we limited our application of the tapered
Pareto distribution fitting to the plots that under-predicted the
understory, e.g. >50% canopy cover in the Valles Caldera (Figs. 3
and 7), and >70% canopy cover in the Pinaleño (Figs. 4 and 8).
The VLM lost precision �10 m height (Figs. 3 and 4), so we set a
cut-off in the size distribution <10 m from which to fit the tapered
Pareto (Figs. 7 and 8, SM Fig. 3). In both study areas, the ALS-
derived tapered Pareto distribution function fit the observed over-
story ITD > 10 m with r2 values > 0.89 (Table 3).

There was no significant difference between the ALS overstory
tapered Pareto and observed ITD empirical CDFs for either study
area suggesting that tapered Pareto accurately reflects the empiri-
cal ITD (Table 4 and Fig. 9). The ALS tapered Pareto distribution vs.
the observed understory ITDs were also not significantly different
based on a two sample K–S test (Fig. 10 and Table 4).
4. Discussion

Our objective was to determine whether ITD derived from ALS
can be used to generate tree inventories with accuracy similar to
those of field-based methods. Our reasoning was based on the rec-
ognition that natural, non-plantation, semi-arid forest ITDs exhibit
measurable self-similarity due to density-dependence. We mod-
eled ITDs with a continuous power law distribution, the tapered
Pareto, rather than an exponential function as has been employed
in the past (Maltamo et al., 2004) because MST (Enquist et al.,
1999, 2009; West et al., 2009) predicts that forest ITDs are power
law distributed rather than exponentially distributed. We
considered the tapered Pareto an optimal candidate for fitting



Table 2
Least squares regression of the tapered Pareto c � f ðhÞ of each full study area observed ITD, and by canopy cover (CC%) for the Valles Caldera (top) and Pinaleño (bottom). In all
cases linear bins are 1 m wide and b was fixed at 1 m.

CC (%) Plot n Tree n Range r2 RMSE ĉ â ± SE ĥ (m)±SE

Valles Caldera All 48 3909 1.0 m < h < 38 m 0.916 34.19 4962 �0.106 ± 0.021 9.38 ± 1.19
<40 11 636 1.0 m < h < 27 m 0.59 15.08 869 �0.278 ± 0.120 7.43 ± 2.02
40–50 14 697 1.0 m < h < 34 m 0.488 16.27 926 �0.085 ± 0.055 12.87 ± 6.31
50–60 17 1881 1.0 m < h < 38 m 0.901 23.5 2371 �0.123 ± 0.715 7.81 ± 5.35
60–70 6 695 1.0 m < h < 31 m 0.578 13.32 866 �0.074 ± 1.102 11.72 ± 17.52

Pinaleño All 79 3,941 1.0 m < h < 35 m 0.896 35.25 4921 �0.105 ± 0.304 9.77 ± 5.10
<40 13 266 1.0 m < h < 28 m 0.558 4.24 335 �0.001 ± 0.252 17.03 ± 6.70
40–50 11 346 2.0 m < h < 30 m 0.717 6.19 462 �0.115 ± 0.052 9.55 ± 3.10
50–60 9 566 2.0 m < h < 32 m 0.763 12.79 727 �0.171 ± 0.050 6.19 ± 8.90
60–70 7 300 3.0 m < h < 31 m 0.515 7.53 410 �0.093 ± 0.061 11.76 ± 5.31
70–80 13 598 3.0 m < h < 32 m 0.832 6.36 790 �0.177 ± 1.210 10.47 ± 11.41
80–90 19 1393 1.0 m < h < 35 m 0.860 15.98 1768 �0.114 ± 0.676 9.33 ± 6.20
90–97 7 472 3.0 m < h < 30 m 0.606 7.28 621 �0.064 ± 1.190 13.56 ± 19.80

Fig. 3. Observed (gray bars) and ALS (open bars) height ITD for the Valles Caldera plots by 10% canopy cover classes.
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the distribution because it is a continuous power-law distribution
which includes an exponential decline in the right tail, and has
been shown to be a good fit to other natural phenomena
(Schoenberg and Patel 2012).

We were able to successfully isolate individual trees in the plots
from the ALS when canopy cover was relatively low and/or trees
were >10 m in height. When canopy cover is low there was no need
to fit a distribution function to the understory; the observed fre-
quency distribution was close to the observed. Open stands were
a common feature in these semi-arid forests prior to modern fire
suppression (Muldavin et al., 2006; O’Connor, 2013; O’Connor
et al., in press), and are common feature of forests throughout
much of the southwestern USA. These results should give manag-
ers confidence in the precision of ALS derived semi-arid forest
inventories in stands with open structure.

For stands with high canopy cover and relatedly higher stem
density, the ITD exhibited a close fit to the tapered Pareto. The
scale parameters of the observed ITD were similar between study
areas and canopy cover categories, suggesting the forests are
exhibiting self-similarity in the ITD. For plots where canopy cover
was high we used the tapered Pareto PDF of the ALS overstory ITD
to estimate the PDF of the understory ITD, normalized by a
constant. The tapered Pareto PDF for both the field observed ITD
and ALS-derived overstory ITD were not significantly different
based on the two sample K–S tests. Further, the observed under-
story ITD and ALS tapered Pareto were not significantly different
based on the two sample K–S tests. These results suggest that in
plots where canopy cover is high, stand density is determined by
plant functional type specific density dependencies. Thus, the ITDs
exhibit measurable self-similarity for which any part of the distri-
bution can be used to predict the scaling of the entire distribution.

4.1. Uncertainties

The MSE in field measured tree height vs. the ALS derived tree
height was ±81 cm. The binned distributions as presented in Figs. 3
and 4 may include some error where trees are incorrectly binned
into either a larger or smaller 1 m-wide bin. Errors related to the
binning are normally distributed (SM Fig. 1); based on the reported
confidence intervals these differences in the least-squares regres-
sions are not significantly different across the two studies. Due to
observational uncertainty parameter values estimated from least
squares with binning are equally unlikely to fit canonical MST pre-
dictions regardless of whether we used MLE (Taubert et al., 2013).



Fig. 4. Observed (gray bars) and ALS (open bars) height ITD for the Pinaleño plots by 10% canopy cover classes.
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The values of the estimated scale parameter â for our observed
distributions tended to be slightly negative (Table 2 and SM Fig. 4).
The negative sign reflects a cross-over: the point at which the dis-
tribution reverses from an increasing frequency to decreasing fre-
quency with increased tree size. In other forest ITD studies this
behavior has been modeled using Weibull distributions (Maltamo
et al., 2004); here we modeled this behavior for the tapered Pareto
for the first time. Uncertainty in the estimates of â made it impos-
sible to detect significant trends in the value of the parameter with
changes in canopy cover (SM Fig. 4), but the finding that the sign of
â is negative given all the distributions decline to zero at or below
hmin is robust. There was also no significant difference in the values
of ĥ among canopy cover percentage groups (SM Fig. 5). This is
likely due to the average sample area being similar across each
group and our sample size being relatively small.
We did not attempt to fit â for the ALS-derived overstory ITD
[10 m < h < 38 m] because least-squares regression is likely to fit
a positive â parameter value if the distribution does not contain
the cross-over in the left-tail. This would also be the case if we
had used MLE (Taubert et al., 2013). An â � 0 would over-predict
the frequency of the understory ITD. For the regression of the
ALS derived ITD the observed negative â was fixed a priori as was
b; distribution fitting was confined to ĉ and ĥ of the overstory
ITD. Additional supporting evidence for this approach was the find-
ing that the shape parameter â did not change significantly regard-
less of increasing canopy cover (Table 2, SM Fig. 4).

The understory distribution was extrapolated in both study
areas because the effort to measure all understory trees in the field,
particularly in dense plots where understory stem densities exceed
1000 trees per ha, is overwhelmingly time consuming and would



Fig. 5. Observed height ITD for both sites normalized per unit area and grouped by cover percentage in Valles Caldera (left) and Pinaleño (right).

Fig. 6a. Absolute error (Dx) of the observed ITD vs. the ALS ITD for the Valles Caldera and Pinaleño. There are few errors across the distribution >8 m for each location. Trees
<1 m are not shown as the VLM used a lower cutoff at 1 m height.

Fig. 6b. Relative error dx for the observed vs. VLM modeled tree size frequency for the Valles Caldera and Pinaleño. There are larger errors relative to the frequency of trees for
both ends of the distribution. For trees <8 m there is an increase in the omission rate due to problems related to canopy spacing and the VLM. There are larger relative errors in
trees >29 m height due to the absolute number of those trees being very small in the sample – a single error of omission or commission results in a relative error of 1.0 or
greater; these are due to failure of the VLM to isolate a tree or to edge effects in the circular plots where unmeasured trees are included in the VLM.
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dramatically reduce the spatial extent that the field crews are able
to sample. The mean �h ± SD of the measured trees with
DBH = 18.5 cm (the minimum cut-off for measurement in the full
plot area) was �h ¼ 11� 4 m across the two study areas. The accu-
racy of the ALS derived ITD diverged from the observed ITD below
10 m height (Figs. 3–6a and 6b). This suggests that the trees >10 m
in height isolated from the ALS by the VLM were likely to have
been measured directly and not extrapolated from trees in the
inner sub-plots. Further, it suggests that the field protocol for tree
measurements was sufficient for comparing the overstory distribu-
tion without introducing uncertainty errors related to the extrapo-
lation of the understory distribution. Uncertainty in the
extrapolated understory density is a particular issue in plots with
open cover percentages. The spatial distribution of trees in open
cover plots could be heterogeneous or asymmetric, e.g. ½ of the
plot is densely forested while the other ½ is not forested at all. In
such plots extrapolation of understory frequency could over or
under predict the actual frequency distribution. For example, the



Fig. 7. Observed size-frequency distribution of trees in all plots >50% canopy cover
in the Valles Caldera (gray). Histogram bars are 1 m wide linear bins. The VLM
frequency (empty black) and the tapered Pareto (black line) fit using a and h and
normalization constant c determined by least squares, the b parameter was set at
1 m. The >10 m cut-off height (vertical dashed line) for the VLM was determined
from the relative error rates of the validation data.

Fig. 8. Same as Fig. 7 but for the observed frequency of trees in all plots >70%
canopy cover in the Pinaleño.
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extrapolations of the understory ITD in the Valles Caldera (1/10th
understory census) has greater uncertainty than in the Pinaleño
(1/3rd understory census).

4.2. Limitations

The presence of understory trees directly beneath overstory
canopies is a potential source of omission error when using a
Table 3
Least squares regression of the tapered Pareto to ALS overstory ITD [1 m linear bins] for the
the observed distribution) was fixed at �0.105; the b was fixed at 1 m.

CC% Plot n Tree n Range

Valles Caldera > 50% 23 2576 10 m < h < 38 m
Pinaleño > 70% 39 2463 10 m < h < 35 m
CHM-based isolation technique. For some objectives, such as
reconstruction of forest biomass estimates, the measurement
uncertainty of tree size under normal growing conditions and
other non-linear growth effects such as exceeding age and differing
site indexes makes the omission of understory trees directly below
an overstory tree a nominal issue, because total forest biomass
tends to be dominated in the large trees. The problem is more sig-
nificant for ecologists and foresters interested in determining pop-
ulation distributions, forest dynamics, biodiversity, and ecosystem
status.

While each of the different CHM techniques developed to date
offers strengths and weaknesses for census in various forest types,
few demonstrate the ability to discriminate mid- or understory
trees with a level of significance equivalent to a field inventory.
Vector-based techniques which segment the point cloud are
reported to have better accuracy in understory vs. the CHM tech-
niques (Reitberger et al., 2009; Li et al., 2012; Yao et al., 2012).
The vector approach appears to be a step forward in the census
of forests, particularly with terrestrial laser scanning. However
most ALS datasets have pulse densities that are too low to resolve
features of the mid- to understory canopy architecture at land-
scape level.

Vauhkonen et al. (2012) and Kaartinen et al. (2012) compared
the relative performances of different tree extraction techniques
in different forest systems, e.g. European, Canadian, and USA plan-
tation and natural forests, and found each technique performed
best under the conditions for which it was developed. Our work
was focused in semi-arid forests with varying levels of canopy clo-
sure as a result of topographic variation and landscape legacies.
The ability to detect understory trees directly in a CHM is one dis-
tinctive feature of the two semi-arid forests we studied. Stands in
semi-arid forests tend not to exhibit the multi-tiered canopy archi-
tecture found in more mesic forests, e.g. coastal Pacific temperate
conifer forests. It was only in dense canopy cover where the
enhancements of an ITC and area-based approach (Maltamo and
Gobakken, 2014) to estimate the understory ITD < 10 m tall indi-
rectly was necessary. Attention to changes in stand structure is
important: if the forest is measured at space-appropriate scales,
i.e. within similar high density canopy cover type stands, then
the modeled ITD should fit the tapered Pareto that reflects the den-
sity dependence of the stand.
4.3. Significance and future research

Our findings address the problem identified in previous studies
by Persson et al. (2002), Popescu and Wynne (2004), Chen et al.
(2006), and Falkowski et al. (2006, 2008), which report a decrease
in accuracy of isolation for the understory with increasing canopy
cover. Notably, our study benefited from denser ALS data, a sugges-
tion made in Falkowski et al. (2008), who reported a reduction in
accuracy with increased tree clumping.

We suggest that a continuous distribution function, the tapered
Pareto, is a valid alternative distribution to other stretched expo-
nential functions previously reported in the literature (Maltamo
et al., 2004; Maltamo and Gobakken, 2014). A benefit of using
the tapered Pareto is that a change in the taper parameter affects
the distribution in the right-tail and can thus reflect differential
Pinaleño and Valles Caldera subset by plot’s with high cover percentages. The â (from

r2 RMSE ĉ â ĥ (m)

0.894 14.03 3029 �0.105 7.424
0.920 11.08 2764 �0.105 8.84



Table 4
Two-sample Kolmogorov–Smirnov (K–S) test results for: (1) the observed overstory CDF vs. the VLM derived tapered Pareto
distribution (shown in Fig. 9), and (2) the observed understory CDF vs. the VLM derived ITD for the overstory fit by a tapered
Pareto distribution (shown in Fig. 10). The p-values for all of the K–S tests are not significant; therefore we cannot reject them
having different distributions.

p-Value K–S statistic

Valles Caldera
Overstory Observed ITD vs. VLM tapered Pareto (10 m < h < 38 m) 0.153 0.296
Understory Observed ITD vs. VLM tapered Pareto (1 m < h < 10 m) 0.736 0.273

Pinaleños
Overstory Observed ITD vs. VLM tapered Pareto (10 m < h < 35 m) 0.995 0.107
Understory Observed ITD vs. VLM tapered Pareto (1 m < h < 10 m) 0.111 0.500

Fig. 9. Cumulative distribution function for the observed overstory height ITD vs. the ALS tapered Pareto distribution for Pinaleño and Valles Caldera.

Fig. 10. Cumulative distribution functions for observed understory vs. VLM modeled distribution using only overstory trees >10 m in the Valles Caldera and Pinaleño.
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rates of decline in abundance with increasing tree size classes, i.e.
hyper-exponential, exponential, or sub-exponential declines. This
is an important feature for analyzing very large distributions which
become upper-truncated in the right-tail at large sample sizes, e.g.
landscape level inventories.
In our observed data, the ITD of closed canopy cover was well
approximated by the tapered Pareto (Figs. 9 and 10). These find-
ings are consistent with Maltamo et al. (2004), who used a trun-
cated Weibull distribution to predict the understory frequency
from overstory ITD derived from ALS in Scandinavian pine stands.
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Both the tapered Pareto and truncated Weibull distribution exhi-
bit good fits for our data when the entire distribution is used (SM
Fig. 6). In our example, however, the tapered Pareto had a
slightly better fit in the understory when only the overstory
ITD was used in a regression and the shape parameter was set
to the known total ITD shape parameter value (SM Fig. 6). A thor-
ough evaluation of the benefits and weaknesses of the truncated
Weibull vs. the tapered Pareto would be a useful line of inquiry
for future research.
5. Conclusions and applications

We were able to isolate individual trees in the ALS when can-
opy cover was relatively low and/or trees were >10 m in height.
The height ITD fit a tapered Pareto function for both field obser-
vations and ALS-derived inventories, and the tapered Pareto scale
parameters were similar between study areas, and canopy cover
categories. We conclude that understory tree size distributions
can be estimated based on overstory inventories when canopy
cover is accounted for. These results are a further demonstration
of the potential for ALS inventories using the combination of ITD
and area-based approaches (Maltamo and Gobakken, 2014). Our
findings extend this work into semi-arid forests where: (1) for
open canopy cover the ALS derived ITD are characterized robustly
across all size classes because of the open spacing between trees;
(2) in closed canopy cover stands the ITD tends to exhibit den-
sity-dependent spatial sorting and packing well characterized
by a tapered Pareto; and (3) the frequency of understory pre-
dicted by the overstory ALS derived ITD parameter values for a
tapered Pareto distribution are not significantly different than
the ITD for the observed understory. These results also support
the MST prediction that density dependence among individuals
drives self-similar rank-size frequency of the entire stand (Deng
et al., 2012; Enquist and Niklas, 2001, 2002; Enquist et al.,
2009; West et al., 2009).

These results may help forest ecologists refine their tech-
niques for mapping rank-size ITD in semi-arid forests. Managers
and scientists interested in generating virtual inventories of for-
ests based on ALS can parameterize the ITD with local field
observations to account for the differences in stand density indi-
ces of their forest types. For managers, ALS-derived inventories of
forest stands can help in monitoring forest conditions and pro-
cesses without expending scarce resources on field monitoring
teams who can measure only tiny portions of complex land-
scapes. For ecologists, the benefit of having landscape-level
inventories opens up new questions about the distribution of
mass and energy flux utilization in forests. The scale of a com-
plete landscape level ALS inventory removes the need for statis-
tical extrapolation and expands our ability to understand pattern,
structure, and distributions at both large spatial extents and fine
spatial resolution.
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