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ABSTRACT 

This report contains edited and reviewed versions of 
papers presented at a workshop held at the University of 
Vermont in April 1980. Topics include sampling avian 
habitats, multivariate methods, applications, examples, and 
new approaches to analysis and interpretation. 

Limited numbers of reprints are available from the authors 
of each paper contained in this report. 
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PREFACE 

The commonly recognized multidimensional 
nature of wildlife habitat has led to a rapidly 
increasing use of multivariate statistical 
techniques in studies of wildlife ecology. 
Techniques such as discriminant function analysis, 
principal component analysis, factor analysis, and 
canonical correlation have been applied in studies 
of habitat selection and resource partitioning, 
ordination of habitats and simulation of habitat 
change, and in development of habitat inventory 
systems. Although muLtivariate methods are not 
understood easily, they may be employed with 
little difficulty if one has access to a computer. 
Such convenience tempts researchers to employ 
sophisticated analytical techniques but overlook 
important statistical assumptions, experimental 
design, and biological interpretation. \vi th these 
temptations in mind, a meeting was organized to 
bring research biologists and statisticians 
together to discuss multivariate methods and their 
applications to studies of wildlife habitat. 

The meeting (held at the University of 
Vermont, Burlington, April 23-25, 1980) was called 
a workshop, although it was not unlike a research 

symposium. It was a working conference and 
participants took an active role in discussing and 
critiquing topics of concern. Biologists learned 
from statisticians and vice-versa. Interactive 
sessions and productive interchanges of ideas 
satisfied the workshop's purpose of encouraging 
the use of improved statistical methods in studies 
of wildlife habitat and fostering better 
interpretation of research results. It is hoped 
that these published proceedings will encourage 
other investigators to improve design of their 
research, analyses of their data, and 
interpretation of their results. 

The papers presented at the workshop were 
either invited or submitted by abstract. Those 
papers are the basis of this report. Following 
the workshop, authors revised manuscripts and 
incorporated discussion from the meeting. 
Additional comments and critiques were recorded, 
edited, and added to papers where appropriate. 
Manuscripts were subsequently reviewed and revised 
so that these proceedings could be drawn together 
to form a cohesive volume, rather than a mere 
collection of papers. 

This report was printed from camera-ready pages supplied by 
the University of Vermont, which is responsible for the 
accuracy and style of the contents. Statements of con
tributors may not necessarily reflect the policies of the 
U.S. Department of Agriculture. 
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SUMMARY OF THE WORKSHOP1 

Stanley H. Anderson2 and David E. Capena 

BACKGROUND 

Wildlife habitat evaluation studies have 
progressed from purely descriptive work involving 
a discussion of community types and plant species 
present through concepts of vegetation function, 
physical structure, and vegetation structure. 
Many forms of special habitat descriptors, such as 
life forms or physiognomy, have been used. 

Recently, resource agencies have been looking 
at means of evaluating wildlife habitat with ideas 
of describing changes that occur in wildlife 
populations as a result of habitat alteration. 
Five federal agencies (Forest Service, Fish and 
Wildlife Service, Soi 1 Conservation Service, 
Geological Survey, and Bureau of La.nd Management) 
are working out a joint agreement for gathering 
and classifying wildlife habitat on a regional 
basis. Some federal agencies, many states, and 
some private organizations are developing data 
systems that include large amounts of wildlife 
habitat data. Objectives of these systems are to 
quickly classify wildlife habitat and indicate 
what changes might occur in wildlife as a result 
of widespread changes in the environment. 
Obviously, the utility of these systems depends on 
the type of data they contain. 

Most papers presented at the workshop and 
included in these proceedings relate to species 
and groups of species. The application of 
wildlife habitat evaluation techniques has, 
therefore, jumped ahead of standardization of 
methods and development of analysis techniques. 
Development was the primary point of discussion in 
the workshop. 

The computer age has revolutionized the 
analysis of research data. Statistical techniques 

1 Paper presented at The use of multi variate 
statistics in studies of wildlife habitat: a 
workshop, April 23-35, 1980, Burlington, Vt. 

2 Leader, Wyoming Cooperative Fish and 
Wildlife Research Unit, University of Wyoming, 
Laramie, WY 82071. 

3 Assistant Professor, Wildlife Biology 
Program, University of Vermont, Burlington, VT 
05401. 

are easily available to assist the biologist in 
examining relationships between wildlife and 
wildlife habitat. Techniques only theories two 
decades ago, are now employed routinely through 
the use of "canned" computer programs. Users of 
multivariate statistical methods requiring matrix 
algebra must rely on computers to analyze very 
large sets of data. Unfortunately, computer 
programs do not have control over either .the 
quality of data analyzed or interpretation of 
results. Also, the researcher, may have little 
knowledge of the proper type of program or method 
to be used for different forms of data. Yet 
multivariate analyses are becoming standard 
procedure in ecological studies. 

CONTENT 

Overview and Cautions 

H.H. Shugart keynoted this meeting by 
pointing out that multivariate statistical 
techniques as methods of choice in analyzing 
habitat data among animals have three distinct 
advantages over alternative methodologies: 1) 
multi variate procedures intrinsically fit 
ecological problems (and data) of this sort; 2) 
many multivariate methods seem to be robust in the 
face of mild deviations from underlying 
assumptions; and 3) there already exists a 
hypergeometric interpretation of the relationship 
among animals (niche theory) that is essentially 
based on a multivariate sample space. He also 
discussed the need for more information on 
density, which has not been emphasized in most 
multivariate studies. His opening remarks 
initiated a recurring theme that biologists have 
not always planned statistical analysis prior to 
collecting data. Rather, they have sought 
statistical advice after massive amounts of data 
were gathered. 

Douglas Johnson, an experienced biometrician, 
initially was invited to respond in a general 
sense to papers presented at the meeting. His 
response evolved into a comprehensive review of 
essential considerations which should preceed 
multivariate analyses; considerations such as non
linear response functions of wildife species to 
their habitats. This paper should be tead before 



wildlife habitat studies are designed, and before 
multivariate methods ar~·even selected to explore 
relationships or confirm hypotheses. 

A more dramatic cautionary presentation was 
made by James Karr and Thomas Martin. These 
authors describe a study of bird/habitat 
relationships where habitat variables were reduced 
to "meaningful" axes by principal components 
analysis (PCA). Surprisingly, their habitat data 
were collected from a random numbers table, but 
findings compared favorably with those from 
published reports of real--we assume--bird/habitat 
studies. This paper emphasizes the importance of 
objective interpretation of PCA. 

Habitat Measurements 

A satellite session presented the opportuntiy 
to back away from data analysis and focus on 
habitats ~ se. This session, although 
restricted to av1an habitats, provided both a 
theoretical and practical framework for designing 
studies of wildlife habitat relationships. The 
six speakers presented first a historical review 
of why we measure habitat and a theoretical 
perspective of how birds use multidimensional 
resources. Then there were discussions of how to 
select the proper habitat variables; how to 
measure them; and how to design statistical 
treatment for the data. Statisticians with little 
knowledge of biological processes will appreciate 
this chapter of the proceedings. 

Theory.and Methods 

Biologists must have an understanding of 
multivariate statistical theory and methodology 
before employing these techniques in research 
endeavors. Papers given by Williams, 
Bhattacharrya, and Smith addressed the more 
commonly used methods employed in ecological 
studies. Ken Williams discussed problems in using 
discriminant function analysis (DA) in terms of 
habitat variables approching normality, problems 
of covariance equality in canonical analysis, and 
possible statistical violations found in the 
literature that have resulted in misinterpretation 
of data. His paper is of particular consequence 
in satisfying objectives of the workshop and the 
proceedings. Following Williams' presentation of 
the structure of canonical variates, Kim Smith 
gave an extensive review of the uses of canonical 
correlation in ecological work and formulated some 
important recommendations for improved use of this 
technique in our discipline. Research biologists 
are directed, in particular, to Smith's recom
mendations on sample size. Helen Bhattacharrya's 
presentation was an easily understood explanation 
of principal component analysis and its many 
variations. James Dunn prepared a particularly 
comprehensive treatment of transformations for 
univariate and multivariate data; this paper 
emphasizes the need for a thorough understanding 
of statistics before taking advantage of the more 
advanced options available in this area of 
quantitative science. 
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Application 

Fourteen speakers gave papers which 
illustrated how multivariate techniques have been 
applied to field studies of a variety of different 
organisms. Andrew Carey uses PCA of a montane 
ecosystem to illustrate a suggested terminology 
for such ecological work. On a more applied 
basis, Tom Smith and co-authors Shugart and West 
show how important elements of a forest habitat 
can be identified by DA and incorporated into 
simulation models which predict habitat 
availability for selected species of birds. Chris 
Grue and co-investigators Reid and Silvy used 
stepwise multiple regression and DA to condense a 
large number of habitat variable·s into workable 
models for a large-scale classification and 
inventory system. Workshop participant Paul 
Geissler critiqued their study design by 
emphasizing the potential for prediction bias when 
the number of variables exceeds sample size. Like 
Karr and Martin, Geissler used a random number 
universe to illustrate his point. 

Six of these 14 examples of multivariate 
applications may be studied as a collection of 
contrasting approaches to a variety of ecological 
problems. Martin Raphael used DA and cluster 
analysis to study nesting habitat of sympatric 
cavity-nesting birds. Mark Boyce and Joe Folse 
used canonical correlation in their studies of 
bird habitats. Boyce describes a robust analysis 
of sage grouse habitat, while Folse employs 
canonical correlation as an ordination technique, 
an unu$ual application. Brian Maurer and 
co-authors McArthur and Whitmore used PCA in what 
has become a common format in bird/habitat 
studies, but introduced a procedure of obtaining 
weighted mean values for habitat variables. Phil 
Sczerzenie applied PCA and PC-regression to deer 
harvest-land use relationships and illustrated the 
use of these techniques on an expanded spatial 
scale. Tom Harshbarger and Helen Bhattacharrya 
contributed the only paper where multivariate 
techniques were used in a study of an aquatic 
species, trout. Their conclusion was that 
regression models based on derived factors were no 
better than models composed of original variables. 

New Approaches 

Five research papers were particularly 
relevant to the purposes of the workshop; these 
presentations introduced both new statistical 
applications to familiar problems and new field 
approaches to familiar statistics. Jake Rice, 
R.D. Ohmart and B.W. Anderson illustrated the 
importance of seasonal and annual variation when 
using DA to classify avian habitats. The 
application of their findings cannot be over
looked. John Rotenberry and John Wiens also used 
a familiar approach, PCA, but reported an 
innovative technique of combining species 
abundance and habitat relationships in the same 
environmental space. 

The remaining papers dealt with the important 



topic of robust procedures. Jim Harner and R.C. 
Whitmore described new techniques which are robust 
to outlying data;_ their computer programs will be 
sought by many investigators. The problem of 
multicollinearity is addressed by Janet Cavallaro, 
J.W. Menke, and W.A. Willimas; their use of ridge 
regression to deal with this problem is applaud
able. Multicollinearity is also highlighted in 
Kathryn Conver-se. and. B. J. Morzuch '.s paper. 

Lyman McDonald, like Doug Johnson, is a 
statistician who has worked extensively with 
wildlife research problems. He too was asked to 
respond in general to papers presented at the 
workshop. Dr. HcDonald reviewed papers and chose 
to concentrate on robust procedures, indicating 
the importance of this topic to wildlife habitat 
studies. His comments are found after those 
papers which address robust techniques. 

CONCLUSION 

Although insights often occur when techniques 
do not work, we must adhere to basic scientific 
premises. Multivariate analyses are useful tools 
for describing wildlife habitat only when properly 
applied; when misused or abused they become not 
only ineffective, but also disastrously 
misleading. It is important to remember that 
multivariate statistics alone do not solve 
problems; they only assist us in using our 
knowledge to interpret large amounts of data. We 
should not try to make sense out of nonsense; 
however, exploratory studies are valid when they 
follow the stated purpose. 
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To competently continue our work in exam1n1ng 
wildlife habitat, it is most important for us to 
clearly define the problem at the outset of each 
study. This means setting objectives, 
establishing hypotheses that can be tested, and 
determining the forms of data to be collected and 
how they should be analyzed statistically. These 
steps will help determine data collection 
procedures. At this point it is extremely 
important to know the assumptions of tests to be 
used and make sure that these assumptions are met 
in the data collection procedure. Finally, we 
must recognize that results of the tests are not 
an end in themselves, they only provide direction. 
We must return to the field and validate the 
results, frequently through manipulative 
experiments. We as investigators, teachers, and 
scientific reviewers, must encourage proper 
interpretation through our selection of tests. 

Site-specific studies must be used as one 
example of regional and national application. 
Researchers must be keenly aware of their need to 
design experiments and translate results into 
meaningful information for teachers, managers, and 
lawmakers. A cautionary question: are we 
publishing our results too soon? Maybe studies 
should go beyond the typical one or two years and 
proper verification should follow. 

We hope this symposium of biologists and 
mathematicians is of help to all involved. The 
demands for the information we gather are great 
but it is important that we pass on only the best 
information. The type of interaction brought 
about by this workshop needs to continue. 



AN OVERVIEW OF MULTIVARIATE METHODS AND THEIR 

APPLICATION TO STUDIES OF WILDLIFE HABITAT1 

H.H. Shugart, Jr.2 

Abstract.--Multivariate statistical techniques as 
methods of choice in analyzing habitat relations among 
animals have three distinct advantages over competitive 
methodologies: 1) Multi variate procedures intrinsically fit 
ecological problems (and data) dealing with habitat 
selection. 2) Many of the multivariate methods seem to be 
robust in the face of mild deviations from the underlying 
assumptions. 3) There already exists a hyper geometric 
interpretation of relations among animals (niche theory) that 
is essentially based on a multivariate sample space. These 
considerations, joined with a reduction in the cost of 
computer time, the increased availability of multivariate 
statistical "packages," and an increased willingness on the 
part of ecologists to use mathematics and statistics as 
tools, have created an exponentially increasing interest in 
multivariate statistical methods over the past decade. The 
earliest multivariate statistical analyses in ecology did 
more than introduce a set of appropriate and needed 
methodologies to ecology. These studies emphasized different 
spatial and organizational scales from those typically 
emphasized in habitat studies. The· traditional wildlife 
habitat study was based on measuring the density of a 
population in a homogeneous plant community. New studies, 
using multivariate methods, emphasized individual organisms' 
responses in a heterogeneous environment. This philosophical 

- (and to some degree, methodological) emphasis on 
heterogeneity has led to a potential to predict the 
consequences of disturbances and management on wildlife 
habitat. One recent development in this regard has been the 
coupling of forest succession simulators with multivariate 
analysis of habitat to predict habitat availability under 
different timber management procedures. 

Key words: Habitat selection; multivariate statistics, 
quantitative ecology; succession models; wildlife-vegetation 
interactions. 

1 Paper presented at The use of multi variate 
statistics in studies of wildlife habitat: a 
workshop, April 23-25, 1980, Burlington, Vt. 
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2 Senior Research Staff Member, Environmental 
Sciences Division, Oak Ridge National Laboratory, 
Oak Ridge, TN 37830. 



INTRODUCTION: 

THE EVOLUTION OF'MULTIVARIATE HABITAT ANALYSIS 

Investigators in research centers all over 
the world, and particularly in the United States, 
are discovering applications of multi variate 
statistical techniques in studying the habitat 
relations of a diverse range of animals and 
plants. Given the suitability of multivariate 
statistics for habitat analysis coupled with the 
need for a wider understanding of animal/ 
environment relations mandated by man's increasd 
use of the earth's resources, this is a logical 
situation. Indeed, the logic of using 
multivariate analysis to manage animal habitat 
would seem to make such applications inevitable. 
Yet only a decade ago, no studies that are 
methodologically and philosophically equivalent to 
those of today were in evidence. This paper takes 
as its central tenet that multivariate statistical 
analysis of habitat requirements of animals is the 
product of a synthesis, occurring in the early 
1970's at several different research centers, that 
united different lines of scientific research. 

Figure 1 illustrates the main elements of 
this synthesis. Two developments that were 
independent of ecological studies, the increased 
availability of computer time on high-speed 
digital computers and the development of 
multivariate statistical techniques, were combined 
with three ecological developments: 1) the 
hyperspace theory of the niche, 2) the realization 
that small spatial-scale studies could reveal much 

... 
CONSID;:ATION / I 

INDIVIDUAL 
RESPONSE 

STATISTICAL 
NICHE 

QUANTIFICATION 

' MULTIVARIATE 
HABITAT 

ANALYSIS 

ORNL • OWG 80 · 7522 ESD 

..... 

Figure 1. Schematic diagram of the scientific 
research elements that combined in a synthesis 
to produce multivariate habitat analysis. 
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on animal interrelations, and 3) an emphasis on 
individual organism response as being important in 
determining species distributions. A number of 
papers developed· various aspects of what was to 
become multivariate analysis published before the 
1970's, but most of these papers did not combine 
all elements of the synthesis (table 1). 
MacArthur's ( 1958) classic work emphasized a 
relation between individual microhabitat 
utilization and the hyperspace niche theory model 
(Hutchinson 1944, 1957, 1965). Klopfer (1965) 
developed an impressive line of research in 
associating individual organism responses to 
microhabitat, as did Wiens ( 1969). Cody ( 1968) 
and Fujii (1969) both developed the idea of using 
multivariate statistics in studies of animal 
niches. In 1971 and 1972 a number of papers, by 
individuals working independently, appeared that 
combined these elements and attempted to quantify 
niches of various organisms (Green 1971, 
Hespenheide 1971, James 1971, Martinka 1972, 
Shugart and Patten 1972). The management 
implications of these works became obvious to 
various individuals and within a few years several 
papers had appeared that discussed the use of 
multivariate habitat analysis as a management 
tool. Because of its synthetic or1g1ns, 
multivariate habitat analysis can be considered in 
terms of the elements that formed this synthesis 
and in terms of the problems intrinsic to these 
synthesis elements. 

ELEMENTS OF SYNTHESIS 

Quantitative Elements: Statistics and Computers 

Two of the most important elements that led 
to the development of multivariate habitat 
analysis were the state of development of 
multivariate statistical procedures and the 
increased availability of high-speed digital 
computers. It is interesting to note that current 
user-oriented statistical analysis procedures 
(e.g., Cooley and Lohnes 1971, Dixon 1974, Barr et 
al. 1976) are further accelerating the 
"computerization" of ecological studies in 
general. Many of the statistical procedures used 
in multivariate habitat selection studies require 
rather involved numerical analysis programs that: 
1) use computers and 2) would be difficult for 
ecologists to develop de nova. 

The availability of multivariate statistical 
analysis programs and computer time created a 
situation in which the initial work in developing 
habitat analysis techniques in the 1970's was 
often done in conjunction with a consulting 
statistician (e.g., Dr. J.E. Dunn, a contributor 
to these proceedings). This has had a positive 
effect in that the rigor in testing to meet 
statistical assumptions, in using the "right" 
methodologies, and in interpreting results 
correctly is much higher in multivariate habitat 
analysis than in botanical ordination and 
classification procedures. Ecologists interested 
in plant ordination developed a number of 
analytical techniques with little rigor relative 



Table 1. Papers involved with animal/habitat relationships before and during the synthesis period for 
multi variate hab.i tat analysis. A "yes" to Niche theory indictes the paper is strongly oriented toward 
niche theory; "yes"" to Microhabitat indicates a use of a small spatial scale sample size; "yes" to 
Individuals indicates an emphasis on individual organisms; "yes" to Management indicates management 
potential is discussed in paper. 

Multivariate 
paper Taxa Methods 

MacArthur (1958) Birds 
Klopfer ( 1965) Birds 
Wiens (1969) Birds 
Cody (1968) Birds Discriminant 

function (DF) 
Fujii (1969) Insects Principal 

components 
analysis ( PCA) 

Green (1971) Mo\.).uscs DF 
Hespenheide (1971) Birds DF 
James (1971) Birds DF, PCA 
Martinka (1972) Birds DF 
Shugart and Patten Birds DF, other 

( 1972) techniques 
Anderson and Shugart Birds DF, PCA 

( 1974) 
Green (1974) Benthic DF 

Animals 
Shugart et al. Birds DF, PCA 

(1974) 
Shugart et al. Birds DF 

( 1975) Mammals 
Conner and Adkisson Birds DF 

to underlying statistical assumptions. The 
difference in rigor between plant ordination and 
animal habitat analysis is quite pronounced to 
anyone who has worked in both areas. While this 
would appear to be a positive attribute relative 
to habitat studies, this is not necessarily the 
case as I will discuss below. 

Niche Theory 

Hutchinson (1944, 1957, 1965) formulated a 
hypergeometric model of the niche ·of an organism 
that captured the imagination of theoretical 
ecologists for several decades (e.g., Horn 1966, 
Maguire 1967, McNaughton and Wolf 1970, Colwell 
and Futuyma 1971, Pielou 1972, May 1974, 1975), 
although this geometric interpretation has tended 
to be lost from more recent interpretations. The 
hypergeometric concept of the niche and the 
n-dimensional sample space are analogous in many 
respects, and this analogy was noticed by several 
early investigators (Table 1). The existence of a 
set of theories (niche theory) has led to an 
extended level of interpretation of multivariate 
habitat studies. Thus, one can interpret lack of 
overlap in terms of theories of "limiting 
similarity" or "competitive exclusion" (Harner and 
Whitmore 1977, Dueser and Shugart 1978). Further, 

Niche 
theory 

Yes 

Yes 

Yes 

Yes 
Yes 
Yes 
Yes 
Yes 

Yes 

Yes 

Yes 

Yes 

Yes 
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Microhabitat 

Yes 
Yes 
Yes 

Yes 
Yes 
Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Individuals Management 

Yes 
Yes 
Yes 
Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

the pattern of the means in a sample or 
discriminant space can be interpreted relative to 
theories of community structure (Shugart and 
Patten 1972, Dueser and Shugart 1979). 

Consideration of Individual Responses 
and the Importance of Microhabitat 

Population-level censuses of bird populations 
have for years been coupled with plant community 
surveys to obtain a measure of species response to 
vegetation. While these surveys will continue to 
be important in the future as they have in the 
past, they do not necessarily provide much insight 
into the detailed aspects of why one location 
seems more suitable for a species than some other 
location. Interest in this microscale problem as 
well as the theoretical underpinnings of habitat 
selection had been published quite early (e.g., 
von Uexkull 1909, Kohler 1947, Tinbergen 1951, 
Harris 1952). In the mid-1960's, there was an 
intensified interest in habitat selection as a 
behavioral phenomena (e.g., Wecker 1963, Klopfer 
1965, MacArthur and Pianka 1966). This emphasis 
on individual organisms tended to produce 
observational data sets with very high degrees of 
freedom and with more than one variable recorded 
for each observation. Such data created a need to 



explore multivariate statistics as an analytical 
tool. 

PROBLEMS INTRINSIC TO THE SYNTHESIS ELEMENTS 

The synthesis of multivariate habitat 
selection methodologies proceeded from the 
combining of several elements of research from 
different fields in the 1970's. As a product of a 
rapid synthesis, today' s procedures suffer from 
certain problems intrinsic to the component 
elements. 

Statistical Assumptions Versus Niche Theory 

Multivariate habitat selection studies have a 
strong emphasis on using the "correct" statistical 
procedures. Most letters and phone calls that I 
receive regarding habitat selection involve 
deciding what method to use, not on how to 
interpret analytical results. Further, as 
contrasted to plant ordination studies in which 
authors typcially reference their methods to other 
ordination studies, multivariate habitat studies 
refer their methods to reputable multivariate 
statistical textbooks. This healthy respect for 
statistics is probably quite good, but it also 
makes papers in the field proceed with ponderous 
inevitability. I am of the opinion that rigorous 
adherence to methodological ·correctness probably 
has prevented incorporation of the heuristically 
rich geometric theories of the hyperspace niche 
concept from geing fully developed in wildlife 
habitat studies. 

Inclusion of Population-Level Aspects 

Most multivariata habitat analyses are so 
focused on the responses of individual organisms 
to microhabitats that concepts of animal density 
are almost lost. Some species appear to be quite 
uncommon even in the face of an apparent abundance 
of suitable microhabitat. The Swainson's warbler 
(Limnothlypis swainsonii) is a possible example of 
such a species. It is difficult to include 
population dynamics in a detailed microhabitat 
study, yet such dynamics are essential to 
management of habitat for selected species. I 
believe that this will be one of the challenges to 
workers in this field over the coming decade. 

Inclusion of Macrohabitat Considerations 

The consideration of the pattern of micro
habitats at larger spatial scales (macrohabitat) 
is difficult to include in the present multi
variate habitat analysis methodologies. In fact, 
macrohabitat considerations are often viewed as an 
unfortunate sampling situation in which the sample 
space has a pattern of internal clusters. There 
may be considerable importance in arrangement of 
elements of the landscape that are sui table for 
maintaining viable populations of a species. 
Rosenzweig's (1973, 1974), Rosenzweig and 
Winakur' s ( 1969), and Schroder and Rosenzweig's 
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Figure 2. Schematic diagram of scientific 
research elements that may combine to produce a 
second synthesis extending from multivariate 
habitat analysis. 

(1975) pioneering work on the theoretical and 
experimental responses of populations to altered 
patterns of microhabitats is ~n important 
benchmark set of studies that needs to be repeated 
in other communities. 

THE ELEMENTS OF A NEW SYNTHESIS 

In the previous section, I have tried to 
identify briefly some areas of new fruitful 
exploration for studies of habitat selection. 
There is a need to ~se the powerful methodology of 
multivariate habitat analysis to develop new 
theory, as well as to contine its use in difficult 
applications. In the former area, I believe that 
work I have been involved with in trying to 
develop a concept of niche patterns for 
communities (Shugart and Patten 1972) and 
particularly the development of this idea by my 
colleague Dr. R. D. Dueser (Dueser and Shugart 
1979) are examples of attempts to extend from 
simple data analysis to theory. These proceedings 
hold great promise for stimulating other 
theoretical work and should definitely provide 
some classic examples of applications. 

There is, in my opinion, a need for a second 
synthesis in the field and I would like to briefly 



identify what may be the important elements of 
this synthesis (fig. 2).. First, there is a need 
to meld the elt c:i.(irig developments made in 
population biology over the past decade with the 
equally exciting developments in multivariate 
habitat analysis. The potential for cross-seeding 
these lines of research is great, and the only 
limitation in uniting the field is in the 
formidable mathematical development that must be 
unified between the two. Two important 
quantitative developments (the ability to simulate 
changes in microhabitats through time and computer 
mapping of habitats) are already beginning to be 
included in habitat studies, and two examples are 
provided below. 

Habitat Simulation Models 

One interesting development in the field of 
ecosystem modeling over the past few years has 
been the development of forest succession 
simulation models capable of providing extremely 
detailed predictions on the future states of 
forests (reviewed by Shugart and West 1980). The 
level of detail and spatial scale of the output of 
some of these models is similar to that used in 
multivariate habitat selection studies. This 
convenient parallel development opens the 
possibility of projecting the temporal pattern of 
habitat availability following either man-made or 
natural disturbances. Figure 3 is an example of 
such an application using the Appalachian 
deciduous forest succession (FORET) model (Shugart 
and West 1977) to project habitat conditions for 
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Figure 3. Ovenbird habitat availability over 500 
years on Walker Branch Watershed under two 
treatments. Results are from the FORHAB model 
(Smith et al. 1981). 
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the ovenbird (Seiurus aurocapillus) on Walker 
Branch watershed, a site of intensive ecological 
investigation located on the Department of Energy 
(DOE) reservation in Oak Ridge, Tennessee. The 
FORET model simulates the birth, death, and growth 
of each tree on a 0.085-ha circular plot. By 
collecting habitat data on the presence of the 
ovenbird that has corresponding habitat 
information to that predicted by the model, one 
can use the model as a habitat simulator. In this 
particular example, we used discriminant function 
analysis to classify habitat versus non-habitat. 
As can be seen from an example, one can also use 
the detailed succession simulator to perform model 
experiments such as projecting the habitat 
dynamics of a 22.9 em (9-in) diameter-limit cut of 
commercially valuable species (fig. 3). Details 
of this particular methodology will be treated 
later in this volume (Smith et al. 1981). I 
mention this example here to identify a need for 
adding dynamics to our currently largely static 
methodologies. 

Mapping Techniques and Data Sets 

There are presently a large number of data 
sets (e.g., the USDA Forest Service Continuouf' 
Forest Inventory [C.F.I. ]) that could be used in 
conjunction with multivariate habitat data to make 
state- or continental-scale maps of distributions 
of wildlife habitat. The problems here involve 
keying habitat variables associated with a given 
species in a multivariate habitat study to the 
variables that can be obtained from inventory data 
sets. A fine example of this appraoch is Lennartz 
and McClure's (1979) application of C.F.I. data to 
map the potential extent of the red-cockaded 
woodpecker (Dendrocopus borealis) in the 
southeastern U.S. The determination of the level 
of variation over the continent of various 
species' habitat selection would be a valuable set 
of information for developing these maps. 

THE SECOND SYNTHESIS 

In this paper I have taken a broad view of 
the ontogeny of a still-developing understanding 
of habitat selection of several animals. The 
excitement of being involved in a young field is 
contagious, and I hope that this meeting will, by 
virtue of the increased interaction of scientists 
involved in multivariate habitat studies, help 
create a period of reviewed synthesis. The 
primary elements of such a synthesis might include 
the elements that I have mentioned (fig. 2), or 
they may take some entirely different direction -
only time will tell. Whatever the case, the 
present symposium should provide much fuel for the 
fire. 

The healthiest aspects of multivariate 
habitat analysis have been of a philosophical 
rather than of a methodological nature. Studies 
have attempted to be rigorous in the sense of 
statistics while, at the same time, they have 
attempted to be both theoretical and explanatory. 



This balance should not be lost. The studies have 
traditionally emp,hasized an understanding of 
ecological mechanisms at a fine scale of 
resolution. If such detail can be related to 
regional maps, the contribution to biogeography 
could be considerable. 

In my opinion, the current research direction 
and velocity could' . wi t'hin . the decade' provide . 
such research products as dynamic maps of regional 
habitat availability for a great number of 
species, with the potential to determine the 
changes in these maps due to altered land-use 
policies. 
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DISCUSSION 

MICHAEL C.S. KINGSLEY: Multivariate analysis 
tends to assume multivariate normality. Are there 
considerations in niche theory, particularly with 
respect to niche packing, which imply that niches 
should be a) similar in shape and orientation, b) 
similarly oriented multivariate normal density 
spaces? 

H.H. SHUGART: Yes. R.M. May (1973. Stability 
and complexity in model ecosystems. 265 p. 
Princeton University Press, Princeton, N.J.) used 
the standard deviation and separation of means of 
species distributions along a continuum as an 
index of packing and overlap. He then determined 
ratios of these two stati sties from derivations 
based on a general n-species non-linear 
competition model. He (Chapter 6) also provided a 
fair number of citations on niche shapes. In a 
somewhat less abstract vein, the late R.H. 
Whittaker generally pictured the distributions of 
species in response to gradients as unimodel and 
of shapes that are easily approximated by normal 
distributions. This is true both in his data 
papers, as well as in his more theoretical works. 
Whittaker used fairly abundant literature 
citations and his work serves as a useful point of 
reference. Maguire (1972) studied niche shapes in 
protozoa using non-parametric methods and found 
niches to have tendencies to vary along similar 
environmental axes and to have similar shapes. 
R. H. MacArthur and E. P. Wilson ( 1967. The theory 
of island biogeography. 203 p. Princeton 
University Press, Princeton, N.J.) produced a 
"compression hypothesis" regarding the expected 
similarity in shape and/or orientation of niches 
in different communities. W.E. Westman (1980. 
Gaussian analysis: identifying environmental 
factors influencing bell-shaped species 
distributions. Ecology 61:733-739.) provides a 
discussion on shapes of species' responses to 
gradients and also provides several references to 
individuals who have noted normal distributions in 
nature. A discussion with several citations of 
theories that would lead to such shapes is found 
in Westman's introduction. 



THE USE AND MISUSE OF STATISTICS IN WILDLIFE 

HABITAT STUDIES1 

Douglas H. Johnson2 

Abstract.--This paper briefly surveys the application of 
various multivariate statistical techniques in studies of 
wildlife and their habitats. Several methods are widely 
employed, but with little regard for the requisite 
assumptions and often without full appreciation of what the 
methods do and whether they are appropriate for the problem 
or not. 

The well known fact that species typically respond to an 
environmental gradient in a nonlinear fashion is poorly 
accounted for in many statistical treatments. Moreover, most 
analyses are not well validated. The few valiant attempts at 
validation have suggested that the models produced, often for 
predictive or management purposes, are less successful than 
might have been anticipated. 

The use of multivariate methods in developing 
recommendations for wildlife management calls for special 
caution, for it is a major step from describing the 
relationships observed between a species and some habitat 
features to predicting the response of that species as the 
habitat changes. 

Key words: Canonical correlation analysis; discriminant 
function analysis; multiple regression; nonlinear response 
function; principal components analysis; transformations; 
validation. 

INTRODUCTION 

The application of multi variate analysis to 
studies of wildlife habitat offers an exciting 
opportunity to statisticians. They have a major 
role to play as wildlife studies become 
increasingly complex and as greater numbers of 
environmental variables are investigated. A basic 
tenet of ecology is that "everything is connected 
to everything else." Although that generalization 
is a bit extreme, it does express the ecologist's 

1 Paper presented at The use of multivariate 
statistics in studies of wildlife habitat: a 
workshop. April 23-25, 1980, Burlington, Vt. 

2 Statistician, U.S. Fish and Wildlife 
Service, Jamestown, ND 58401. 
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conviction that the variables affecting a species 
or a system are numerous. 

Faced with this acknowledged need for 
statistical service and counsel, statisticians 
must respond appropriately, which means carefully 
and thoughtfully, with a full understanding of the 
biological problem, and with an appreciation of 
the consequences of the statistical analysis and 
interpretation. Merely adding variables to an 
analysis will not do. Multivariate analysis must 
not be a masquerade for ignorance. 

In this paper I survey some of the potential 
applications of multivariate analysis to 
wildlife-habitat studies. I try to offer 
biologists some guidance through the maze of 
multivariate statistics. My viewpoint is that of 



a statistician, with one eye on the mathematical 
requirements of the methodology, and one eye on 
the needs of the· uitimate user--the wildlife 
manager. While looking in these two· directions, 
we also must not forget the an~mal; its biology is 
of fundamental importance. 

IS MULTIVARIATE ANALYSIS APPROPRIATE? 

Green ( 1971) identified the need for a 
multivariate approach when he mentioned three 
operational problems in defining the niche of a 
species: 1) Not all potentially important 
environmental parameters can be measured. 2) Many 
of the parameters measured are likely to be 
correlated, relatively invariant, or irrelevant to 
the problem. 3) The many potentially relevant 
variables result in a mass of multidimensional 
data that is difficult to interpret. 

These considerations have led ecologists to 
the troughs of principal component analysis and 
discriminant function analysis, where they have 
drunk freely. These analyses have produced "new" 
variables that are linear combinations of the old 
ones, and which are fewer in number, to eliminate 
the third problem, a large mass of data. Further, 
these new variables are uncorrelated, which 
overcomes the second problem. It is left to the 
ecologist to handle the first problem by carefully 
including variables that are potentially important 
to the species; statistics will be of minimal help 
here. 

These multivariate analysis overcome two 
obstacles, but not without their own disadvant
ages. One drawback is that, by involving linear 
combinations of all the measured variables, they 
do not really reduce the parameter space; all the 
original variables must be measured in order to 
calculate the new ones. In that sense, the 
analyses only provide guidance for future 
research. Another problem is that the linear 
combinations themselves may be extremely difficult 
to interpret. Many of the published ones lend 
themselves to meaningful interpretation, although 
some do not; and I suspect that a lot of 
unintelligible linear combinations have been lost 
somewhere between analysis and publication. 

I wonder if we can take a slightly different 
approach. Can we objectively define meaningful 
variables a priori, instead of doing so 
statistically, a posteriori? These new variables 
should be few in number, more or less uncorrelated 
with one another, and of potential importance to 
the animal. These variables would account for 
what is known (or believed) about the animal, and 
any additional variables that the analysis 
identified as significant would represent new 
findings worthy of additional investigation. For 
example, a bird might find James' ( 1971) outline 
drawings of niche-gestalts to be meaningful, and 
would be willing to select its habitat based on 
those drawings. But the bird would be 
hard-pressed to plug the values of 15 or 20 
variables into a number of linear combinations, 
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compare the calculated values to one another, and 
select a habitat with value closest to its liking. 

Multivariate analysis, while evidently 
appropriate for wildlife-habitat studies, is 
difficult to apply and understand; Gnanadesikan 
(1977:2) suggested that univariate difficulties 
are raised to the pth power. He also . identified 
some .of the added problems and noted that much of 
the theoretical work in multivariate analysis, 
oriented toward formal procedures such as 
hypothesis tests on means, is of limited value for 
actual data analysis in the multivariate case. I 
next discuss some of the usual multivariate 
methods and their role in wildlife-habitat work, 
as identified by speakers in this workshop and 
earlier publications. 

Discriminant Function Analysis 

One of the most widely used multivariate 
techniques is discriminant function analysis 
(DFA), which is used to separate observations into 
groups on the basis of a set of measurements. In 
wildlife-habitat studies the observations are 
usually sites, and the groups denote whether a 
species was present or absent from the site, or 
whether species A was present as opposed to 
species B present. The variables are habitat 
measurements at the site. Lachenbruch (1975) is a 
valuable general reference and Tatsuoka (1970) 
presented a nontechnical exposition on DFA. 
Williams (1981) noted that DFA is applicable when 
the groups are well-defined and the set of 
measurements is ecologically meaningful. Groups 
of habitat sites defined by the presence or 
absence of a species are not always well-defined. 
At least three reasons for a species' absence can 
be identified: 1) the habitat at the site is 
unsuitable; 2) the habitat is suitable but the 
species is absent for other reasons, such as 
numbers in the population inadequate to occupy all 
suitable habitat or interspecific competition; or 
3) the habitat is suitable and the site occupied, 
but the sampling procedure failed to detect it. 
DFA based on presence-absence data involves the 
implicit assumption that absence is due to the 
first reason above, but even in that situation the 
group corresponding to "species absent" may 
include sites where the habitat is unsuitable for 
different reasons (see subsequent section on 
Nonlinear Response Functions). 

The requirement of DFA for ecologically 
meaningful measurements has already been 
addressed. My experience with biologists suggests 
that on the basis of their prior knowledge of a 
species and its habitats, they often can develop a 
very limited number of ecological variables that 
characterize occupied habitat. These variables 
tend to be combinations of two or more habitat 
measurements; for example, the breeding habitat of 
American woodcock (Philohela minor) might be 
characterized by a single variable expressing the 
presence of fertile soil supporting earthworms, 
vegetation dominated by shrubs or young trees, and 
the nearby presence of forest openings. 



Ecologists should use their best information when 
defining habitat var.iaples. 

Williams ( 1981 ) emphasized the importance of 
equality of covariance matrices in DFA. More 
widespread is the notion, expressed by Klecka 
(1975:435) that DFA "is very robust and these 
assumptions (multivariate normality and equal 
covariance matrices) need not be strongly adhered 
to." Lachenbruch (1975) reviewed several studies 
and concluded that linear discriminant functions 
are satisfactory if the covariance matrices are 
not too different. If they differ considerably, 
then the appropriate technique is quadratic 
discrimination, which employs the unequal 
covariance matrices in the discriminant functions. 
Unfortunately, quadratic DFA requires large 
samples and is itself not robust to nonnormality. 
Most of the work involving DFA and its sensitivity 
to underlying assumptions has focused on the 
misclassification rates of the discriminant 
functions. In ecological studies the 
interpretation of coefficients is also important, 
but little is known of their robustness. 

Principal Components Analysis 

Principal components analysis ( PCA) and 
closely related factor analysis are multivariate 
procedures designed to reduce the dimensionality 
of a data set. The purpose of the reduction might 
be to "stabilize scales of measurements" 
(Gnanadesikan 1977:6) by compounding several 
measurements of a similar nature into a fewer 
number that may be more stable, but I am aware of 
no ecologist who stated this as an intention. 
More ofteq the purpose is for exploratory 
analysis, to screen out of many variables a few 
that are important. Bhattacharrya (1981) provided 
a general introduction to these methods; 
Gnanadesikan ( 1977) compared several methods 
including nonmetric and nonlinear ones. 

Three problems specific to the application of 
principal components analysis in ecological work 
can be identified. First, I see little 
justification for selecting a linear combination 
of variables simply because it maximizes the 
variance within the total set, that is, it is a 
"best" summary. As Holmes et al. (1979) noted, 
one can increase the percentage of variance 
explained by the first principal component merely 
by adding redundant variables to the data set. As 
more and more of these are included, the principal 
components analysis appears better and better, but 
in fact only noise is being added to the system, 
and interpretation becomes increasingly awkward. 
A large percent of variance explained may reflect 
only ignorance in the selection of variables. 

Second, PCA is not always useful in 
discovering the underlying structure of the 
variables. Armstrong ( 1967) presented an example 
involving 11 measures on rectangular boxes of 
various metals. All variables were functions of 
five underlying (and independent) factors: 
length, width, thickness, density and cost per 
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pound. The PCA identified three factors that 
summarized 90.7 percent of the information in the 
original 11 variables. Despite an orthogonal 
rotation, the factors were not easy to interpret 
and the PCA was unable to reveal the rather simple 
basic structure of the data. It would seem 
unreasonably sanguine to expect PCA to be more 
enlightening in a complex ecological system. Karr 
and Martin (1981) presented another example, this 
one pertinent to biological data, that illustrated 
some hazards associated with the use and 
interpretation of PCA. 

Third, there is no reason to assume that a 
principal component necessarily relates to the 
animal or its needs. The . animal could be 
responding to one of the variables that is a minor 
component of all those that were measured. It 
seems more appropriate in most circumstances to 
use regression analysis with some measure of 
population density or "fitness" as the dependent 
variable. Smith 0981) suggested that canonical 
correlation analysis may also be useful in this 
regard. 

In general, PCA offers a convenient way of 
summarizing a data set containing many variables. 
If the ecologist's purpose in measuring those many 
variables is to relate them to the presence/ 
absence or density of a wildlife species, it is 
not obvious that the major principal components 
are the important ones. If most variables were 
selected because of prior knowledge about their 
relationship to the species, then these variables 
are likely to appear in the major components. It 
is conceivable, however, that a minor component 
may be important to the animal, and for this 
reason it is suggested that the species' response 
be examined in relation to each of the components. 
Factor analysis, which essentially deletes minor 
components, would not permit this examination and 
should thus be avoided in initial analyses. 

Canonical Correlation Analysis 

Canonical correlation analysis involves the 
linear relationship of one set of variables to 
another; it has had limited application to 
ecological problems. Smith ( 1981) reviewed these 
applications and discussed the technique and its 
shortcomings. He also provided a useful 
introduction to the literature. My own belief is 
that canonical correlation will continue to play 
only a small role in habitat studies. In addition 
to the reasons given by Smith, viz., difficulties 
in interpretation, large sample size requirements, 
lack of robustness to nonnormality, and assumption 
of linearity, the rationale for the technique 
rests upon the ecologist showing concern for a 
linear combination of "dependent" variables. 
Moreover, the coefficients in that combination are 
not based upon the biologist's intuition or 
interests, but are generated by the technique. 
How does one justify an interest in 2.07 robins + 

0. 16 brown thrashers - 1. 92 chickadees? More 
likely the ecologist has a single dependent 
variable, or set of them, in mind, and univariate 



or multivariate regre:=;~,sio.n is the more appropriate 
method. 

Other Techniques 

Regression has not been specifically 
addressed in this workshop, although it remains 
one of the most popular and powerful statistical 
tools for examining relationships among variables. 
The usual formulation of the regression model, 

Y = a 0 + a 1 X1 + a 2 X2 + •.• + ak Xk +error, 

where the X's are fixed input (or "independent") 
explanatory variables, is not strictly a 
multivariate technique; there is only one random 
variable • the error term. In actual practice, 
however, the X's are not fixed quantities (Johnson 
1981) and the model can be viewed profitably in a 
multivariate light. If several species are to be 
examined in relation to a set of habitat 
variables, multi variate regression appears to be 
the appropriate method. Gnanadesikan ( 1977) 
discussed the method and noted (p. 81) that a 
multivariate viewpoint may be preferable to 
considering each dependent variable separately, 
because of intercorrelations among the dependent 
variables. Unfortunately, most multivariate 
regression work has focused on hypothesis testing 
(the general linear model) rather than model 
building. 

In contrast to their botanical counterparts, 
wildlife ecologists have made little use of 
clustering techniques. Cluster analysis differs 
from DFA (a classification technique) by the lack 
of groups defined ~ priori; the groups are 
essentially defined by the clustering algorithm 
and the user is responsible for providing a 
reasonable interpretation of the resulting groups. 
Cluster analysis differs from ordination in the 
implicit assumption that units fit into neat and 
discrete groups, rather than being arranged in a 
continuum along one or more principal component or 
discriminant function axes. 

Although multivariate techniques can be and 
have been rewarding in habitat studies, ecologists 
should not ignore the simple and powerful methods 
of univariate statistics. Careful analyses begin 
with graphical displays of the data for several 
purposes: detecting outlying observations that 
may be erroneous or would be inordinately 
influential on the analysis; selecting variables 
that appear to be important; checking the 
assumptions underlying particular analyses, such 
as normality; and suggesting appropriate 
transformations of the variables. Valuable 
references on graphical techniques include Daniel 
and Wood ( 1971), who emphasized the use of plots 
for detecting relationships between variables and 
evaluating fitted models; Mosteller and Tukey 
( 1977), who employed graphs both for general 
display and for fitting of models; and Green 
( 1979), who discussed and illustrated many graphs 
useful in ecological studies. Plotting is more 
awkward in the multivariate situation than in the 
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univariate case, but methods are available (e.g., 
Gnanadesikan 1977). Among these are 1) two- and 
three-dimensional scatterplots of subsets of the 
data for studying separation within the sample, 
outliers, general shape and interrelationships; 2) 
probability plots of the observations on each 
response, useful for suggesting transformations; 
3) scatterplots or probability plots onto 
principal components, and others. The longest 
journey begins with a single step. To insure that 
the direction of the trip is appropriate, that 
first step should be graphing the data. 

Transformations 

It is often necessary to transform variables 
in order to meet more closely the assumptions of 
various statistical methods, specifically those of 
normality, constant error variance, and uncor
related errors. Other purposes are independent of 
the statistical properties, such as simplifying 
the relationship between variables or quantifying 
qualitative, count, or percentage data. Trans
formations may also max 1m1 ze the separation 
between groups of observations. 

Univariate transformations have received much 
more attention than multivariate ones; good 
expositions are given by Green (1979:43-54), 
Kruskal ( 1978: 1044-1056), and references they 
cited. Kruskal ( 1978) offered some "clues" that 
suggest a transformation might be in order. 
Variables that approach an intrinsic boundary may 
be candidates for transformation; examples are 
percentages that closely approach 0 or 100 percent 
or correlation coefficients that come close to +1. 
A nonnormal distribution can be detected -by 
plotting observations on normal probability paper 
or by graphical procedures available in SAS (SAS 
Institute Inc. 1979) and other statistical 
packages. Non constancy of variance can be 
statistically tested for, but graphical procedures 
are more informative. Plots of residuals from 
fitted models may be made to suggest the presence 
of correlated error terms. Plots not only 
indicate the need for transformations, they also 
point out possible outlying observations. These 
may be data errors or at least data points more 
influential than the others. 

The choice of an appropriate transformation, 
once one is recognized as necessary, is not quite 
as confusing as it might seem from the variety of 
those available. In many situations the choice 
can be made from theoretical considerations, such 
as the arcsine transformation for binomial data. 
In other situations a sui table selection can be 
made by examining the data; for example, the well 
known Box and Cox (1964) power transformation 
is a family of transformations indexed by a 
parameter that is itself estimated from the data. 

Less guidance is available for 
transformations of multi variate data sets. This 
is unfortunate, because multivariate situations 
may require transformations more often in order to 
use familiar and simple analytic methods (Machado 



1976). The choice of models in multivariate 
situations is more ,limited due to the general 
dependence on strict 'normality. The simplest 
approach to multivariate transformation is to 
treat each variable separately; this is likely to 
be a good first step at least. As Dunn ( 1981) 
noted for normalizing transformations, marginal 
normality does not insure multivariate normality, 
but the exercise is harmless at worst and is often 
quite adequate. Andrews et al. (1971) and Machado 
(1976) generalized the Box and Cox transformation 
to the multivariate case, and Dunn (1981) extended 
it to cover situations with more than one sample. 

Transformations are often useful for 
obtaining stricter compliance with certain 
assumptions of statistical analysis. My own 
experience has demonstrated little advantage from 
analysis of transformed, as opposed to 
untransformed, data. Careful design to insure 
randomness overcomes many problems with correlated 
errors, and reasonably large and well-balanced 
samples mitigate the effects of nonnormality and 
nonhomogeneous variance (Green 1979: 165). 
Transformations are advised, however, if they will 
clarify relationships or if the statistical 
assumptions are obviously violated. It certainly 
will not hurt to analyze the data both 
untransformed and transformed, and judge which 
analysis is superior. 

NONLINEAR RESPONSE FUNCTIONS 

It seems generally agreed that a species 
responds to an environmental variable, or to a 
gradient, in a nonlinear fashion. The form of the 
function coul.d be normal, or of another symmetric 
shape, or it could be asymmetrical but unimodal, 
or it could even be bimodal. But it is nonlinear. 
Despite this wide acknowledgment, relatively 
little has been said about the effect of 
nonlinearity on the results of multivariate 
analysis (Westman 1980). 

I wonder if we are like the several blind 
men, each touching a different part of an 
elephant, and reaching widely discrepant 
conclusions about the total shape of the animal. 
Suppose, for example, that a species responds to 
an environmental variable X as shown by the 
symmetric curve in figure 1. An investigator 
studying values of the variable only in region A 
would conclude that the species responds favorably 
to the variable; it is an "increaser." A study in 
region C would lead to just the opposite 
conclusion, while a study in region B would 
probably find that the species did not correlate 
at all with the variable. All conclusions are 
correct, and yet all are wrong. Even a study 
involving the full range of the variable, regions 
A plus B plus C, would detect no linear 
association. 

A possible example is that of Converse and 
Morzuch ( 1981), who found that hare activity was 
correlated positively with the number of hardwood 
trees on one of their study areas, while the 
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Figure 1. The nonlinear respons~ of a species to 
an environmental gradient X. 

correlation with hardwood trees was negative in 
the other area. 

In regard to discriminant analysis, Green 
(1971:544) suggested that a nonlinear response 
function might not be troublesome, because 
"species are groups separated in ecological space 
by linear additive functions of ecological 
parameters, rather than dependent variables 
supposedly related to the ecological parameters in 
a linear additive manner." I am not convinced 
that there is no difficulty, at least in some 
applications. Suppose, referring back to the 
response curve (fig. 1), that we form two groups: 
species Y present, and species Y absent. We want 
to distinguish these groups on the basis of their 
value of X. Most X values in regions A and C 
would fall into the species absent group, \-lhile 
region B would donate mostly species present. But 
it is evident that average values of X in the two 
groups might be very similar, even identical. For 
example, if the species is a mesic one and X 
represents a moisture gradient, then some sites 
might be too dry and others too wet. There are 
thus two groups in which the species is absent, 
and they differ more from each other than they do 
from the species present group. In higher
dimension space the problem only gets worse. 
Quadratic discriminant functions are theoretically 
applicable to such situations, but separating 
groups on the basis of variance when means are 
similar is tenuous at best. 

In principal components analysis, or factor 
analysis, two problems related to nonlinearity 
occur. First, the methods produce linear 
combinations of the variables; if a nonlinear 
function is a better summary of the data, we will 
not detect it by the usual methods, although some 
nonlinear techniques have been developed 
(Gnanadesikan 1977). Second, if a species 
responds nonlinearly to a principal component, we 
had better be alert if we want to detect it, e.g., 
by plotting species responses against each 
component. 

Nonlinear response functions can be detected 
by graphical tools and can be treated 
appropriately by nonlinear regression models (cf. 



Boyce [1981], who el~minated from analysis a 
variable with a recbg,Flized nonlinear effect). 

We must be particularly careful about 
nonlinearity when presenting our results to 
resource managers, who look assiduously for the 
"bottom line": What can a manager do? He might 
be told that opening up a closed forest yields 
more woodpeckers. He also needs to be told that 
this practice works only up to a point: complete 
elimination of trees will certainly have the 
opposite effect. We must remind him, and 
ourselves, that a management activity is like 
aspirin: just because two pills are good for us, 
it does not follow that four are twice as good, 
and a whole bottle is ideal. 

STATISTICAL ASSESSMENT 

I now turn to the question of how we might 
assess the statistical properties of habitat 
analyses. As a statistician, I am frequently 
appalled by the small sample sizes reported in 
many studies, particularly those involving large 
numbers of variables. Small samples of a complex 
system cannot support sound conclusions. 

We are taught early in our statistical 
training to look, not only at the mean of a 
distribution, but also at its variability. In 
many published studies, however, we see species 
means plotted on axes of principal components or 
discriminant functions. Relatively few 
investigators mention the variation about those 
means; the . few who have done so were very 
informative. 

Conner and Adkisson ( 1977) plot ted means of 
principal components for five species of 
woodpeckers; niche separation was shown among the 
species. When values for individual birds were 
plotted, however, they exhibited more overlap than 
might have been expected. Raphael (1981) also 
found considerable overlap among species on 
discriminant axes. Similarly, Smith's ( 1977) 
analysis of summer birds along a moisture gradient 
showed clear separation of 1% confidence regions 
for the means of eight species on two principal 
component axes. When plotted on the discriminant 
function representing a moisture gradient, 
however, values for individual birds of five 
species were scattered throughout, and relatively 
minor separation was evident. Researchers should 
meticulously examine the variability among 
animals. 

Too little attention is given to annual 
variation in bird populations, fluctuations that 
take place seemingly without regard to habitat 
conditions, and certainly without regard to the 
unfortunate ecologist who is trying to determine 
relationships between habitats and populations. 
Ornithologists familiar with long-term studies can 
document the magnitude of this variation (e.g., 
Lack 1966, Wiens 197?), and I strongly suspect 
that it impacts habitat analysis. Rice et al. 
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(1981) illustrated this problem nicely; 
discriminant functions developed from one year's 
data had few successes at predictions during the 
next year. 

The use of stepwise procedures is viewed by 
many statisticians as a "fishing expedition." The 
standard significance tests are invalid (Draper e~ 
al. 1971, Pope and Webster 1972, Rencher and 
Larson 1980) and results are questionable, 
particularly in the usual situation of numerous 
variables. Automated computer procedures are no 
substitute for careful biological reasoning. 

I believe that the appliqation of robust 
statistical methods will offer considerable help 
in habitat analysis. McDonald (1981) gave details 
and references to the literature. Harner and 
Whitmore (1981) exemplified these methods and some 
internal validation tools, such as the jackknife 
and leaving-one-out procedures. In multi variate 
situations, applications of robust methods thus 
far have been primarily the treatment of one 
variable at a time (Gnanadesikan 1977: 136), but 
this is likely to change in the near future. 
Particularly appealing is robustness of result 
with respect to method. If the same general 
conclusions are reached through the use of several 
different methods, each resting upon a somewhat 
different set of assumptions, we should feel more 
comfortable about the validity of those 
conclusions (Green 1977:14). 

Validation is an important final product of 
an analysis. Whitmore (1977:263) stated that "the 
validity of ordination work can be tested by 
subsequent field observation." I agree, but such 
testing is rarely done. Noon and Able ( 1978) 
applied their discriminant functions for thrushes, 
developed for five species on Mount Mansfield in 
Vermont, to the two species occurring in the Great 
Smoky Mountains in Tennessee and North Carolina. 
They found little predictive ability. 

The validation of models is particularly 
important if we are to present them to resource 
managers for their use. The need for caution on 
our part is obvious. In statistical parlance, 
management is really control, which is farther up 
the methodological ladder than description, 
inference, and prediction. As ecologists, our 
abilities on the lower rungs are as yet unproven. 

A question that is rarely raised: What is 
the universe to which our results are to pertain? 
If it is a single study area, in a single year, 
with the measurements we have observed, there is 
no problem. If we want to generalize, let us be 
careful. Our study area must be representative of 
the area we want to extrapolate to, similarly the 
year, and the habitat. Noon and Able ( 1978) and 
Converse and Morzuch ( 1981) described how naive 
application of results from one area to another 
could be erroneous. 

I see a clear need for experimentation. As 
observers of (more-or-less) natural populations of 
wild animals that do as they please, our options 



her~ are unforunately limited. But they are not 
curtailed. Is th~re a role for removal studies 
such as Stewart and ~ldrich (1951) performed? An 
area which was repopulated soon after birds ~ere 
removed would -exhibit more of whatever the birds 
need than would an area that remained vacant. 
Habitat manipuiation is another poss.ibility. Some 
.imaginative thinking might produce very valuable 
exper"iment"s to . test the. res"ul ts we obtain from . 
multi variate analysis of passive and uncontrolled 
observations. 

MANAGEMENT APPLICATIONS 

Multi variate analysis has been suggested as 
an important and useful tool in the management of 
habitats (e.g., Lennartz and Bjugstad 1975, Conner 
and Adkisson 1976, Evans 1978, Noon and Able 1978, 
Niemi and Pfannmuller 1979). It promises enhanced 
ability to examine a multitude of variables at 
once, just as a resource manager manipulates a 
multi tude of habitat variables with the swing of 
an ax or the drop of a match. Clear~utting a 
forest does not merely change the standing biomass 
of trees, it also affects stem counts, ground 
cover, litter, and a host of other measurable 
features: clearly a multivariate situation. 

Again, I must sound a cautionary note. Are 
we looking at the right variables, and are we 
confusing association with causation? Consider 
the following paradigm. An action A, which may be 
either a natural phenomenon or a specific 
management activity, causes certain effects, 
denoted x1, x2 , Xn, upon the environment. 

One of these environmental effects, say x1, in 

turn triggers a population response by a 
particular species, Z. Suppose we are observing 
the phenomenon, and record many of the 
environmental variables, but not x1, and we record 

the response of species Z. Our analysis would 
show a relationship between the X's and Z; a 
multivariate analysis might reduce the set of X's 
to a smaller set of principal components, or 
discriminant functions, that also relate to Z. In 
truth, however, these associations are all 
spurious; the real associ at ion involves the 
"lurking variable" x1, which correlates with the 

other X's and causes the response by species Z. 

Even if we are clever enough to measure X1 

along with the other X' s, the true relationship 
between x1 and Z is almost certain to be clouded 

by the plethora of other variables. This paradigm 
is certainly not new; we have all been exposed to 
it in one form or another. But I believe we need 
to remind ourselves of it regularly; I am deeply 
concerned about the soundness of management 
recommendations based upon associations that are 
interpreted a$ causations. 
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The analysis may not always be misleFtding. 
In the paradigm just presented we might conclude 
that a particular configuration of X values is 
conducive to good numbers of species Z. The way 
to reach that X-configuration is by applying 
action A. This advice will work. Action· A 
affects variable x1, which in turn results in an 

increase 6f species 1. 

But suppose there are other ways to obtain 
the desired configuration of X values without the 
appropriate value of x1. Then that management 

action, even though it succeeds in producing the 
"correct-appearing" habitat, will fail to increase 
species Z. 

As an example, fire produces certain effects 
in North Dakota grassland habitats, including 
removal of most standing vegetation and reduction 
of litter. The effects of the fire in turn 
produce a response by shorebirds; killdeer 
(Charadrius vociferus), marbled godwits (Limosa 
fedoa) and upland sandpipers (Bartramia 
""iOrigicauda) come to the burned areas to forage. 
Some range ecologists claim that appropriate 
regimens of cattle grazing will produce habitat 
changes similar to those caused by fire. Grazing 
could in fact produce similar measurements on a 
variety of vegetative parameters. But the 
shorebirds do not seem to respond in the same way 
to grazing as they do to fire. They must be keyed 
into one or more of the "lurking variables." 

Other examples might contrast the effects of 
forest fires to those of clear~utting, natural 
food supplies to artificial feeding stations, or 
natural pest control versus chemical control. 

Rice et al. (1981) also pointed out how 
management practices directed toward one season 
can have possibly unintended and undesirable 
ramifications during other parts of the year. 

Where we cannot design experiments freely, 
select optimal levels of variables at will, and 
replicate as often as we desire, we must be 
reserved about our findings. If management 
practices are adopted as a result of a 
multivariate habitat analysis, a thorough 
evaluation should be designed and conducted to 
determine if predictions from the proposed model 
are accurate and the model thereby remains 
tenable. 

CONCLUSIONS 

Multivariate analysis has been claimed to be 
useful in studies of wildlife and their habitats, 
despite the fact, clearly pointed out in this 
workshop, that the assumptions of the various 
methods are largely unmet. I see two possible 
explanations for this seeming inconsistency. The 
first is that biologists might be reporting the 
results of sophisticated multi variate techniques 
only when they are in accord with their biological 



intuition, previous kpowledge, or results of 
simpler univariate,: an~lyses. A technique that 
produces conclusi'or{is in conflict with other 
knowledge may be rejected as inappropriate. If 
this is the case, then the multi variate methods 
~re not truly useful; they only lend an appearance 
of further credibility to conclusions already 
reached fr.om other directions. 

A second possibility is that the multivariate 
methods might actually be more robust than is 
recognized. They may yield generally correct 
answers despite rather flagrant violations of 
their assumptions. Statisticians could be looking 
at finer detail than biologists do when they 
evaluate multivariate methods. A technique can be 
biased, of low power, inefficient, and defective 
in other statistical ways, but still provide 
va~uable insight into the biological problem. One 
might define a technique to be useful if it 
produces more nearly correct answers than would be 
available without it. 

It is for statisticians and biologists to 
work together in determining how useful various 
techniques are, relaxing assumptions that may not 
be critical, and designing studies to meet the 
assumptions that are truly needed. The papers and 
discussions have given a real stimulus to further 
cooperative efforts, and they will furnish 
guidance to researchers for many years to come. 
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DISCUSSION 

E. JAMES HARNER: I disagree that multi variate 
analyses are almost always just exploratory. The 
jackknife and bootstrap techniques offer rather 
robust ways to make statistical inferences. 

DOUGLAS JOHNSON: Multivariate techniques 
certainly can be used for inferential or, as I 
termed it, confirmatory research. As they are 
usually employed in wildlife-habitat studies, 
however, their proper role is exploratory. 

JAKE RICE: From your figure it seemed that you 
pointed out that nonlinearity was a major problem 
in PCA, and you were talking largely about 
nonlinear responses of species (say abundances) to 
the environmental gradient represented by the 
principal component. Does not that sort of 
nonlinearily show up by simply graphing abundance 
against PCA scores? In that sense nonlinear 
responses are no more problem than in any 
univariate study where a species may also have a 
nonlinear response to any measure of an 
environmental attribute, ana-rlonlinear regression 
methods are readily available. Is not the 
nonlinearity problem in PCA (and other multi
variate techniques) one that the variables used in 
the PCA (say several environmental or habitat 
measures) may be interrelated in nonlinear ways? 

DOUGLAS JOHNSON: You are correct on all counts. 
Nonlinearity of response is a potential problem 
whether the technique be univariate or multi
variate. Nonlinearity can be examined by simple 
graphing, as you suggest and as I heartily 
recommend. A further difficulty with multivariate 
techniques, particularly principal components 
analysis, is nonlinear relationships among the 
explanatory (in our case, habitat) variables. If 
the relationships are present and strongly 
nonlinear, then the best linear combination of 
habitat variables may not be very good at all. 

CHARLES SMITH: What is meant by "robustness"? 

DOUGLAS JOHNSON: Robustness generally means 
insensitivity to violation of the assumptions of a 
technique. It has been further refined (Mallows, 
C.L. 1979. Robust methods--some examples of 
their use. American Statistician 33: 179-184) to 
incorporate three concepts: 1) resistance-
insensitivity. to a moderate number of bad values 
and to inadequacies in the model; 2) smoothness-
a characteristic of a technique in that it 
responds only gradually to the introduction of a 
few errors; and 3) breadth--the extent to which a 
technique can be applied in a wide variety of 
circumstances. A technique is called robust if it 
yields at least approximately correct answers 
despite having its assumptions not fully met. 



RANDOM NUMBERS AND PRINCIPAL COMPONENTS: 

FURTHER SEARCHES FOR THE UNICORN?I 

James R. Karr2 and Thomas E. Martina 

Abstract.--Analysis of biological data with an array of 
multivariate procedures has increased in recent years. While 
these powerful tools have considerable potential for 
producing more rigorous biological conclusions, they are 
subject to misuse. We have analyzed real biological data and 
random number matrices using principal components analysis 
(PCA) and have shown that: 1) percent of variation accounted 
for may be similar for both, especially for the second and 
higher principal axes; 2) loadings of the original variables 
on principal axes are often as high as those for real data; 
and 3) matrix size is an important determinant of amount of 
variation extracted by PCA. The relevance of these and other 
points is discussed in light of the need for more objective 
grounds for the interpretation of PCA. 

Key words: Bird/habitat relationships; principal 
components analysis; random numbers; sphericity test. 

INTRODUCTION 

This volume on multivariate statistics and 
wildlife habitat is the most recent in a series of 
publications demonstrating the power and value of 
multivariate procedures in analysis of ecological 
data. But, like so many other tools and/or dogmas 
in the ecological sciences, we feel it is 
necessary to reflect a bit on the potential for 
misuse of these "new" procedures. We urge caution 
in the use of one of the hottest i terns in the 
arsenal of multivariate procedures--principal 
components analysis (PCA). 

Many researchers have used this procedure in 
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the past decade for its major intended purpose--to 
reduce the complexity of multivariate data to a 
more manageable set of compound variables. This 
is not without some danger as no testing 
procedures are commonly used to allow measurement 
or evaluation of the significance of results 
generated by use of principal components analysis. 
Interpretation of pattern has commonly been based 
on relatively subjective grounds. 

TWO DATA SETS 

Our objective was to compare results of PCA 
on a matrix of real biological data with results 
from analysis of a random number table of the same 
dimensions. The size of data matrices used for 
analysis of bird/habitat relationships varies 
significantly among studies. For illustrative 
purposes we selected a matrix size of 10 x 24 
because of an early use of PCA in bird/habitat 
literature ( 10 vegetation variables and 24 bird 
species). (Throughout this paper we refrain from 
citing specific studies. The questions we raise 
here are directed generally rather than at any 
particular study.) 



Table l. Percent of variation accounted for by 
the first three principal components for two 10 
x 24 matrices. , · 
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Figure 1. Distributions of loadings of original 
variables for principle axes I, II, and III for 
real biological data and random numbers (10 x 24 
matrix). 
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For the real data matrix, 85% of the total 
variance was accounted for by the first three 
principal axes (table 1). However, use of PCA on 
an equivalent-sized matrix of random numbers 
extracted 53% of the variation in the first three 
components. Amount of variation accounted for in 
the real data was clearly very high, but it is 
instructive to view the situation from the 
opposite perspective. The percent of variation 
accounted for in a random number table was well 
above that which might be expected by the naive 
reader. A greater percentage of variation was 
accounted for by the first component for real data 
than for random numbers, but the second and third 
components accounted for similar amounts of 
variation in both real and random number matrices 
(table 1). 

These results might tempt the reader to argue 
that loadings of original variables on the 
principal components must be much lower in the 
random numbers than the real data. This, it 
turned out, was not the case (fig. 1). Factor 
loadings had approximately the same maxima in the 
two matrices. We believe that most biologists 
would be able to generate a plausible post facto 
biological explanation of the high loadings in the 
random numbers for each of the three principal 
axes. 

Although the maximum loadings of the original 
variables were about the same across the three 
principal axes for random and real data, the array 
of loadings over the ten variables was different 
for the first axis (fig. 1). Loadings for the 
random number and real data matrices were more 
similar in subsequent principal components. These 
results were due presumably to correlations among 
variables. The correlations among variables for 
real data include a greater number of high 
correlations than for random numbers (fig. 2). 
These high correlations allow the first component 
to account for a greater percentage of variation 
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Figure 2. Distribution of correlations among 
original variables for real biological data and 
random numbers (10 x 24 matrix). 



Tabl;e ,.2.' Percent of variation accounted for by the first three principal 
components for real and random number (in parentheses) matrices of the 
same dimensionality. The real data examples are from published studies 
using principal components analysis. 

Percent of variation by component 

Matrix size I II III Cumulative 

6 X 56 - 33(23) 22(20) 18(18) 73(61) 

7 X 5 45(44) 23(28) 11(18) 79(91) . 

8 X 21 46(27) 17 (20) 10( 17) 73(64) 

10 X 24 57(25) 16(14) 12(14) 85(53) 

10 X 46 65 ( 18) 12(16) 12( 16) 85(50) 

15 X 15 -*(22) --(16) 11(13) 58(51) 

* (--) indicates not available in original publication. 

in real data. Thus, real data are more 
ellipsoidal in multivariate space than are random 
data which tend to be more spherical. 

How, then, can we develop some confidence in 
the typically post facto explanations generated 
when real data are analyzed? As a first step, we 
suggest th~t authors and readers carefully 
interpret the percent of variation accounted for 
in a PCA by comparing the results with those 
obtained from a random number matrix of equal 
dimensions. One possibility might be a table of 
expected amount of variation accounted for by 
random nuinber matrices that could be used as ·a 
test relative to the amount of variation accounted 
for in real data. Another possibility is the 
sphericity test described by Pimentel (1979). 
This procedure tests the equality of components. 
When three or more axes are of similar length, 
they define a sphere in which axes are arbitrarily 
placed. Thus, components may be uninterpretable 
when they are equal. Finally, there are other 
tests available when analysis is based on the 
covariance matrix. For instance, the equality of 
a vector based on biological data and a 
theoretically derived vector can be tested 
(Pimentel 1979). However, since most biological 
PCA's have been based on correlation matrices, we 
confine discussion to these analyses. 

The sphericity test simply tests the 
homogeneity of the last p - k factors, where p is 
the total number of factors and k is the first k 
factors not being compared. The homogeneity of 
the second and third factors can be tested if the 
first three factors are transformed by subtracting 
the mean eigenvalue of the last p - 3 factors. 
Analysis of results from the 10 x 24 matrix (table 
1) with the sphericity test shows that the second 
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and third axes are equal for real data (x 2 = 
0. 604, P > 0. 05). Thus, real data appear to 
exhibit a primary ellipsoidal pattern (axis 1) but 
not in subsequent axes, so interpretation of axes 
2 and 3 may be invalid. 

OTHER MATRICES OF BIOLOGICAL DATA 

We selected several published studies to 
illustrate the similarity of results from real and 
random number data. Much variation is explained 
by random number matrices relative to real data of 
the same dimensions, especially in situations with 
few variables (table 2). These results lead us to 
urge caution in using PCA for small matrices, a 
proviso on sample size similar to that for normal 
univariate statistical procedures. 

As in the earlier example, the trend for a 
greater difference in the first axis but similar 
results for the second and third axes of random 
and real numbers seems to apply across a variety 
of matrix sizes (table 2). However, note that 
although the percent of variation accounted for in 
the real and random data is similar for the second 
and third axes, this is partly due to the first 
component of real data accounting for a greater 
percent of variation than in random numbers. This 
leaves less variation to be accounted for by the 
second and third components in real data. Real 
data account for a greater proportion of the 
remaining variation than in random data for large 
matrix sizes. For example, in the 10 x 46 matrix, 
the proportion of remaining variation accounted 
for by the second (real - 34%; random - 20%) and 
third (real - 52%; random - 24%) components is 
higher for real data. However, for the 7 x 5 
matrix, the proportion of remaining variation 
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Figure 3. Cumulative percent of variation 
accounted for in principle component analysis of 
random number tables of various sizes. 

accounted for by the second (real - 42%; random -
50%) and third (real - 34%; random 64%) 
components is greater for the random data. While 
the pattern is of interest, we know of no 
statistical procedures that can be used to test 
its significance. At the least, the pattern 
emphasizes the need for caution when using PCA on 
small matrices. 

Even if the second and third components 
explain a greater proportion of the remaining 
variation in real data than in random numbers, it 
may be difficult to apply biological interpreta
tions to these axes if they are equal. The 
sphericity test indicates that the second and 
third components are not significantly (P > 0.05) 
different in any of the studies in table 2. One 
is tempted to conclude that, in bird/habitat data, 
the first axis reflects the presence of a primary 
ellipsoid while subsequent axes are nearly as 
spherical as a random numbers matrix of the same 
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dimensions. If this is true, interpretations of 
components subsequent to the first may be invalid; 
at the least, they should be tested by the 
sphericity test before they are interpreted in 
great detail. 

THE EFFECTS OF MATRIX SIZE 

Obviously, the amount of variation explained 
from random numbers varies with number of derived 
axes since 100% of the variation must be extracted 
from a number of axes equal to or less than the 
number of variables in the analysis. For example, 
a matrix of 10 vegetation variables with 24 bird 
species must yield 100% variati..on in 10 or fewer 
axes. Typically, all variation is extracted with 
fewer components than variables. When there are 
few variables, the problem becomes especially 
critical (e.g., 89% on the first three principal 
axes in a 4 x 12 matrix; fig. 3a). 

Similarly, when the number of variables is 
held constant but the number of cases varies, the 
percent of variance accounted for declines with 
increasing matrix size (fig. 3b). Note also that 
variability among random number matrices of the 
same size is rather small (fig. 3b). 

DISCUSSION 

We must emphasize that our purpose is not to 
convince the reader to avoid using principal 
components analysis. Rather, we hope to inspire 
more critical evaluation of the uses and misuses 
of PCA. When the amount of variation accounted 
for from an axis or set of axes is similar to the 
amount from random numbers, we question the 
biological validity of interpreting those axes. 

Canonical correlation (CanCorr) analysis is 
similar to PCA in its analytical procedures except 
that CanCorr is developed to analyze the 
relationship between two data sets. In addition, 
CanCorr includes a test of significance of the 
canonical variates. We have applied the test to 
random number matrices of a variety of sizes; no 
significant (P > 0.05) canonical variates were 
found. Most biologists would probably not try to 
apply biological interpretations to such results. 
Use of a similar decision-making process is needed 
in the use of PCA. 

Finally, we note that similar results from 
principal components analysis of random and real 
data do not necessarily mean that biologically 
important relationships are not present. However, 
it is important to use sound biological judgment 
in the interpretation of the results. The final 
test of the procedure in any circumstance is the 
biological insight developed. That is, the 
results of PCA should not be used simply for post 
facto interpretations, but rather to aid 
researchers in generating reliable predictions and 
viable hypotheses which are testable with 
additional research. 
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DISCUSSION 

JAKE RICE: In defense of the use of these 
methods, in this case PCA, I can at least say that 
the field of statistical ecology has progressed to 
the point where one usually cannot get a paper 
published just by doing a PCA on a data set and 
writing up the result. If the factor loadings 
make biological sense, like Smith's forest 
moisture gradient (Smith, K.G. 1977. Distri
bution of summer birds along a forest moisture 
gradient in an Ozark Watershed. Ecology 58: 
810-819), then one has some results to work with. 
If the loadings and the scores do not make sense, 
one goes back, or should go back, and look hard at 
the system; obviously one's understanding (and 
data base) of the system are incomplete. 

If you also randomly assigned habitat names 
to "variables" and site names to "samples," in 
your random matrix; factored it; and could put a 
plausible biological explanation on the results, 
then I would be surprised. 

JIM KARR: Many users of PCA and other multi- . 
variate procedures have progressed beyond the 
"fishing expedition" approach but others have not. 
The questions posed in this paper are· directed 
toward both groups--primarily as a caution about 
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interpretation and use of results. They should 
not be construed as suggestions to avoid the 
procedures and the new insights they can produce 
if used wisely. A problem inherent in PCA is the 
lack of objective statistical tests to determine 
the significance of the patterns which "make 
sense." Note that both statistical and biological 
significance are of concern; they may not be the 
same. 

We clearly disagree with your final point. I 
am confident that most biologists could generate 
plausible "post-facto" explanations for high 
loadings after randomly assigning habitat names to 
the "variables" in random number tables. The 
small sample of examples that I have seen clearly 
demonstrate the ingenuity of biologists in that 
regard. 

CHARLES SMITH: We typically assume that there is 
a pattern of some kind; and when none is detected, 
we question the validity of the techniques. What 
if the most easily detected pattern is one in 
time, not space, and the spatial case is not 
detectably different from a random pattern, in the 
absence of a time-series sample? 

JIM KARR: This is a real problem. Indeed, I have 
fallen into that trap myself. After one year of 
study in forests in Panama, I concluded that 
individuals and species moved extensively among 
microhabitats in lowland forest. Long-term data 
show that to be true but the subtlety of habitat 
selection is exceptional. The use of specific 
microhabitats varies between seasons and years in 
ways that are quite predictable from knowledge of 
environmental conditions (wet vs. dry dry season) 
at the time. Lumping of data for many kinds of 
statistical analysis can result in the error you 
mention (i.e., assuming a lack of pattern when a 
pattern, in fact, exists); that simply reinforces 
the point that statistical analyses should always 
be guided by biological knowledge (insight). 
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RATIONALE AND TECHNIQUES FOR SAMPLING 

AVIAN HABITATS: INTRODUCTIONI 

James R. Karr2 

Three more or less aistinct (but overlapping) 
stages might be recognized in the development of 
studies of avian habitats. The first "Catalog 
Stage" began with efforts to identify birds and 
determine their phylogenetic and biogeographic 
affinities. Habitat descriptions were generally 
cursory and nonquantitative. For example, the 
monumental Manual of Neotropical Birds (Blake 
1977) describes the habitat of the red-tailed hawk 
(Buteo jamaicensi s) as "Mainly woodland and 
semi open country • " 

During the second "Natural History Stage" 
scientists were interested in general biology or 
natural history of species: nest type and 
location, food habits, clutch size, incubation 
period and general habitat were of primary 
interest. Few efforts were made to provide 
quantitative· information on avian habitats; the 
main focus was the bird itself. The classic works 
of Nice ( 1937) on the song sparrow and Skutch 
(e.g. 1969) on neotropical birds are examples 
which focus on the natural history of birds, 
including nonquantitative studies of their 
habitats. 

In the third "Ecology of Habitat" stage 
emphasis shifted to interest in both the birds 
(often as communities) and their habitat 
(vegetation type). The importance of foliage 
structure in determining avian use of habitat has 
long been recognized (Merriam 1890, Gtinnel 1917, 
Lack 1937, Pitelka 1941, Kendeigh 1945, Svardson 
1949). The first quantitative and graphical 
demonstration that vegetation of increasing height 
and complexity typically supports increasingly 
diverse avifaunas was provided by MacArthur and 
MacArthur ( 1961). Many refinements of this 
approach have been developed in the past two 
decades. Some are appropriate for consideration 

1 Paper presented at The use of multi variate 
statistics in studies of wildlife habitat: a 
workshop, April 23-25, 1980, Burlington, Vt. 

2 Professor, Department of Ecology, Ethology, 
and Evolution, University of Illinois, 606 E. 
Healey, Champaign, IL 61820. 
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of single species, while others are more 
appropriate for community level studies. 

Increased emphasis on quantitative approaches 
to the study of avian habitats has precipitated 
some innovative uses of quantitative methods. Use 
of information theory was pioneered by Robert 
MacArthur and has continued with the work of 
others ( Recher 196 9, Karr and Roth 1 971 , Blonde 1 
et al. 1973) . Other efforts to demonstrate a 
relationship between foliage height diversity and 
bird species diversity have been less successful. 
Some failed because of inappropriate measures of 
habitat structure. Others failed in habitats 
where the rules of plant geometry and distribution 
are different. For example, foliage volume is 
important in some situations (Sturman 1968, 
Laudenslayer and Balda 1976), while life form 
diversity of plants is more important in others 
(Tomoff 1974). Further, precision of 
relationships between habitat structure and avian 
diversity is often less precise when narrow ranges 
of habitat structure are examined (Lovejoy 1974, 
Willson 1974). 

An array of multi variate statistical 
procedures also are being used in studies of 
bird-habitat relations. In general, these 
techniques (principal components, discriminant 
function analysis, reciprocal averaging, canonical 
correlation) have the attribute of reducing many 
variables to a small set of complex variables. 
Other attractive features include easy development 
of graphical presentations and studies of how 
variation in one variable affects birds when other 
variables are held constant. 

Multivariate methods are not without 
problems, however. First, like most univariate 
methods, they are merely descriptive procedures. 
They are essentially correlation techniques and 
cannot be used to determine casual (ultimate or 
even proximate) relationships between birds and 
their habitats. Although complex data 
transformations result from use of multi variate 
procedures, it is not always clear how to extract 
biological (vs. statistical) meaning from these 
correlations. Further, the caution that ecology 
is the art of describing the obvious is also 



relevant. There is a tendency to use multivariate 
methods to demonstrat~ phenomena which are already 
obvious from univar~ate.studies. The true test of 
a procedure is its ability to generate new 
predictions about biological phenomena, to go 
beyond the obvious. Application of multi variate 
methods cannot substitute for in-depth 
consideration of the biology of the organisms 
under investigation. Careless use of these 
procedures has stimulated one biologist to comment 
that so much mathematical formality combined with 
so much ecological casualness is puzzling (Beals 
1972). 

THE DEFINITION OF HABITAT 

Use of the concept of habitat by a single 
investigator (and among investigators) is often 
inconsistent (Karr 1980). At least three major 
meanings of habitat commonly can be discerned: 

1. Habitat = vegetation type (grassland, 
forest, etc.). 

2. Habitat = the living and non-living 
surroundings of an organism. 

3. Habitat = specific horizontal (vegetation 
configuration) or vertical (twig angle, 
leaf density, etc.) components of 
vegetation structure. These are often 
referred to as the microhabitat of the 
species. 

Obviously, it is not possible to address all 
of these and other difficulties involved in the 
analysis of avian habitats in a few short papers. 
However, the papers that follow outline many of 
the problems ~nd propose some innovative solutions 
as guides for the future. Presentations are 
organized around three major questions: 

1. Why do we measure habitat? 
2. What habitat variables should be 

measured? 
3. How do we measure those variables? 

The "why" question must generally be answered 
first. The answer will place constraints on the 
"what" question (and so on to the "how" question). 

THE "WHY" QUESTION 

In addressing this question Rotenberry 
provides the simple answer: It works. He argues 
that it works because habitat forms the background 
upon which all adaptive patterns are expressed. 
Further, it works for a wide range of studies. 
Successes using the babitat approach include both 
basic and applied objectives; single species, 
several species, or entire communities. The need 
for quantitative habitat assessment is especially 
critical in efforts to preserve endangered 
species. Since the type of "why" question helps 
define approach, sampling protocols, and nature of 
data analysis in any study, dealing with the "why" 
question is an important first step. 
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THE "WHAT" QUESTION 

Since not all relevant parameters can be 
measured in any study, researchers must restrict 
the "what" to strike a balance between time and 
money constraints and the need of a sound research 
design with high probability of developing useful 
conclusions. Exact variables to be measured, as 
well as how precisely they will be measured, vary 
with study objectives. The emphases of the two 
contributions here are toward theoretical and 
applied considerations. In the applied situation, 
a reliable correlation between a habitat variable 
and avian patterns of interest may often be 
sufficient for management decisions. Whitmore's 
presentation makes the point th~t sound research 
design directed toward a distinct management 
objective can yield results of major significance 
for management to enhance wildlife populations. 

In a theoretical context, it may be more 
important to understand the causal links relating 
habitat and avian species or communities. Thus, a 
theoretician may need to sample insect (or other 
food) abundances in space and time to understand 
complex relations between physical environment, 
vegetation structure, food supply, and avian 
habitat use. This more complex picture may be 
necessary for a rewarding exploration of 
ecological and evolutionary causes of patterns in 
avian species and communities. In addressing this 
question, Holmes outlines examples to show the 
need for more rigorous procedures in determining 
which habitat variables should be measured. He 
argues strongly for the need to consider natural 
history of the study organism(s) in determining 
variables to be measured. Based on this 
principle, he outlines several difficulties with 
current approaches and cautions that more detailed 
and precise information is needed before truly 
scientific management can be accomplished. 

THE "HOW" QUESTION 

The answers in a specific case to the "why" 
and "what" questions narrow the options in the 
"how" question. In some cases, superficial 
(perhaps even nonquantitative) measures of very 
general factors are all that is required; in other 
cases, detailed and comprehensive measurements may 
be necessary. Both biological and statistical 
constraints must be kept in mind at this stage. 
Noon's extensive experience with sampling avian 
habitats leads him to propose a variety of 
specific protocols for use in several circum
stances. His proposals are a valuable mix of 
techniques which have proved successful for a 
number of researchers. He calls for efforts to 
standardize some procedures to facilitate 
comparisons among studies. While there is some 
merit to this point, I urge caution in too firmly 
establishing a sampling protocol. It is premature 
for protocols to be "chipped-in-stone" in such a 
rapidly developing area. Some adoption of 
sampling conventions should be attempted, but the 
way for improvement of those procedures should be 
kept open as knowledge of the relations between 



birds and their habitats is improved. In the 
final paper of t.he_. · series, Johnson urges 
biologists to make: study design decisions with a 
clear view of the objectives and goals of each 
specific study. He contrasts exploratory and 
confirmatory research, while urging that 
conclusions be based on sound scientific design 
(hypothesis testing, etc.) and not fishing 
expeditions for significant correlations. 

Finally, I would like to reiterate the point 
that all insights will not depend on use of 
complex multivariate procedures. Although that is 
the general subject of these proceedings, it is 
important that we reflect on the reality that the 
final measure of value for a study or technique is 
whether or not it yields insight into the dynamics 
of the ecological systems that we are studying. 
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WHY MEASURE BIRD HABITAT?1 

John T. Rotenberry2 

Abstract.--The rationale behind studies that attempt to 
assess bird/habitat relationships quantitatively is 

·structured around the premise that a bird species' habitat 
selection is of adaptive significance. This rationale was 
originally posited by Grinnell and led to the development of 
the concept of "niche". Although the definition and use of 
the term "niche" have undergone substantial expansion, it 
seems clear that habitat variables (especially those 
associated with vegetation structure) do represent an 
integral part of bird species' niches. By comprising either 
proximate or ultimate factors to which species must respond, 
habitat forms the background upon which all adaptive patterns 
are expressed. Thus a full understanding of the evolution of 
species' ·ecological attributes can come only in association 
with precise quantitative descriptions of environmental 
conditions. 

Key words: Adaptation; birds; Grinnell; habitat 
measurement; habitat selection; niche. 

INTRODUCTION 

With maturation of natural history as a 
science, it is apparent that information of a 
general descriptive or quantitative nature about 
habitat is absolutely essential for a full 
understanding of patterns of life history, 
adaptation, and evolution of any species. This 
seems especially apparent for birds. As I 
perceive the role of this paper, it is not to 
state that the reason you should measure bird 
habitat is because it "works," then proceed to 
provide you with an exhaustive list of examples; 
indeed, many of the contributors to these 
proceedings are responsible for those examples, 

1 Paper presented at The use of multi variate 
statistics in studies of wildlife habitat: a 
workshop, April 23-25, 1980, Burlington, Vt. 

2 Research Associ ate, Shrub steppe Habitat 
Investigation Team, Department of Biology, 
University of New Mexico, Albuquerque, NM 87131. 
Current address: Department of Biological 
Sciences, Bowling Green State University, Bowling 
Green, OH 43403. 
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and their reiteration would prove superfluous. 
Instead, I shall attempt to summarize briefly some 
of the rationale behind why we think it "works," 
structured around the notion that an organism's 
habitat reflects aspects of its adaptations. 

NICHE CONCEPTS 

With birds, perhaps more than for any other 
taxa, there has been a historical as well as a 
theoretical component to why we gather habitat 
data. The seminal paper in bird/habitat 
relationships, and indeed for much of ecology 
today, is Joseph Grinnell's classic study of the 
California thrasher (Toxostoma redivivum) 
(Grinnell 1917). Grinnell introduced two 
important concepts that have formed the foci for 
the way we think about birds and their habitat 
relationships. The first of these, of course, was 
the creation of the term "niche" and its 
conceptualization as a close association between 
distributional patterns of a species and the 
underlying environmental conditions. The second 
was the notion that niche relationships were 
important not only in telling us about adaptation 



and natural history of whatever organism we are 
describing, but also i.n revealing aspects of its 
relationships t6 o~her organisms and, ultimately, 
of the structure of the community in which it 
resides. The latter idea has received more 
emphasis in a theoretical context, largely under 
the construct of the n-dimensional hypervolume 
model of Hutchinson ( 1958). Both of these 
concepts, the niche as habitat and as something 
that reflects individual adaptation and community 
organization, form the basis for the sorts of 
questions addressed in these proceedings. 

Grinnell's original concern was to explain 
the rather restricted ecological distribution of 
the California thrasher. He thought that reasons 
could be found in the various physiological and 
behavioral adaptations of the bird to a narrow 
range of environmental conditions. It seemed 
evident that the nature of these critical 
conditions was to fie learned through an 
examination of the bird's habitat. From this 
Grinnell went on to relate various aspects of 
thrasher biology and distribution to certain 
physiognomic, floristic, faunistic, and climatic 
features of the environment, and described these 
as the "niche-relationships" of the species. 

Since Grinnell, niche has been redefined 
several times, with most of these reformulations 
stressing some aspect of the functional role of 
the organism within the community (e.g. Elton 
1927). Some have even argued for a strict 
separation of a species' habitat and function, 
with the former representing environmental 
relations and the latter the "true" niche 
(Whittaker et al. 1973). It seems more probable, 
however, that these ideas simply represent ends of 
a continuum, with substantial intergradation 
between the two. Insofar as birds can be shown 
either to partition or to select different subsets 
of habitat within a community (e.g. Cody and 
Walter 1976), those differences in habitat among 
them will provide indications of the differences 
in their functional roles. It seems clear, then, 
that habitat variables do represent an integral 
part of a bird species' niche regardless of the 
presumed rigor of one's definition of the niche in 
general; indeed, numerous aspects of niche theory 
have been elaborated in just this context (Shugart 
and Patten 1972). 

HABITAT SELECTION 

Of course, the ornithologist's approach to 
the concept of habitat as niche has evolved 
through the years as well, but it still embodies 
the basic assumption that a predictable 
relationship exists between the occurrence of a 
species and certain characteristic habitat 
requirements. The current approach is often to 
focus on the floristic or vegetational structural 
aspects of avian habitat, what James (1971) has 
termed the "niche-gestalt." The concept of 
niche-gestalt is predicated on the theory that 
there is some basic configuration or pattern in 
the environment that an individual animal will 
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seek out and settle in. This habitat selection 
process may be based on a specific search image, 
early learned experience, the particular genetic 
make-up of the individual, or any combination of 
these factors (Klopfer 1970). Presumably, then, 
habitat selection is an evolutionarily derived 
mechanism that insures that individuals seek out 
and remain in the particular environment to which 
they are adapted. This implies, in turn, that the 
result of habitat selection, that is, the associ
ation of a particular species with a particular 
subset of an otherwise vast environmental land
scape, will reflect major aspects of a species 1 

ecology and behavior. 

The recognition stimuli that induce a bird or 
any other animal to . select a particular habitat 
may often appear to be unrelated to the actual 
survival and successful reproduction of that 
organism (Hilden 1965). Such proximate factors 
achieve importance less through direct influences 
on the animal's biology than through correlation 
or association with the ultimate factors that are 
influential, in an adaptive sense. It is the 
latter that are essential to survival and 
constitute the underlying selective pressures to 
which the species is adapted. In many respects, 
then, the niche-gestalt is that set of proximate 
factors that elicits a habitat selection response 
(Smith 1977). These factors are presumed, in 
turn, to provide the birds with predictive 
evidence of ultimate factors. For birds, the 
physical structure of the habitat has long been 
considered to be an important proximate niche 
dimension, either directly, as it provides 
shelter, nesting substrate, or protection from 
predators, or indirectly, as it provides cues to 
the potential availability and diversity of prey 
(Wiens 1969). 

In dealing with habitat physiognomy, 
ornithologists generally consider the measured 
parameters to be representative of proximate 
aspects of the niche. From the readily observable 
proximate relationships, however, we then 
inductively create hypotheses or models that often 
deal with functional elements of the niche, or the 
species' role within the community. Again the 
"habitat" and "functional role" aspects of the 
niche concept seem intertwined rather than 
exclusive alternatives. If there is a relatively 
good correspondence between the proximate and 
ultimate factors, then from these hypotheses and 
models we can deductively create testable 
predictions about other relationships between 
birds and their environment, or even between sets 
of bird species. 

Although the very concept of "niche" has been 
challenged by some ecologists as being trivial 
(e.g., Ricklefs 1973: 522), it is clearly on the 
merit of its usefulness as a model or predictive 
tool that it should stand or fall. It seems quite 
clear for birds, at least, that the notion of 
habitat as niche has been extremely useful. 
Perhaps the most direct manifestation of this is 
the relative ease with which numbers of 
individuals or relative densities of many bird 



species may be predicted from measurement of 
habitat variab~e~ {e.g., Anderson and Shugart 
1974, Robbins 19'7&). Likewise, the simple 
presence or absence of a species may often be 
strongly correlated with a suite of environmental 
measures (e.g., Smith 1977). Such relationships 
have been empirically and statistically verified 
many times, and some bird/habitat relationships 
are so strong that field identification guides may 
use habitat occupancy as a key character (Robbins 
et al. 1966). If in fact habitat selection does 
represent a major evolutionary component of avian 
natural history, then these correlations may allow 
us to make predictions about the adaptations of 
particular species. We may also identify species 
that depend on rather specific habitat conditions 
(what we ca 11 narrow-niched species, or 
specialists) versus those that are associated with 
a wide variety of conditions (broad-niched, or 
generalist species). Through this relationship we 
may again infer adaptive relationships. 

Such correlations and associations between 
single species of birds and habitat variables are 
also of substantial practical value. They allow 
us to predict with varying degrees of accuracy the 
response of a species to natural or artificial 
habitat alterations. They permit us to identify 
species that, because they are relatively specific 
in their habitat requirements, are most likely to 
under go major population declines if certain 
portions of that habitat are altered. And 
finally, they allow us to identify environmental 
management practices that may increase the amount 
of appropriate habitat for species that have 
become endangered or rare as a result of previous 
habitat loss. 

COMMUNITY COMPOSITION 

On a large scale, niche theory and the 
distribution of species along environmental 
gradients allow us to make predictions about the 
coexistence or co-occurrence of species in 
communities. To the extent that species are 
distributed along a habitat gradient more or less 
independently of one another, the community 
composition of a site is predicted merely by its 
location along that gradient (Rotenberry and Wiens 
1980). Niche theory suggests, however, that under 
certain environmental conditions species may not 
vary independently from one another, but instead 
that inter-populational interactions, such as 
coMpetition, will contribute to the nonrandom 
distribution of species along habitat gradients 
(Terborgh 1971). This, of course, has proven'to 
be a fertile area for theoretical speculation and 
prediction, and the role of competition in 
organizing bird communities, expressed through 
either habitat displacement or, conversely, 
coexistance mechanisms, has been investigated 
extensively (see especially Cody 1974). 
Regardless of whether one chooses to look at 
community composition as a result of the 
independent distribution of species on 
environmental continua or the product of intense 
competitive interactions leading to tightly 
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ordered distributional patterns, it seems clear 
that the nature of the underlying habitat will 
have a profound effect on community composition. 
This observation is perhaps best exemplified by 
what has become virtually a truism in avian 
ecology: bird species diversity may be regularly 
predicted from vegetational complexity, as 
expressed through either plant species diversity 
(Lovejoy 1974), life form diversity (Tomoff 1974), 
or structural diversity (MacArthur and MacArthur 
1961). Of course, it will be only through careful 
measurement of appropriate habitat variables 
coupled with knowledge of species' biologies that 
we will be able to distinguish the independent 
versus competitive alternatives. 

CONCLUSION 

Quite beyond all these other reasons that I 
have outlined as providing a rationale for 
measuring bird habitat is the simple observation, 
as I indicated at the outset, that the measurement 
of habitat does seem to "work" for birds. By 
"work," I mean that there appear to be regular, 
repeatable patterns of associations or 
correlations between birds and habitat variables, 
regardless of any theoretical expectations or 
interpretations. Empirically this is verified by 
the literally hundreds of papers that have 
appeared since Grinnell that demonstrate nonrandom 
occupancy of habitat. These documentations may 
range from things as simple as the correlation 
between sagebrush coverage and sage sparrow 
(Amphispiza belli) density in the Great Basin 
(Rotenberry a~Wiens 1978), on up through a 
detailed elaboration of the relationship between 
foliage height diversity and bird species 
diversity in a tropical forest (Karr and Roth 
1971). 

The message I wish to convey is simple: if 
we are to discuss any bird species' ecology in an 
adaptive context, information about its habitat is 
essential. This is because habitat forms the 
background on which all adaptive patterns are 
expressed. Virtually all attributes of a species, 
from its internal physiology on up through its 
interaction with other members of its community, 
have evolved for certain environmental conditions. 
Without knowledge of those conditions, which is 
expressed through our quantitative or qualitative 
description of habitat, the adaptive nature of 
these attributes is unknown. It seems apparent, 
therefore, that the necessity of defining these 
environmental conditions will result in the 
continued intertwining of bird populations and 
habitat measurements throughout all phases of 
avian ecology. 
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THEORETICAL ASPECTS OF HABITAT USE BY BIRDS1 

Richard T. Holmes2 

Abstract. --For the theoretical ecologist interested in 
understanding why correlations exist between the occurrence 
of bird species and certain habitat variables, it is 
necessary to know how birds use their habitats. Such 
information also provides the basis for choosing appropriate 
habitat variables to measure. These points are illustrated 
by observations of birds in a deciduous forest in New 
Hampshire, in which different species of trees are found to 
be important habitat parameters. 

Key words: Bird foraging; factor analysis; Hubbard 
Brook; vegetation structure. 

INTRODUCTION 

A major goal of the field of avian ecology is 
to develop an understanding of the factors that 
determine · the patterns of occurrence, 
d i str i but ion, and abundance of birds. With 
respect to habitat, the avian ecologist is 
specifically concerned with why birds occur where 
they do, why there are correlations between bird 
species distributions and certain habitat 
variables, and particularly what are the 
ecological and evolutionary causes of these 
relationships and patterns. Since it is important 
to understand the causal relationship underlying 
the observed patterns before devising or 
implementing a management plan, such information 
is also of direct use to the wildlife 
ecologist/manager who is interested in 
manipulating bird habitats. 

In this paper, I review briefly some of the 
protocols and procedures used in studies of avian 
habitats in terrestrial, mainly forested 
environments, and recommend that more attention be 
focused on the behavior of the animals themselves. 
By knowing more about how birds use their 
habitats, the ecologist can make better decisions 
about which habitat variables to measure. 

1 Paper presented at The use of multi variate 
statistics in studies of wildlife habitat: a 
workshop, April 23-25, 1980, Burlington, Vt. 

2 Professor, Department of Biological 
Sciences, Dartmouth College, Hanover NH 03755. 
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ASSESSING BIRD HABITATS: A SYNOPSIS AND CRITIQUE 

The usual way to examine the relationship 
between birds and their habitats has been to 
select a set of habitat characteristics and to 
relate these, frequently with the use of 
multi variate techniques, to the presence of bird 
species in those habitats. The habitat variables 
to be measured are often chosen rather 
arbitrarily, albeit based on the investigator 1 s 
biological intuition as to what might or should be 
important to the birds. 

The variables chosen often include some 
measure of plant species composition (usually the 
number of tree species) and several features that 
describe vegetation structure (often deciduous vs. 
coniferous foliage, tree size classes, canopy 
height, percent canopy cover, percent ground 
cover, etc.). Such measurements are either made 
1) systematically through a study plot and then 
related to the avifauna! composition of that area 
(e.g. MacArthur and MacArthur 1961, James and 
Shugart 1970, Willson 1974, Titterington et al. 
1979), or 2) on the territories of individual 
birds (e.g. James 1971, Whitmore 1975, 1977, Smith 
1977). For the latter, the standard procedure has 
been to choose a song perch or nest site as the 
center of a 0. 04 ha circle ( 11.3 m in radius) in 
which the habitat is then measured. One such 
circle is taken per terri tory, and a number of 
territories of each species are measured. The 
data so obtained are considered to characterize 
the places where the birds live, and have led to 
biologically meaningful correlations or 



ordinations (e.g. James 1971, Whitmore 1975, 1977, 
Smith 1977). Furthetmore, with appropriate 
statistical techriiq~~& (see other papers in these 
proceedings) the habitat variables that are best 
correlated with the presence of a particular 
species can be identified. 

Putting aside for a moment the problems of 
arbitrarily chosen variables, there are a number 
of difficulties with these sampling techniques. 
For instance, since an area of 0.04 ha represents 
only a relatively small portion of the territories 
of most passerine birds, can habitat measurements 
made in a 22 m diameter circle around a single 
song' perch adequately represent the habitat 
occupied by that bird? I contend, for reasons 
given below, that they may not. Also, how many 
territories must be measured to provide a 
statistically valid sample for representing the 
habitat occupied by the species? Most studies so 
far have taken measurements from an average of 10 
to 20 territories per species, but none has yet 
evaluated how sufficient these sample sizes are. 

Finally and more pertinent to the subject of 
this paper, these techniques provide little 
information, if any, on the reasons why the 
measured habitat variables might be important to 
the birds. Nor do they provide a basis for 
evaluating whether the most appropriate variables 
have been chosen in the first place. Thus, not 
only do the existing sampling methods need further 
development and testing, but the basic rationale 
for deciding what habitat components to measure in 
the first place requires re-evaluation. 

HOW DO BIRDS USE THEIR HABITATS? 

What then should we measure? \fuat habitat 
variables are important to birds? To answer such 
questions, it is necessary to understand how birds 
utilize their habitats and what habitat components 
ultimately influence the survivorship and 
reproductive success of these birds. Although 
such information must eventually come from 
intensive population studies, considerable insight 
can be obtained from detailed observations of 
birds in their habitats. 

By occupying a particular habitat, birds gain 
more than just a place to live (Hilden 1965). 
They obtain places to hide from predators, to 
escape vagaries of weather, to display, roost, 
nest and forage. The relative importance of these 
various functions differs from species to species 
and habitat to habitat. For example, sui table 
nest sites may be particularly important for 
desert birds (Tomoff 197 4) or for cavity-nesters 
whose presence, abundance and reproductive success 
in a habitat will be determined in large part by 
the availability of suitable nesting sites (Conner 
1978). 

Perhaps the way in which habitats are used 
most intensively and extensively by birds, 
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especially those i nhabi ti ng forests, is for 
foraging. With a relatively large proportion of 
their daily activities spent searching for food, 
birds move frequently from place to place and 
constantly scan plant surfaces, including tops and 
bottoms of leaves, twigs, branches and tree boles, 
for prey. Many of these birds move long distances 
during each foraging bout and at least in 
temperate forests, range widely from the forest 
floor to the upper parts of the canopy. 3 

To illustrate how observations on bird 
foraging behavior can provide information about 
what habitat variables might be important, I 
summarize here briefly some results from a study 
of birds in the Hubbard Brook Experimental Forest, 
West Thornton, N.H. The methods and analytical 
procedures have been described in detail by Holmes 
et al. (1979a). Basically, data were collected on 
the microhabitat use by birds foraging in this 
northern hardwoods forest during the breeding 
season, late May through mid July 1974-1976. 
Information was recorded on the height of 
foraging, the tree species on which foraging 
occurred, substrates to which foraging maneuvers 
were directed, and the kinds of foraging maneuvers 
employed. For purposes here, only the 11 bird 
species that forage primarily among the foliage of 
the forest canopy and the 20 appropriate 
foraging-related characters (table 1; Holmes et 
al. 1979a) are considered. The 20 x 11 "species" 
matrix (Q-technique, Sneath and Sokal 1973) was 
used to calculate the Euclidean distances between 
all combinations of the 11 species in the 
multi-dimensional space defined by the 20 foraging 
characters. This distance matrix was then 
subjected to hierarchical cluster analysis for 
purposes of illustrating species relationships 
(fig. 1). The transposed 11 x 20 'character' 
matrix (Q-technique, Sneath and Sokal 1973) was 
used for a .varimax rotated factor analysis, as 
described by Holmes et al. (1979a). 

The dendrogram in figure 1 groups the 11 bird 
species on the basis of their similarities or 
differences in microhabitat use/foraging behavior. 
There are clearly two major groups of 
foliage-foraging species in this community, each 
with two to several subgroupings. The relative 
importance of the characters that account for this 
pattern can be determined from the factor 
analysis, which ·weights the variables by their 
relative contributions to the total community 
pattern and reduces a large number of variables to 
a smaller number of identifiable factors ('Cooley 
and Lohnes 1971, Bhat tacharyya 1981) • In this 
case, the first four factors account for 79% of 
the community variance (table 1), and illustrate 
how the birds differentially utilize foraging 
location, substrate and tree species. Thus, 
factor I largely accounts for the first major 
subdivision in the dendrogram. It separates those 
species that primarily hover for prey on leaves, 
hawk insects from the air and associate their 

3 Holmes, R.T., unpublished data on file, 
Dartmouth College. 



Ta'Qle . 1. The rotated factor pattern showing the most heavily weighted 
r:actors, either positive or negative, for each of 20 foraging 
characters (see Holmes et al. 1979a for further details). 

Factors I 

Eigen roots 7.24 

Factor contribution to 
community variance (%) 36.22 

Cumulative % 36.22 

1 Hover leaf 
2 Glean leaf 

0.889 

3 Hover branch 
4 Glean branch 
5 Hover twig 

-0. 673 

6 Glean twig 
7 Hawk (air) 

-0.929 
0.589 

8 Hover trunk 
9 Glean trunk -0.805 

10 Proximal 
11 Distal 
12 Beech 
13 Maple 
14 Birch 

0.792 
0.743 

-0.920 
15 Ash -0.499 
16 Shrub 
17 Conifer 
18 Height (x) 
19 Height SD 
20 Body size 

foraging with sugar maple (Acer saccharum) and 
beech (Fagus grandifolia) from those that glean 
prey, largely from twigs, branches and boles of 
trees and often forage on yellow birch (Betula 
allegheniensis) and white ash (Fra~ 
americanus). The other factors illustrate further 
how species differently utilize the foraging 
environment by segregating those that glean prey 
from leaves, hover at tree boles and forage 
primarily in the inner (proximal) portions of the 
trees from those that forage distally along the 
branches, usually high in the canopy. 

The finding that these birds are differ
entially using tree species and foraging 
substrates suggests that they are responding to, 
or are influenced in some way by, these habitat 
components. Indeed, it is very likely that these 
elements are closely linked, in that different 
kinds of foraging behavior may be required to 
exploit prey occurring on particular types of 
substrates which may vary in color, texture or 
frequency on different species of trees. This is 
supported by a more detailed study of bird 

0.799 
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II 

4.27 

21.36 

57 0 58 

0.728 

0.806 

0.946 
-0.971 

-0.616 

III IV 

2.47 1. 71 

12.39 8.56 

69.97 78.53 

-0.951 

-0.809 

0.893 

foraging behavior which indicates that these 
insectivorous birds in the northern hardwood 
forests at Hubbard Brook have distinct preferences 
and/or aversions for certain species of trees 
while foraging (Holmes and Robinson 1981). This 
is attributed at least in part to differences 
among the tree species in arthropod abundances and 
in foliage arrangements that influence how birds 
search for and capture prey from plant surfaces. 
To determine the former, we utilized detailed 
information on insect abundances obtained from an 
intensive sampling of bird food resources (Holmes 
and Robinson 1981, Holmes et al. 1979b). For the 
latter, we found that bird species which typically 
glean arthropods have the strongest tree species 
preferences, in this case for yellow birch and for 
conifers (Holmes and Robinson 1981). On these 
plants, the leaves are arranged close to the 
branches so that a standing bird can reach prey 
situated on leaf surfaces. In contrast, in maple 
or beech, leaves are arranged either on flat 
sprays or at the ends of long petioles, and birds 
must fly and snatch their prey or hover for them 
at leaf surfaces. In addition, there is 
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Figure 1. Dendrogram indicating the similarities 
and differences in microhabitat use among the 11 
bird species at Hubbard Brook that forage for 
arthropod prey among foliage (for detail of 
technique, see text and Holmes et al. 1979a). 

preliminary evidence that abundance and 
distribution of some of these bird species may be 
linked to particular tree species or at least to 
trees with similar physiognomic characteristi6s 
(Holmes and Robinson 1981). 

The important point here is that observation 
of foraging birds has led to the realization that 
different species of broad-leaved trees in a 
primarily de'ciduous forest can be important 
habitat components. Although the potential 
importance of deciduous vs. coniferous foliage has 
been previously recognized (Balda 1969, Franzreb 
1978) and occasionally incorporated into habitat 
analyses (e.g. Titterington et al. 1979), most 
studies of bird habitats have not taken into 
account the occurrence of particular tree species. 
It must be realized, however, that even if tree 
species were to be included and if correlations 
were found, there would still be no way of 
understanding why these tree species are important 
without detailed observations of what the birds 
were doing in the different tree species and 
without measurements of the resources available 
there. 

CONCLUSIONS 

A thorough knowledge of the natural history 
of bird species and their habitat requisites is 
essential for understanding the relations between 
birds and their habitats and for determining which 
habitat components are important to birds. To 
elucidate further the causal links between birds 
and their habitats, however, will require 
comparisons of behavior and habitat responses of 
the same bird species in habitats that differ in 
particular ways or that have been manipulated in a 
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manner that will test the importance of some 
specific habitat parameter ( s). Only through such 
carefully planned observations and experiments can 
knowledge be obt~ined that will allow us 
eventually to predict from habitat data which bird 
species will occur or not occur in particular 
habitats. Such a goal is needed if habitats are 
to be managed scientifically . 
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APPLIED ASPECTS OF CHOOSING VARIABLES IN STUDIES 

OF BIRD HABITATS1 

Robert C. Whitmore 2 

Abstract.--This paper considers the applied aspects of 
choosing and using habitat variables; aspects that deal with 
management decisions rather than evolutionary events that 
shaped observed community patterns. Vegetation structure is 
one of the central parameters used in the explanation of 
observed habitat use patterns of birds. When choosing 
variables one should consider the range of habitats being 
studied, the nature of the bird species, the practicality of 
measurement, the time (cost) needed to measure and the 
biological importance of each variable. Once the variables 
are chosen, experimental designs by Martinka (1972) and 
Whitmore (1981) could be used to gather information needed in 
making management decisions. The designs basically involve 
comparing bird territories with adjacent areas that are not 
occupied (nonterritories). 

Key words: Blue grouse; discriminant analysis; 
grasshopper sparrow; habitat management; variables. 

INTRODUCTION 

Criteria for determining which habitat 
variables to measure generally fall into two broad 
categories, theoretical considerations and applied 
considerations. The former deal with studies that 
ask why certain species of birds inhabit a given 
locale and what events shape this process, while 
the latter deal primarily with management 
decisions. The objective of this paper is to 
discuss applied aspects of the question. 

When trying to quantify observed habitat use 
patterns of birds, variables most often measured 

1 Paper No. 1643 of the West Virginia 
University Agriculture and Forestry Experiment 
Station. Paper presented at The use of 
multivariate statistics in studies of wildlife 
habitat: a workshop, Apri 1 23-25, 1980, 
Burlington, Vt. 

2 Associate Professor, Division of Forestry, 
Wildlife Biology Section, West Virginia 
University, Morgantown, WV 26506. 
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reflect vegetation structure. There are two 
readily apparent reasons for this. First, 
vegetation structure is a central factor 
determining the habitat that a bird selects (fig. 
1) and, although only a proximate factor (Hilden 
1965), does evoke the settling response of a bird 
arr1v1ng in spring. Second, between-site 
differences in vegetation structure often are 
obvious and while.data sets may be voluminous they 
are relatively easy and inexpensive to obtain, 
especially when compared to other parameters such 
as food availability, microclimate and biological 
interactions. With increasing use of multivariate 
statistics in habitat studies, the number and 
complexity of variables measured have increased 
(James 1971, Anderson and Shugart 1974, Whitmore 
1975, 1977). Moreover, it is likely that the 
number of these types of studies will increase 
and, in fact, the call for more has already gone 
out: "Detailed investigation of the relationships 
among numerous habitat variables and bird 
populations •.• should be encouraged. Such 
investigations will likely provide widely 
applicable results in a minimum of time" (Verner 
1975). 
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Figure 1. Schematic representation of the 
relationship between vegetation structure, other 
variables and observed habitat use patterns in 
birds. Dashed lines represent minor effects 
while solid lines represent major effects. 
Adapted from Karr (1980). 

Although the ecologist may not be seeing or 
measuring what the bird is actually selecting 
(i.e., "the ecologist may be recognizing distinct 
habitats or positions along environmental 
gradients, but the bird species present may not be 
capable of the same distinctions or their 
distinctions may not be equivalent to those of the 
observer", Whitmore 1977), detailed multivariate 
analysis of species distributions along complex 
habitat gradients may have predictive value in 
determining Which species will occupy a given 
site, and may be useful in making management 
decisions (James 1971, Martinka 1972, Whitmore 
1981). However, as pointed out in numerous 
studies, the choices and number of variables 
(James 1971) as well as time of year in which they 
were measured (\~itmore 1979) affects results. 
Therefore, any multivariate study is only as good 
as the input variables. The following sections of 
this paper wi 11 first examine criteria for 
selecting variables and then give an example as to 
how they might be used in an applied situation. 

CRITERIA FOR SELECTING VARIABLES 

The plethora of avian habitat studies can be 
placed along a continuum of "quantitativeness" 
ranging from subjective, visual analysis 
(extensive), such as the Missouri Plan for habitat 
evaluation, to microhabitat analysis (intensive) 
which may be as detailed as counting the number of 
grass stems in a 5 ha field. As an example of an 
extremely extensive methodology I am reminded of 
the waterfowl manager who developed a three 
category system for analyzing marsh vegetation: 
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Figure 2. A curve representing the relationship 
between the level of information obtained and 
the time taken in measurement. Dashed zone 
indicates an optimal area where the ratio 
produces the most benefit per unit expended. 

If a duck can swim through it in a straight line-
open; weaving line--moderate; can't make it 
through--dense. 3 In the middle of the continuum 
of quantitativeness lies what I term "quick and 
dirty" methods of habitat analysis. One of the 
mos~ widely used of such techniques was proposed 
by James and Shugart (1970) and has been used in a 
variety of studies (see Whitmore 1975, 1977). 
More detailed analysis, the intensive methods, can 
be seen in works of Cody ( 1968) and Wiens ( 1969) 
for their analyses of grassland habitats. 

A fundamental criterion for picking a 
sampling technique is the time needed and relative 
cost of each method. \~en plotting the time taken 
in measurements versus the level of information 
obtained a Gaussian curve emerges (fig. 2). 
Somewhere in the middle of the curve is a "zone of 
optimality" where a maximum return in information 
for amount of time (money) expended is obtained. 
An effective sampling scheme should fall within 
this zone. For the scope of many studies the 
James and Shugart (1970) technique fits the bill. 
It remains for others to develop techniques that 
will shift the curve to the left on the abscissa 
thereby increasing the ratio of information/time 
spent. 

The nature of variables measured depend on 
the range of habitats being considered. 
Quantifying habitat use of birds in habitats 
ranging from grassland to forest may require less 
intensive variables than are necessary to separate 
four Panamanian forest plots. Another 
consideration is what kind of species are you 

3 Personal communication with E.D. Michael, 
Professor, West Virginia University. 



dealing with? Would variables used to quantify 
habitats of an acorn woodpecker (Melanerpes 
formicivorous) a~s9 be appropriate for a 
grasshopper sparrow CAmmodramus savannarum)? 

Some practical aspects when deciding which 
variables to pick might fall into three general 
categories. First, variables should be measurable 
to the desired level of precision. Second, 
variables should be biologically meaningful. For 
example, it may be possible to measure tree roots 
to 60 em away from the trunk below the surface of 
the ground, but what possible meaning could this 
have to a canopy foraging bird such as a cerulean 
warbler (Dendroica cerulea)? Third, variables 
should be relevant to the species rn question. 
Would percent grass cover or the ratio of grasses 
to forbs be important to a bark forager such as a 
brown creeper (Certhia familiaris)? 

As a preface to the next section I would like 
to make two comments that seem to have a bearing 
on many of the papers in these proceedings. 
First, we scientists are often guilty of measuring 
everything there is to measure, trusting stepwise 
discriminant analysis or some other technique to 
sort things out, simply because we don't know what 
is important. This may be viewed simply as a 
substitutive for thinking. And second, if you 
miss the key parameters you can go out and measure 
everything else, use the most sophisticated 
multivariate techniques and still have nothing of 
biological importance. However, if one is careful 
in picking variables and follows, at least 
generally, the concepts listed above, then 
multivariate statistics may be useful in sorting 
out habitats and making management decisions. 

USING MULTIVARIATE STATISTICS IN 
WILDLIFE MANAGEMENT 

Assuming correct variables are measured, this 
section deals with application of multi-variable 
data sets to wildlife management. Standard 
management questions might include: 

1. What effect will habitat alteration have 
on the bird species in question (BSIQ)? 

2. What structural characteristics are found 
in habitat type A but not in type B that 
allow the BSIQ to live in the former but 
not the latter? 

3. How can I make habitat type B suitable 
for the BSIQ? 

4. How can I get more of the BSIQ into type 
A? 

5. Can I introduce the BSIQ into habitat 
type C? 

From reading papers in the Journal of 
Wildlife Management it is apparent that 
multivariate statistics as a tool in making 
management decisions have not had widespread use. 
The only multi variate paper of interest that I 
could find in recent volumes of the Journal of 
Wildlife Management presented a technique for 
habitat analysis that I feel has broad application 
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in wildlife management. However, it has 
apparently been overlooked. Martinka (1972) 
published a study comparing habitats of blue 
grouse (Dendragapus obscurus) with surrounding 
habitat that appeared similar but did not have 
blue grouse using it. He termed the latter sites 
"nonterritories." This type of analysis, 
terri tory vs. non territory, seems appropriate in 
addressing several questions listed above. 
Basically, Martinka found that by using 
discriminant analysis he could correctly classify 
96% of his plots as either territories or 
nonterritories and by so doing develop a model for 
management recommendations. 

This same line of reasoning may be of 
fundamental use in documenting avian habitat use 
in general. Most studies are designed to compare 
different bird species or different communi ties. 
Perhaps it would be more fruitful to look at a 
single species, comparing sites in which it is 
found with similar habitat where it is not found. 
As an example of this method I summarize a paper 
on grasshopper sparrows (Whitmore 1981). This 
species is a common breeder on reclaimed surface 
mine grasslands in northern West Virginia, yet not 
all sites have grasshopper sparrows and on those 
that do it is rare for the entire area to be used. 
Questions asked were 1) are there vegetational 
structure characteristics that are identifiably 
different between used and unused areas, and 2) if 
there are, can the unused areas be managed to make 
them usable? On one reclaimed site in Preston 
County, West Virginia all grasshopper sparrow 
territories were located and mapped using the 
territory flush technique (Wiens 1969). Once 
mapped, vegetation structure variables were 
measured in each territory. All areas on the same 
mine that were not used by grasshopper sparrows 
(nonterritories) were located and sampled. By 
using stepwise discriminant analysis it was found 
that territories could be separated from 
nonterritories with 100% accuracy on a vegetation 
density gradient. Nonterritories had 
significantly greater (P < 0. 01) values for most 
grass, shrub and litter cover variables and 
significantly lower (P < 0. 01) percent bare 
ground. A change in the habitat from unusable to 
usuable could be manifested by any of a variety of 
range management techniques that would reduce 
v e get at i on' den s i t y and 1 i t t e r b u i 1 d up ; the 
easiest being fire. Manipulation experiments are 
currently being designed in an attempt to shift 
unused habitat to usable. 

Further extension of the above two examples 
may be necessary to fit different species or 
groups of species. However, the basic concept 
could be used in a variety of wildlife studies 
ranging over many habitat types. 

SUMMARY 

Many studies presented in the current body of 
literature are based on a set of variables that 
seem to be picked with little regard for the 
habitats or species in question and more often 



than not are based on either convenience or "what 
someone else has done." This paper presents a set 
of ideas that shouid be considered before 
initiating a bird 'habitat study. Two examples of 
an experimental design based on vegetation 
analysis of territories vs. nonterritories, one 
with a game bird the other with a songbird, show 
great potential for future use in making 
management decisions. Scientists should remember 
that the choice of vegetation variables, the 
number of variables, and the time required for 
measurement can greatly affect results in a 
multi variate study. Perhaps the greatest amount 
of time should be spent in the design and variable 
selection stages of the experiment rather than in 
the collection of data. 
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DISCUSSION 

JAMES DUNN: How did you decide on the locations 
of the non-territories? 

BOB WHITMORE: · \~e had the entire surface mine 
mapped as to terri tory location. All areas that 
did not have territories were sampled, subject to 
the constraint that an entire 50 m radius circle 
would fit within it. 

JIM WOEHR: Do you agree that vegetation 
patchiness is an important habitat variable, and 
if so, how should we measure it and how can we 
statistically test for differences in patchiness? 

BOB WHITMORE: I agree it is important, but I do 
not have a real handle on how to measure it. 

JIM WOEHR: In comparing territories with non
territories, do you think it is critical to study 
a habitat over several years to look at 
fluctuations in bird density in different 
habitats? It seems to me that the "best" habitat 
will always have more birds, whereas marginal 
habitats will have fewer birds, or none at all, in 
years of low populations. 

BOB WHITMORE: I totally agree that in most 
natural systems yearly changes in environmental 
factors such as climate will affect avian 
densities and habitat use patterns, often forcing 
birds into "suboptimal" habitats. Although it is 
difficult to determine quantitatively, I feel that 
the strip-mine birds, as yet, are not habitat 
1 imi ted and, therefore, are taking the best 
available. Newly reclaimed surface mine habitat 
is being created faster than the birds are capable 
of using it. We definitely need some bad years to 
study. 



TECHNIQUES FOR SAMPLING AVIAN HABITATS1 

Barry R. Noon2 

Abstract. --Standardized methodologies for the sampling 
·of bird-related vegetation structure in forest and non-forest 
habitats are proposed. For forest habitats, the methodology 
is based largely on techniques proposed by James and Shugart 
(1970). For non-forest habitats, the methodology is a 
synthesis of many previously published techniques, 
particularly those of Wiens ( 1969). For each habitat type a 
detailed sampling protocol and sample field data sheet are 
provided. In addition, statistical and biological 
considerations for the location of sampling points are 
discussed. The paper ends with an argument in favor of 
standardized methods of sampling avian habitats. 

Key words: Avian; habitat structure; sampling 
techniques; standardized procedures. 

INTRODUCTION 

There are two common goals when sampling 
avian habitat structure. The first is to measure 
features of the habitat that wi 11 allow an 
accurate determination of the species' habitat 
requirements. Habitat parameters believed to be 
at least proximally related to a species' 
survivorship and reproductive success in that 
habitat are selected for measurement. The second 
is the ability to make accurate predictions of a 
species' response to habitat change and to 
anticipate possible detrimental effects to a 
species population from various land-use 
practices. This second goal is contingent upon 
having achieved the first. 

To date, there have been a variety of 
approaches to describing the habitat associations 
of bird species (Niemi and Pfannmuler 1979). 
These include the non-quantitative successional 

1 Paper presented at The use of multi variate 
statistics in studies of wildlife habitat: a 
workshop, April 23-25, 1980, Burlington, Vt. 

2 Research Biologist, Migratory Bird and 
Habitat Research Laboratory, U.S. Fish and 
Wildlife Service, Laurel MD 20811. 
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stage ( Kendeigh 1945, Johnson and Odum 1956, 
Martin 1960, Haapanen 1965, Holt 197 4) and life 
form (Thomas et al. 1975, 1976) approaches, as 
well as quantitative approaches based on 
statistically defined species-habitat associations 
(e.g., Rotenberry and Wiens 1978, Pfannmuller 
1979) or the multidimensional habitat-niche 
approach adopted from Hutchinson (1957). The 
statistically based, quantitative approaches are 
currently favored because they are generally less 
subjective and yield more information on specific 
niche requirements than do non-quantitative 
approaches. 

A holistic, community based approach to 
species-habitat associations has been outlined by 
Niemi and Pfannmuller ( 1979). The procedure is 
based on a cluster algorithm which groups avian 
communi ties, representing various points along a 
habitat gradient, into hierarchial clusters on the 
basis of their similarity in species composition. 
The researcher investigates whether the groups 
formed by the clustering algorithm(s) suggest any 
structural features of the habitat gradient 
recognized as important by the birds. The same 
community census data can be subjected to an 
inverse clustering algorithm which groups together 
bird species that show similar distributions 
across the habitat gradient (Pfannmuller 1979). 



The distribution of species associations and the 
community clusters may yield insights into the 
habitat requirements. o.f individual species and 
also indicate which 'habitats are recognized as 
distinct types. 

The avian community approach does not yield 
information on specific habitat niche requirements 
of individual species. However, it is a valuable 
preliminary to more detailed niche analysis 
because it accurately delimits the range of 
habitats to be sampled for a particular species or 
species association. 

To clarify the relationship between birds and 
habitat structure, we must develop techniques of 
habitat measurement which fulfill the following 
criteria :· 3 

1. Yield efficient, precise, and accurate 
estimates of the habitat parameters of 
interest. 

2. Yield data amenable ·to various 
statistical tests, especially in 
multivariate analyses on which predictive 
models would subsequently be based. 

3. Quantify attributes of the habitat that 
are biologically relevant to the species 
(and biologically interpretable) and that 
can be unambiguously communicated to 
other researchers. 

4. Yield data whose predictive capabilities 
can be tested by simulated tests. 

5. Are applicable in different structural 
habitat types. 

The sampling protocol that follows is based 
on a multivariate approach to habitat selection, 
specifically ~n the niche concept as formalized by 
Hutchinson ( 1957). The rationale for employing 
these techniques is the belief that a species' 
response to habitat structure is not univariate. 
That is, the suitability of a habitat patch to an 
individual bird is a function of several 
interrelated habitat parameters whose combined 
effect (in a mathematical sense) determines the 
habitat's suitability. 

When initiating a habitat-based niche 
analysis of one or more species, three major 
aspects of the experimental design must be 
resolved before sampling begins. I will address 
each of these below. 

How Finely Should Habitat Be Measured? 

Obviously, the habitat structure must be 
measured in enough detail so that factors believed 
important to the species being studied are 
accurately estimated. In addition, habitat 
structure should be measured so as to bring into 
focus differences that may allow two similar bird 

3 Personal communication with Frances James, 
Associate Professor, Department of Biological 
Science, Florida State University. 
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species to coexist. These data will also give 
valuable insights into community organization. 

As a general rule, the more apparently 
homogeneous the habitat, the finer it will need to 
be sampled in order to detect its inherent 
heterogeneity. Thus, grassland habitats require 
sampling vegetation structure at a much finer 
level than would forest habitats ( cf. Wiens 1969 
with Whitmore 1975). 

Often the researcher is uncertain how finely 
species are discriminating habitat and, as a 
consequence, feels the need to sample both micro
and macrohabitat gfadients. Macrohabitat 
descriptions require sampling a relatively large 
area, while sampling microhabitat gradients over 
the same area would result in prohibitive time 
constraints. A workable solution is to use nested 
samples with microhabitat variables estimated from 
sampling areas contained within the larger 
sampling units used to estimate macrohabi tat 
variables. Titterington et al. ( 1979) provides a 
good example of the use of nested vegetation 
sampling plots in the study of avian populations. 

How Many Samples Should Be Taken? 

This topic is covered in more detail by 
Johnson (1981); however, a brief point follows. A 
sampling criterion such as being within 10 percent 
of the population mean 90 percent of the time 
should be established for each habitat parameter 
estimated. Sample size formulas to meet these and 
other criteria are given in Cochran ( 1963) and 
Steel and Torrie ( 1960). Unfortunately, for some 
parameters of interest the appropriate sample size 
to meet these criteria is impossible to attain 
(Noon, unpublished data). This is particularly 
true for habitat variables or gradients that are 
very patchily distributed in the study area (e.g., 
the percent of .coniferous vegetation in different 
vertical strata in a primarily deciduous woods). 
For example, using the above criteria, a mature 
deciduous forest plot in New York State (Noon 
1979) required over 100, 0.04 ha circular plots to 
estimate most structural habitat parameters. 
Changing the criteria so as to be within 10 
percent of the mean 80 percent of the time lowered 
the requisite sample size for the same variables 
to approximately 60 circular plots. 

Where Should Samples Be Taken? 

A major assumption of most statistical models 
is that the statistics themselves have been 
estimated from a random sample of the population 
under study. When estimating structural 
parameters of the vegetation relative to the bird 
community, stratified random sampling may be more 
appropriate than pure random sampling. 
Stratification will result in a more uniform 
sampling of the study area. I suggest that the 
stratification be based on the following criteria: 

1. Along obvious lines of habitat 
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Figure 1, Point-count census technique with 
variable censusing radius. Five, 0.04-ha 
circular plots for sampling vegetation structure 
are clustered about the censusing point. 

heterogeneity within the study area. It 
is very important that patches of 
structurally distinct habitat be 
represented in data from which estimates 
of available habitat are made. 

2. By the location of individual birds in 
the ~abitat; that is, let the bird define 
the sampling location. 

Figure 2. As in fig. 1 but with actual tufted 
titmouse territories (determined by territory 
mapping) detectable from the point-center 
positioned relative to the vegetation samples. 

Figure 2 illustrates the actual location of 
tufted titmouse territories around one of these 

,-~census points. Note that habitat data J.r .. Q.m 
The importance of bird-defined sampling t,>J'y..;t no~J,;l;~]j,:_t~.e..d areas are a_s_soGia.t.ed wi,t_!l~e 

locations is clarified by examining how easily. ~--""·- ~~ci~.-~ If the habitat sampled from non-utilized 
erroneous inferences about a species' habitat areas is substantially different from the utilized 
requirements arise from improper sampling. I will areas, then it will be quite difficult to discern 
illustrate the problem with bird census data the true habitat preferences of a species with 
collected with the point count technique (Ferry this experimental design. The problem is not 
and Frochot 1970) and habitat data subsequently unique to this sampling si tuatign __ J:>i.it- may--ar-r5e 
gathered from o. 04-ha ( 0. 1 acre) circular plots anytime ·habitat datir··as·sociated wi. th ~a- 'particular' 
( J.ames and Shugart 1970) centered around the individual represent areas not actually 'ut11l z~d. 
censusing point. by that indi vi~ual. ·- · -----------

Figure 1 illustrates a sampling design with 
five, 0,04-ha circles clustered about the 
censusing point. A hypothetical study using this 
experimental design would conduct many point
counts along a habitat gradient and associate all 
the species recorded at a particular censusing 
location with the mean habitat vector (averaged 
across the five circles) at that location. A 
two-group discriminant function analysis may then 
be conducted, for each species, to distinguish 

·points where the species was found from points 
where it was not detected. Discrimination of 
these "present" and "absent" groups would be 

·interpreted in terms of differences in habitat 
structure. 
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METHODS 

I have outlined a sampling methodology that 
combines random, or statified random, sampling 
with bird defined sampling locations as follows 
(see figs. 3 and 4): 1) Samples of vegetation 
structure are taken at randomly selected locations 
within the study plot boundaries. Veg_e~tational 
characteristics of ind;i._vidual terri torfe.s ... w 
determined by superimposing a map of the 
territory boundaries over a map of the nt.iriib~J.id 
sampling sites and summing the data from all 
sample sites -inclUded within the boundaries (Wiens 
19691. Only samples falling totally within 
territory boundaries are assigned to that species. 
2) Territories that by chance were not sampled 
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Figure 3. Line transect system with randomly 
located sampling points indica ted. Territories 
are superimposed over sample locations. 

are sampled in some random fashion. 

Given sufficient data, this sampling scheme 
allows direct comparison between species' 
structural habitats as well as a comparison of 
each species against a random sample of the 
available habitat. The sampling protocol is 
amenable to studies in both non-forest (< 25 
percent cover by trees) and forest habitats-:- I 
suggest that non-forest habitats be sampled by 
line transect methods and forest habitats by a 
modification of the James-Shugart ( 1970) 0. 04-ha 
circular plot technique. Transects should be 
placed across contour lines (Oosting 1956), and 
evenly spaced across the study plot with the 
location of the initial transect line determined 
by some random process (fig. 3). For forest 
habitats, sampling points can be determined by a 
random (or stratified random) selection of grid 
points used in the territory mapping procedure 
(fig. 4). 

Sampling Protocol 

Non-forest Habitats 

Avian habitat studies in "non-forest" 
environments (,S_ 25 percent cover by trees) have 
used primarily transect sampling procedures to 
establish sampling locations. Along the transect, 
or at randomly selected points, vegetation 
structure has been estimated by fixed quadrat, 
line intercept, or point-centered quarter 
techniques (refer to Smith 1974 for a general 
description of these procedures). I propose 
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Figure 4. Areal plot system with randomly located 
0. 04-ha circular plots indicated. Territories 
are superimposed over sample locations. The 25-m 
grid syst•em illustrated here would only be 
necessary in very closed habitats. 

a sampling protoco~ that combines line-intercept 
and point-centered quarter techniques. In 
developing this protocol I have borrowed 
extensively from the work of others, particularly 
Wiens (1969). 

Line-intercept Variables. The line is considered 
to be a belt 1 em wide running along one side of 
the transect. The transect is divided 
(stratified) into 10-m intervals. Within each 
interval the distance on the transect line 
iftterrupted by specific life forms or habitat 
features is recorded (appendix IA). 

For shrub and tree life forms, coverage is 
estimated by the downward vertical projection of 
their foliage lying above the line. \li thin each 
10-m segment the minimum total amount of coverage 
summed over all habitat features is equal to the 
length of that segment; however, total coverage is 
usually higher. Data collected in this way allow 
calculation of the frequency, density, and 
dominance of each habitat feature (Smith 1974). 

If the ground-level vegetation is not arrayed 
as discrete patches then line-intercept techniques 
are very difficult to use. When the ground cover 
is an intricate mosaic, line-intercept techniques 
should be replaced by point-intercept methods. 
The procedure is to uniformly select numerous 
points within each 10-m interval and record the 
presence and absence of specific ground cover 
life forms intercepted at these points. 



Statistical treatment of the results and 
cautionary notes on methods of point sampling are 
found in Goodall, ( l95,2L 
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Point-quarter Variables. Each 10-m interval along 
the transect will correspond to a sampling unit. 
Within each interval the sampling point is 
determined by selecting three random digits to 
indicate 1) the linear distance in meters along 
the transect interval given by the first digit, 2) 
the side of the line to be sampled (odd digit = 
left; even digit = right) given by the second 
digit, and 3) the number of 0.5-m intervals to be 
marked off perpendicular to the transect given by 
the third digit. At the sampling point, quarters 
are established by placing two 1-m sticks on top 
of each other oriented in the cardinal directions 
to form a 1+ 1

• Within each quarter the following 
variables are estimated: 

A. Species, distance to, and height of the 
nearest shrub (woody vegetation > 1 m 
tall and< 3 em dbh). 

B. Species, distance to, dbh, and height of 
the nearest sapling ( 3 em < dbh < 8 em) 
and tree (> 8 em dbh). -

C. Vertical vegetation density. At each of 
the four ends of the meter sticks, 
vertically lower into the vegetation a 
1-cm diameter rod graduated into the 
following intervals: 0-0.3 m, 0.3-1 m, 
and 1-2 m. Vertical vegetation density 
is estimated by recording the number of 
contacts of vegetation falling within 
each interval as well as visually 
estimating the number of contacts from 
2-9 m and > 9 m. ~ ) 

D. "Eff~ctive vegetation heightJ'b! At the 
approximate intersection point of the two 
meter sticks record "effective vegetation 
height" as detailed by Wiens (1969). 

Methods to calculate density, dominance, and 
frequency estimates from point-quarter data are 
given in Smith (1974). A sample field data sheet 
is given in appendix II. 

Forest Habitats 

The sampling protocol for forest habitats (> 
25 percent cover by trees) is based on the James 
and Shugart (1970) 0.04-ha (0. 1 acre) circular 
plot techniques. I have modified the techniques 
to include additional data and to clarify existing 
ambiguities (cf. James 1978); however, the core of 
the technique remains unaltered. A sample field 
data sheet for recording the estimates outlined 
below is given in appendix III. 

The following habitat features are measured within 
the 0.04-ha (radius = 11.3 m) circle: 

1. The diameter at breast height (dbh), 
1. 3 m above the ground, of all saplings 
and all standing trees. The dbh values 
will be recorded by tree species within 
nine size classes (appendix IB). 
Standing, dead trees are recorded 
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Figure 5. Circular plot (r 11.3 m) used to 
estimate vegetation structure in forest 
habitats. Rectangular plots used to estimate 
shrub density, transects establishing quarters, 
point-quarter tree and log variables, and sample 
points for estimating canopy and ground cover 
are all indicated. 

separately by size class. The size 
classes are almost identical to those 
proposed by James and Shugart (rounded to 
nearest em) but with the addition of a 
smaller dbh size class, S (sapling: 3-8 
em dbh). 

2. Shrub density at breast height is 
estimated along two transects running in 
the cardinal directions and centered 
within the 0.04-ha circle (fig. 5). The 
observer proceeds along the transect 
lines counting the number of woody stems 
< 3 em dbh intersected with his body and 
outstretched arms at breast height. 
Counted stems only include the main stem 
and those stems branching from the main 
stem below breast height. The total 
number of contacts made in two transects 
(each 22.6 m long) times 125 is used to 
give an estimate of the number of shrub 
stems per ha. The contribution of 
deciduous and coniferous shrubs is 
recorded separately. 

3. Canopy cover and ground cover are 
estimated by sighting through an ocular 
tube, made from a cardboard cylinder with 
cross hairs at one end. The observer 
walks along the transect lines used to 
estimate shrub density sighting up to the 
canopy and recording a total of 20 ( 10 
each transect) plus or minus readings 
indicating the presence or absence, 



respectively, of green vegetation at the 
intersection point of the cross hairs. 
Percent of the canopy cover contributed 
by coniferou~: foliage is recorded in 
addition to total canopy cover. Green 
vegetation within a meter of the ground 
is recorded in an identical manner except 
that the observer sights downward through 
the tube held at waist height 
(approximately 1 m above the ground). 
Canopy and ground cover are recorded as 
percents (i.e., number of hits/20 x 100). 

4. A qualitative plant dispersion index is 
recorded for ground (0-1 m tall) and 
shrub (> 1 m tall and < 3 em dbh) strata 
plants. The index is identical to that 
proposed by Emlen (1956). The categories 
are 
E - Even matrix (more or less randomly 
dispersed) 
I - Irregular or uneven (indistinct 
clumps) 
SC - Small clumps 
LC - Large clumps 
SR - Small distinct rows or hedges 
LR - Large distinct rows or strips. 

5. Canopy height should express the average 
height ( m) of the canopy within the 
0.04-ha circle. The observer should make 
several measurements (with a clinometer, 
range finder, Abney level, or similar 
instrument), average these measurements, 
and record this average. Also, the 
maximum and minimum estimates of canopy 
height are recorded. 

6. Slope is estimated with the aid of a 
clinometer. This estimate is the maximum 
slope within the circular plot. 

7. Indic~s of tr.ee and log dispersion are 
gathered from point-quarter techniques. 
The point is centered in the circle and 
the quarters are established by the 
transects used to estimate shrub density 
(fig. 5) . Within each quarter the 
distance to, and dbh size-class of the 
nearest tree are recorded. In addition, 
the distance to, total length of, and dbh 
size-class of the largest (by diameter) 
fallen log (> 1.5 min length and > 8 em 
dbh) are recorded (fig. 5). The dbh 
size-class of the log is determined by 
the maximum dbh attained throughout its 
length whether lying totally within the 
plot or not. 

8. Understory foliage volume is estimated 
with a density board (Wight 1938, DeVos 
and Mosby 1969). The density board, or 
drop cloth, (fig. 6) is divided into four 
height intervals, 0-0.3 m, 0. 3-1 m, 1-2 
m, and 2-3 m, corresponding to low 
ground, high ground, and low and high 
shrub 1 evels, respectively. Foliage 
volume contributed by the sapling level 
is indirectly assessed by the number of 
trees falling in dbh size-class S. The 
drop cloth is placed at each of the four 
points where the transect lines intersect 
the edge of the circle. Four readings 
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2-3m {50 squares) 

1-2m (50 squares) 

0. 3- I m ( 35 squares) 

0- 0.3 m ( 15 squares) 

1-- -0.3 m- -1 

Figure 6. Density board ("drop cloth") used to 
estimate foliage volume from 0-3 m. 

are made from the center of the circle 
(i.e., 11.3 m distance) sighting along 
each of the transects (i.e., N,S,E,W). 
The observer counts the number of squares 
within each height interval at least 50 
percent obscured by foliage and records 
this number. To m1n1m1ze parallax 
problems, foliage volume in the first two 
height intervals is estimated from a 
crouching position, and from a standing 
position for the upper two intervals. 
Problems may arise if dense, low 
vegetation lies within the immediate 
vicinity of the center of the circle ( < 
1. 5 m). In this situation the observer 
should move to the side the minimum 
distance necessary to give an 
unobstructed view within the first 1.5 m. 



9. Dominant shrub species and ground cover 
(ground to 1 m tall) life forms are 
recorded ,iri rank order with the most 
common species, or life form, listed 
first. The ranking is estimated only 
within the 0. 04-ha circle. A list of 
ground cover life forms to discriminate 
is given in appendix IC. 

Equipment needed for estimating density, 
basal area, and frequency of trees, canopy height, 
shrub density, and percent ground and canopy cover 
is given in James and Shugart ( 1970). Sapling 
trees are measured with a forester's diameter 
tape. Density boards (drop cloths) can be made 
from a variety of materials but those made with 
either oil cloth or vinyl prove to be both 
resilient and portable. The gradations are scored 
on the material with an indelible marking pen. 
The drop cloth is extended to its full height with 
the aid of a "telescoping" aluminum pole such as 
is used by painters and window washers. When not 
in use,- the drop cloth may be rolled around the 
wooden dowel used to attach the top of the cloth 
to the aluminum pole. 

DISCUSSION 

Many of the papers presented in these 
proceedings have used a habitat sampling protocol 
similar to that outlined here and illustrate a 
variety of approaches to data analysis and 
interpretation. Additional sources of references 
are Anderson and Shugart 197 4; Bertin 1977; 
Bourgeois 1977; Cody 1968, 1978; Cody and vial ter 
1976; Conner and Adkisson 1976; James 1971; Karr 
1968, 1971, 1976; Karr and Roth 1971; Noon 1981; 
Noon and Abfe 1978; Rabe 1977; Rice 1978; Roth 
1976; Smith 1977; Sturman 1968; Titterington et 
al. 1979; Whitmore 1975, 1977, 1979; and Wiens 
1968, 1973, 1974. 

Ecologically meaningful information may be 
derived from understory foliage volume and tree 
size-class data. Vertical foliage volume is 
directly estimated up to 3 m by the drop cloth. 
Further, indirect estimates of foliage volume may 
be extracted from dbh size-class data for specific 
species or types of trees (e.g., hardwoods and 
conifers; Harris et al. 1973, Weinstein~, Smith 5

). 

This results from the predictable relationship 
between tree height and dbh for the lower size 
classes (S-C) of most species of trees (fig. 7; 
e.g., Curtis 1967; Schreuder and Hafley 1977). 
Coupling these two sources of information by tree 
species or tree type allows estimates of foliage 
volume by vertical strata. 

As an example, consider the data collected by 

~Manuscript in preparation, D. A. Wienstein, 
Environmental Science Division, Oak Ridge National 
Laboratory. 

5 Personal communication with Thomas R. Smith, 
Environmental Science Division, Oak Ridge National 
Laboratory. 
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Figure 7. Regression of tree height on diameter 
at breast height (modified from Schreuder and 
Hafley 1977). 

the modified James-Shugart techniques outlined 
here. Estimates of foliage volume from the drop 
cloth are stratified as 0-.3 m (low ground), 0.3-1 
m (high ground), 1-2 m (low shrub), 2-3 m (high 
shrub), and for the tree strata (fig. 7) as 4-9 m 
(saplings), 9-14 m (low subcanopy), 14-17 m (high 
subcanopy), and > 17 m (canopy). Estimates of 
foliage volume at different vertical strata allow 
calculation of total foliage volume as well as 
both vertical and horizontal foliage distribution 
and heterogeneity. 

Several horizontal habitat heterogeneity 
indices have been proposed (Wiens 1974, Roth 1976, 
Anderson et al. 1979). However, the technique 
used by Anderson et al., based on the variance in 
foliage volume both within and across vertical 
strata, is most amenable to data of the type 
considered here. Insights into the relationship 
between total foliage volume and bird species 
abundance, and between vertical and horizontal 
foliage heterogeneity and bird species diversity 
may arise when detailed vegetation data are 
combined with information on the spatial 
distribution of birds in the habitat. 

CONCLUDING REMARKS 

The standardized procedures outlined above 
are not meant to be a constraint on additional or 
new ways of looking at avian habitat structure. 
However, I believe that several points can be made 
in favor of some degree of standardization in 
methodology. First, standardized methods will 
clarify communication among researchers and avoid 
ambiguities in the interpretation of avian-habitat 
interrelations. Second, standardized data will 
allow researchers to address questions requiring 
comparable data sets. For example, two 



researchers who had studied the habitat relations 
of a species in different parts of its range could 
collaborate to exam~ne t"he extent of geographical 
variation in habitat "use by that species. The 
Breeding Bird Census data, with associated 
James-Shugart structural vegetation data, have 
already permitted geographical comparisons 
(Robbins 1978, Noon et al. 1980, James and Warner, 
ms) because of standardization in sampling 
methodology. Finally, once researchers and land 
managers have reached a common interpretation of 
the habitat parameters, research findings can be 
more directly incorporated into land management 
practices for avian species. 

ACKNOWLEDGMENTS 

Stanley Anderson, Deanna Dawson, Douglas 
Ink ley, Frances James, and Chandler Robbins have 
contributed extensively to the ideas presented 
here. In addition many biologists at the 
Migratory Bird and Habitat Research Laboratory 
have field tested these techniques and offered 
valuable criticism. However, I did not always 
heed the advice of my colleagues and much of the 
methodology and emphasis on "important" variables 
reflects my personal biases. 

LITERATURE CITED 

Anderson, B.W., R.D. Ohmart, and J. Disano. 1979. 
Revegetati ng the riparian floodplain for 
wildlife. p.318-331. In Johnson, R.R., and 
J.R. McCormack, technical coordinators. 
Strategies for protection and management of 
floodplain wetlands and other riparian 
ecosystems: Proceedings of a symposium 
[Callaway Gardens, Ga., December 11-13, 
1978]. USDA Forest Service General Technical 
Report W0-12, 410 p. Washington, D.C. 

Anderson, S. H., and H. H. Shugart. 1974. Habitat 
selection of breeding birds in an east 
Tennessee deciduous forest. Ecology 
55:828-837. 

Bertin R.I. 1977. Breeding habitats of the wood 
thrush and veery. Condor 79:303-311. 

Bourgeois, A. 1977. Quantitative analysis of 
American woodcock nest and brood habitat. 
Proceedings Woodcock Symposium 6:109-118. 

Cochran, W.G. 1963. Sampling techniques. 413 p. 
John Wiley and Sons, New York, N.Y. 

Cody, M.L. 1968. On methods of resource division 
in grassland bird communities. American 
Naturalist 102:107-147. 

Cody, M.L. 1978. Habitat selection and inter-
specific territoriality among the sylviid 
warblers of England and Sweden. Ecological 
Monographs 48:351-386. 

Cody, M.L., and H. Walter. 1976. Habitat 
selection and interspecific interactions 
among Mediterranean sylviid warblers. Oikos 
27:210-238. 

Conner, R.N., and c.s. Adkisson. 1976. 
Discriminant function analysis: a possible 
aid in determining the impact of forest 
management on woodpecker nesting habitat. 
Forest Science 22:122-127. 

49 

Curtis, R.O. 1967. Height-diameter and height-
diameter-age equations for second-growth 
Douglas Fir. Forest Science 13:365-375. 

DeVos, A., and H.S. Mosby. 1969. Habitat 
analysis and evaluation. p. 135-172. In 
Giles, R.H., Jr., editor. Wildlife manage-
ment techniques. The Wildlife Society, 
Washington, D.C. 

Emlen, J.T. 1956. A method for describing and 
comparing avian habitats. Ibis 98:565-576. 

Ferry, C., and B. Frochot. 1970. L' avifaune 
indificatrice d 'une foret de chenes 
pedoncules en bourgogne etude de deux 
successions ecologique. La Terre et la Vie 
24: 153-250. 

Goodall, D. W. 1952. Some considerations in the 
use of point quadrats for. the analysis of 
vegetation. Australian Journal of Scientific 
Research, Series B 5:1-41. 

Haapanen, A. 1965. Bird fauna of the Finnish 
forests in relation to forest succession. I. 
Annales Zoologici Fennici 2:153-196. 

Harris, W.F., R.A. Goldstein, and P. Sollins. 
1973. Net above ground production and 
estimates of standing biomass on Walker 
Branch Watershed. p. 41-64. In Young, H.E., 
editor. IUFRO Biomass Studies.--University of 
Maine Press, Orono, Me. 

Holt, J. 1974. Bird populations in the hemlock 
sere on the Highlands plateau, North 
Carolina, 1946 to 1972. Wilson Bulletin 
86:397-406. 

Hutchinson, G.E. 1957. Concluding remarks. Cold 
Spring Harbor Symposium on Quantitative 
Biology 22:415-427. 

James, F.C. 1971. Ordination of habitat 
relationships among breeding birds. Wilson 
Bulletin 83:215-236. 

James, F.C. 1978. On understanding quantitative 
surveys of vegetation. American Birds 
32: 18-21. 

James, F.C., and H.H. Shugart. 1970. A 
quantitative method of habitat description. 
Audubon Field-Notes 24:727-736. 

James, F.C., and N.O. Warner. ms. Forest bird 
communi ties and vegetation structure. (In 
review). 

Johnson, D. H. 1981. How to measure habitat--a 
statistical perspective. In Capen, D.E., 
editor. The use of multivariate statistics 
in studies of wildlife habitat: Proceedings 
of a workshop [Burlington, Vt., April 23-25, 
1980]. USDA Forest Service General Techincal 

_Report. Rocky Mountain Forest and Range 
Experiment Station, Fort Collins, Colo. (In 
press). 

Johnston, D.W., and E.P. Odum. 1956. Breeding 
bird populations in relation to plant 
succession on the Piedmont of Georgia. 
Ecology 37:50-62. 

Karr, J.R. 1968. Habitat and avian diversity on 
strip-mined land in east-central Illinois. 
Condor 70:348-357. 

Karr, J.R. 1971. Structure of avian communities 
in selected Panama and Illinois habitats. 
Ecological Monographs 41:207-233. 

Karr, J.R. 1976. Within- and between-habitat 
avian diversity in African and neotropical 
lowland habitats. Ecological Monographs 
46:457-481. 

. '. 



Karr, J.R., and R.R. Roth. 1971. Vegetation 
structure and aviSn diversity in several new 
world area-s. : 'American Naturalist 105:423-
435. 

Kendeigh, S.C. 1945. Community selection by 
birds on the Helderberg Plateau of New York. 
Auk 62:418-436. 

Martin, N.D. 1960. An analysis of bird 
populations in relation to forest succession 
in Algonquin Provincial Park, Ontario. 
Ecology 41:126-140. 

Niemi, G. J., and L.A Pfannmuller. 1979. Avian 
communities: approaches to describing their 
habitat associations. p. 154-178. In 
DeGraaf, R.M., and K.E. Evans, 
compilers. Management of north central and 
northeastern forests for nongame birds: 
Proceedings of a workshop [Minneapolis, 
Minn., January 23-25, 1979]. USDA Forest 
Service General Technical Report NC-51, 
268 p. North Central Forest Experiment 
Station, St. Paul, Minn. 

Noon, B. R. 1979. Climax maple-birch-beech 
forest. American Birds 33:58. 

Noon, B.R. 1981. The distribution of an avian 
guild along a temperate elevational gradient: 
the importance and expression of competition. 
Ecological Monographs. 51:105-124. 

Noon, B.R. and K.P. Able. 1978. A comparison of 
avian community structure in the northern and 
southern Appalachian Mountains. p. 98-117. 
In DeGraaf, R. M., technical coordinator. 
Management of southern forests for nongame 
birds: Proceedings of a workshop [Atlanta, 
Ga., January 24-26, 1978] USDA Forest Service 
General Technical Report SE-14, 176p. South
eastern Forest Experiment Station, Asheville, 
N.C. 

Noon, B.R., D.K. Dawson, D.B. Inkley, C.S. 
Robbins, and S.H. Anderson. 1980. 
Consistency in habitat preference of forest 
bird species. Transactions North American 
Wildlife and Natural Resources Conference 
45:226-244. 

Oosting, H. 1956. The study of plant commun-
ities. 440 p. W. H. Freeman, San Francisco, 
Cal if. 

Pfannmuller, L.A. 1979. Bird communities in 
northeastern Minnesota. M.S. Thesis, 75 p. 
University of Minnesota, Minneapolis. 

Rabe, D. 1977. Structural analysis of woodcocck 
diurnal habitat in northern Michigan. 
Proceedings Woodcock Symposium 6: 125-134. 

Rice, J. 1978. Ecological relationships of two 
interspecifically territorial vireos. 
Ecology 59:526-538. 

Robbins, C.B. 1978. Determining habitat require
ments of nongame species. Transactions North 
American Wildlife and Natural Resources 
Conference 43:57-68. 

Rotenberry, J.T., and J.A. Wiens. 1978. Nongame 
bird communities in northwestern rangelands. 
p. 59-86. In DeGraaf, R.M., technical 
coordinator. Nongame bird habitat management 
in the coniferous forests of the western 
United States: Proceedings of a workshop 
[Portland, Ore., February 7-9, 1977]. USDA 
Forest Service General Technical Report 
PNW-46, 100 p. Pacific Northwest Forest and 
Range Experiment Station, Portland, Ore. 

50 

Roth, R.R. 1976. Spatial heterogeneity and bird 
species diversity. Ecology 57:773-782. 

Schreuder, H.T., and W.L. Hafley. 1977. A useful 
bivariate distribution for describing stand 
structure of tree heights and diameters. 
Biometrics 33:471-478. 

Smith, K. G. 1977. Distribution of summer birds 
along a forest moisture gradient in an Ozark 
watershed. Ecology 58:810-819. 

Smith, R.L. 1974. Ecology and field biology. 
849 p. Harper and Row, New York, N.Y. 

Steel, R.G.D., and J.H. Torrie. 1960. Principles 
and procedures of statistics. 481 p. 
McGraw-Hill, New York, NY. 

Sturman, W.A. 1968. Description and analysis of 
breeding habitats of the . chickadees, Parus 
atricapillus and P. rufescens. Ecology 
49:418-431. -

Thomas, J.W., G.L. Crouch, R.S. Bumstead, and L.D. 
Bryant. 1975. Silvicul tural options and 
habitat values in coniferous forests. p. 
59-86. In Smith, D.R., technical 
coordinator. --Management of forest and range 
habitats for nongame birds: Proceedings of a 
symposium [Tuscan, Ariz., May 6-9, 1975]. 
USDA Forest Service General Technical Report 
W0-1, 343 p. Washington, D.C. 

Thomas, J.W., R.J. Miller, H. Black, J.E. Rodiek, 
and C. Maser. 1976. Guidelines for 
maintaining and enhancing wildlife habitat in 
forest management in the Blue r4ountains of 
Oregon and Washington. Transactions North 
American Wildlife and Natural Resources 
Conference 41:452-476. 

Titterington, R.W., H.S. Crawford, and B.N. 
Burgason. 1979. Songbird responses to 
commerical clear-cutting in Maine spruce-fir 
forests. Journal of Wildlife Management 
43:602-609. 

Whitmore, R.C. 1975. Habitat ordination of 
passerine birds of the Virgin River Valley, 
southwestern Utah. Wilson Bulletin 87:65-74. 

Whitmore, R.C. 1977. Habitat partitioning in a 
community of passerine birds. Wilson 
Bulletin 89:253-265. 

Whitmore, R.C. 1979. Temporal variation in the 
selected habitats of a guild of grassland 
sparrows. Wilson Bulletin 91:592-598. 

Wiens, J.A. 1969. An approach to the study of 
ecological relationships among grassland 
birds. 93 p. Ornithological Monographs 8. 

Wiens, J.A. 1973. Pattern and process in 
grassland bird communi ties. Ecological 
Monographs 43:237-270. 

Wiens, J.A. 1974. Habitat heterogeneity and 
avian community structure in North American 
grasslands. American Midland Naturalist 
91:195-213. 

Wight, H.M. 1938. Field and laboratory technique 
in wildlife management. 105 p. University 
of Michigan Press, Ann Arbor, Mich. 



Appendix I 

Life form~ ~nd,babitat features 

A. Life forms and habitat features to be discrim
inated as line-intercept variables. 

B. 

Grasses - Narrow-leafed herbaceous plants 

Forbs - Broad-leafed herbaceous plants 

Woody ground cover - Woody vegetation < 1 m 
tall 

Shrubs - Woody vegetation > 1 m tall and < 3 
em dbh 

Sap~ings - Woody vegetation > 1 m tall and 3 
em < dbh < 8 em - ~· 

Trees - Woody vegetation ~ 8 em dbh 

Litter - Dead plant material excluding downed 
logs 

Water 

Bare ground 

Rocks 

Downed logs - Woody vegetation > 8 em dbh and 
> 1.5 m long 

Tree size 'classes based on diameter at breast 
height (dbh) (modified from James and Shugart 
1970). 

Class Label Dbh Range (em) 

s 3 ~ dbh < 8 

A 8 < dbh < 15 

B 15 ~ dbh < 23 

c 23 ~ dbh < 38 

D 38 < dbh < 53 

E 53 < dbh < 69 

F 69 < dbh < 84 

G 84 < dbh < 102 

H 102 < dbh 
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C. Ground cover life forms to be discriminated in 
circular forest plots. 

Mosses 

Ferns 

Grasses and sedges - Narrow leafed herbaceous 
plants 

Forbs - Broad leafed herbaceous plants 

Woody ground cover - Woody vegetation < 1 m 
tall 

Seedlings - Regeneration from overstory trees, 
saplings, or shrubs 

Litter -Dead plant material excluding slash 
and logs 

Slash and logs - Unrooted woody vegetation 
(usually dead) lying 
prostrate 

Rocks 

Bare ground 

':' 



Appendix II. Field data sheet for non-forest habitat(~ 25 percent cover by trees). 

LINE INTERCEPT VARIABLES 

TRANSECT Bare Downed Woody veg. Shrubs ( z. 1m Saplings 
}~:~2 8) INTERVAL ground Rocks Water Litter logs Mosses Grasses Forbs (<1m tall) tall ,<3cm db h) (3s;dbh<.8) 

1 

2 

3 

4 

5 

NEAREST TREE IN EACH QUARTER 
NE SE sw NW 

POINT Species Dist. DBH Hgt. Species Dist. DBH Hgt. Species Dist. DBH Hgt. Species Dist. DBH Hgt. 

1 

2 

3 

4 

5 

NEAREST SHRUB Ill! EACH QUARTER 
NE SE SW NW 

POINT Species Dist. Hgt. Species Dist. Hgt. Species Dist. Hgt. Species Dist. Hgt. 

1 

2 

3 

4 

5 

VERTICAL FOLIAGE DENSITY (II of contacts in each height interval 
0-C. 3m 0. 3-1 m 1-2m 2-9m >9m 

POINT N E s w T N E s w T N E s w T N E s w T N E s w T 

1 

2 

_3 __ 

4 

5 

Appendix III. Field data sheet for forest habitats (> 25 percent cover by trees). 

1·4 I 5-8 9-11 l 12-15 I 16·17 I JB-20 I Latitude ;~itude 34-37 I Di!l'tar.ce I 42-46 I 
47-51 

Bird sp. Quad Plot Circle I state I county j 21~2_2rr29 ,~'2. 3_~·3113,.,33 Elevation to edge. Date Observers 

I I I I I 
18 TREE 9-\1 s 1 ~- i.: ,1,. 15·17 B JB-20 c 21-23 D 24-26 E 27-29t" 30-32(; JJ-35H 

Genus species 3-8 em 3-15 15-23 23-38 38-53 53-69 69-84 84-102 >102 

SHRUBS Numb<'r of stE>ms intersected CANOPY COVER llH Dominant shrubs (;;..1m taU, < 3cm db h): 

I I J I I 1-8 
N s E w %0% coniferous 1. 

Decid. ll-2 13< 156 I' 8 J n% 2. 
9 

Conif. 1• I I I I 
GROUND COVER 17 

3. 
DENSITY BOARD Count squares at least 25 

4. 
NEAREST TREE & LARGEST LOG IN EACH QUARTER 50% obscured bv green vegetation. 33 

TrE>e-:..-=:--~:\r~;~sm ~~"!~sc~;~;:~ N E s w 5. 
Dist. DBH 10· 12-13 lollS 1617 

1720 " 2225 26 2729 0-. 3m(HH-JJ) Dominant ground cover (ground-1m) 
NE 8 

30 • 3-1m(AA-GG) life forms: 
SE 26 " 

43 1-2m (K-T) 1. 
SW 34 

2. 
47 

56 -- 2-3m (A-J) 
NW 

3. 
53 

Cf.NOPY HEIGHT(m) SLOPE( 0 ) 59 

DISPERSION INDEX: I ~1e4!n 14649 1'01iin I I"" I 4. 
69-70 71-72 

Max 65 

Shrubs Ground cover ____ I I I 5. 
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HOW TO MEASURE HABITAT-A STATISTICAL PERSPECTIVE1 

Douglas H. Johnson2 

Abstract.--The present workshop reflects the increasing 
interest in the use of sophisticated statistical analysis for 
relating wildlife to their habitats. Multivariate methods 
are useful tools and their results to date have been 
promising, but closer attention to scientific principles and 
statistical requirements will prove beneficial, particularly 
when wildlife-habitat studies are used as the basis for 
prediction and management of wildlife populations. 

This paper discusses several points, some well known in 
theory but often not fully recognized in practice, others 
less well known, but ideas that should guide the researcher 
toward an improved study design that yields more credible 
results. The major points are 1) The objectives of a study 
must be clearly thought out and precisely stated in order to 
design the study properly. 2) Correlation, including its 
analogs regression and discrimination, is not necessarily 
causation. 3) If habitat variables are not measured 
accurately, a host of analytic problems can arise. 4) The 
reliability and repeatability of habitat measurements are 
important both statistically and biologically. 5) The 
question of how many observations are necessary is an open 
one, but a few methods for addressing the question are 
offered. 

Key words: Correlation; errors in variables; habitat 
studies; reliability; research design; sample size; 
scientific method. 

INTRODUCTION 

The topic I was asked to address can be 
viewed quite broadly. I chose to focus on some of 
the problems that have been encountered in my own 
consultations or have been identified as 
potentially important in published studies. The 
following ideas are not new, but, to judge from my 
experience, they are still worthy of 
consideration. Nor are the suggestions 

1Paper presented at The use of multi variate 
statistics in studies of wildlife habitat: a 
workshop, April 23-25, 1980, Burlington, Vt. 

2Statistician, U.S. Fish and Wildlife 
Service, Jamestown, ND 58401. 
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comprehensive, but attention to them will probably 
result in improved research designs. 

"THE CHOICE OF A SAMPLING STRATEGY 
DEPENDS ON THE STUDY OBJECTIVES" 

This statement is obvious, but, nonetheless, 
it seems too frequently disregarded, particularly 
in studies intended by investigators to "learn all 
we can." I will illustrate the point in a 
simplified example. Suppose we are interested in 
bobolinks (Dolichonyx oryzivorus) in grasslands of 
North Dakota. If I hold as the prime objective an 
accurate estimate of bobolink breeding density, I 
might proceed as follows. Stratify the state into 
regions based on physiography and/or prior 
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Figure 1. Hypothetical curve indicating the 
response of a species to an environmental 
gradient X. Solid line indicates average 
density; dashed lines denote range in density. 

knowledge of bobolink densities. Select sample 
units of land within each stratum, the sample size 
proportional to the area of the stratum and to the 
anticipated standard deviation of bobolink counts. 
Suppose the bobolink responds to some habitat 
gradient X, which might be an east-west gradient 
in precipitation, as shown in figure 1. The 
average density is indicated by the solid line; 
the dashed lines denote ranges anq reflect 
variability about the average. To estimate most 
accurately the mean bobolink density, I would 
sample most intensively those strata containing 
land units with values of the habitat gradient 
between XA and XB, where bobolink densities, and 

their standard deviations, are greatest. I would 
sample at a low rate the strata of marginal 
habitats, in which X < XA or X > XB. Random 

sampling is necessary here to insure valid 
estimators of the precision of the mean. As a 
sideline, I might also measure vegetational 
features associated with each sample unit. 

If, on the other hand, I am not so interested 
in estimating density as I am in determining 
relationships between bobolinks and grassland 
habitat features, perhaps for predictive or 
management purposes, I would proceed differently. 
I would then sample the units as much throughout 
the feasible region as possible, trying to get 
points all along the gradient. I would be 
particularly interested in marginal habitats for 
bobolinks, because some features there are 
presumably .limiting the bird, and those features 
merit detailed study. Random sampling in this 
situation may help eliminate misleading results 
caused by selecting nonrepresentative units. 

In general, when the objective of estimating 
the mean is foremost, we should sample most 
intensively where birds are common. If we are 
interested in determining relationships, we should 
sample more evenly along the gradient of habitat 
features. This is but a simple example of how 
specific objectives dictate the design of research 
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and analysis of data that result. 

"CORRELATION IS NOT NECESSARILY CAUSATION" 

This caveat needs to be remembered as we 
proceed with linear or nonlinear models involving 
numerous and often highly intercorrelated 
variables, all of which are uncontrolled by the 
investigator. Educational statistics provide a 
classic example. Among grade school children, 
performance on scholastic achievement tests is 
positively correlated with body weight. Yet 
parents, desirous of improving their childrens' 
scores, would be ill-advised to fatten them in 
preparation for testing, because the correlation 
is spurious: older children tend to perform 
better in the tests than younger ones, and they 
also are likely to be heavier. This example may 
be so obvious as to appear trite, but the 
analogous situation can occur readily and less 
overtly in wildlife-habitat studies, in which the 
plethora of variables and paucity of knowledge 
about their true relationships can promote 
misconceptions. Given enough variables and access 
to a high-speed computer, nearly anyone can find a 
11 significant" association among some of the 
variables. 

"ERRORS IN VARIABLES CAN BE TROUBLESOHE" 

Consider the linear model 

This form ordinarily represents a regression model 
but discriminant analysis can be viewed in the 
same manner if Y is a dummy-variable indicator of 
group membership (Lachenbruch 1975). 

In the usual formulation, the X's are assumed 
fixed and known quanti ties, measured without 
error. In actual practice, however, particularly 
in ecological work in which the X' s are habitat 
measurements, errors of unknown magnitude often 
creep in. I personally suspect them to be large 
more often than not. 

Errors in the X's lead to biases in the 
regression coefficients. A bias is induced 
whether error~ are systematic, reflecting a bias, 
or simply random, reflecting added variability. 
Suppose the true relationship between, say, bird 
density Y and a vector of habitat features X is 
given by equation (1), but the X's are-not 
measured exactly; instead ~ is measured, where 
Z = X + o and o is an error of measurement. Many 
sources-of error may contribute to o. For 
example, sampling variability is usually -present; 
the entire habitat of the animal is not measured, 
only a sample of it. There is often instrument 
error; the measured variable may not be exact. 
Temporal variability may contribute (Whitmore 
1979); habitat measurements may not reflect 
conditions at the time the animals selected the 
habitat. More generally, the wrong variable may 
be measured because the correct one is not known. 



Suppose that Z is unbiased for !• that is 
E (6) = 0, and the v~riance-covariance matrix of 6 
is D, a diagonal m~t:rix. The diagonality implies 
that errors asso'ci1ted with measurements of 
different habitat features are uncorrelated. 

The regression coefficients are biased 
(Davies and Hutton 1975, Seber 1977), and the bias 

-1 "'" vector can be estimated by n(Z'Z) De. Z is the 
matrix containing the Z vectors for all 
observations and n is the sample size. Note that 
the biases tend to increase in absolute magnitude 
as D becomes large and as Z 'Z becomes less well 
conditioned. That is, the biases increase when 
measurement errors increase and when highly 
correlated variables are included. These two 
conditions are, I believe, very common in 
ecological practice. 

Errors in measured variables affect not only 
the estimated coefficients, but also their 
standard errors. The biases here might be either 
positive or negative, depending on values of the 
coefficients and the variances (Bloch 1978). 
Generally, however, the magnitude of the biases 
will not be unduly large if errors of measurement 
are reasonably small (Hodges and Moore 1972, 
Davies and Hut ton 1975). Regardless of whether 
the standard error is biased positively or 
negatively, in the case of one explanatory 
variable, the "t" statistic for assessing the 
significance of that variable will be biased low 
(Bloch 1978). This feature could cause a truly 
important habitat variable to be eliminated as 
nonsignificant. Also, the multiple correlation 
coefficient may be diminished (Cochran 1970), 
possibly to , the point that the entire set of 
explanatory vari~bles is nonsignificant. 

Errors in measured variables tend to deflate 
regression coefficients associated with those 
variables and to lead an ecologist to claim 
unjustly that their effects are insignificant. 
The impact of this problem may be particularly 
severe when the resulting models are used for 
prediction and/or management. Hodges and Moore 
(1972) noted that any bias in the regression 
coefficients will be transmitted into a biased 
forecast. They also reported several studies in 
which predictions were available based either on 
accurately measured predictor variables or on 
inaccurate (preliminary) values of those 
variables. The increased error resulting from the 
use of inaccurate variables was often striking. 

The problem of errors in variables is often 
glossed over by use of a conditional argument. 
The relationship between Y and X is explored, 
given that values of X were observed values Z. 
This line of reasoning is not clearly stated, 
perhaps not clearly understood, and certainly of 
minimal value in prediction and management; the 
manager is not interested only in habitats 
possessing those exact values. 

The general problem of errors in variables 
seems to have been ignored in ecology; most 
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applications have been in economics. Moreover, 
most attention has been given to multiple 
regression, although limited work has been done 
with factor analysis (Lawley and Maxwell 1973, 
Chan 1977). 

Davies and Hutton (1975) and Seber (1977:159) 
presented some working rules for evaluating the 
effect of errors in variables. If an independent 
batch of data is available, it is instructive to 
calculate the reliability of each measurement: 

gi = Var(X1 )/Var(Zi) 

= Var(Xi)/[Var(Xi) + Var(6i)]. 

Reliability values appreciably below should 
raise some suspicions about the role of the 
corresponding variable in the analysis. 

At least until the problem is more fully 
explored, it seems prudent to design ecological 
studies so that habitat features are accurately 
measured and relatively independent of one 
another. 

"VARIABLES SHOULD BE MEASURED RELIABLY" 

The argument just offered suggests that 
habitat variables should be measured accurately, 
in order to reduce D as much as possible and 
minimize bias in the regression coefficients. 
There is a further reason for improved 
reliability: measurements should be repeatable. 
This feature will become increasingly valuable as 
studies evolve from their local orientation 
involving single study areas and are replicated by 
different researchers in different locations. To 
truly define the niche of a species requires 
studies beyond a single woodland; the species must 
be studied in many parts of its range. To that 
end, it is mandatory that measurements be reliable 
and without serious variability due to observer, 
season, occasion, or other causes. 

Precious little is known about intra-observer 
and inter-observer sources of variability in 
habitat measurements, and how they compare with 
differences that are of interest. Ecologists 
either do not like to make these comparisons or, 
if they do, prefer not to discuss them. 

THE FINAL QUESTION - "HOW LARGE A SAMPLE?" 

As a consulting statistician, the first 
question I am usually asked is how many 
observations are necessary. I generally respond 
with one of three numbers: 1, 50, or "great gobs." 
The former answer, 1, is given occasionally when I 
believe the hypothesis is stated incorrectly, or 
in too much generality; a single observation is 
likely to refute it. The latter answer, great 
gobs, is given when no hypothesis is at hand, or, 
if there is one, it is so slippery as to evade 
capture and possible rejection. Neither answer 
satisfies the biologist, of course, but either 
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serves as a necessary P.rel ude to sitting down and 
thinking about .~n,. appropriate hypothesis. The 
middle answer, 50, ;or possibly 100 or 10 or 30, is 
given when the hypothesis is well stated and the 
experimental procedures thoughtfully described. 

I can only give here some general guidelines 
for determining sample size. First, more 
ob serv at ions are needed when the number of 
variables is large. Many published studies have 
only slightly more observations than variables, or 
sometimes even fewer. An appropriate m1n1mum 
sample size might be 20 observations, plus 3 to 5 
more for each variable in the analysis. Larger 
sample sizes help to overcome difficulties caused 
by violations of the assumptions of multi variate 
methods (Green 1979:165). 

Second, examine the stability of the 
estimates, both means and variances. This can be 
done in several ways, for example, by sampling 
sequentially, until the mean and variance 
stabilize. Once the data have been gathered, the 
stability of the results can be assessed by 
subsampling, jackknifing, leaving-one-out methods, 
etc. If the data set is split randomly into two 
halves, does each half yield conclusions 
consistent with the other? Better yet, apply the 
results to another area, or a different year. 
What predictive value do they have? 

Third, investigate the sources of 
variability, and how they compare in magnitude. 
Observer variability, temporal variability, 
variability in measurement method, and others all 
add up to cloud the variability between features 
that animals may be responding to. Calls for 
larger sampl'es are the "knee-jerk" reaction when 
variability is excessive, but it may be far more 
advantageous to try instead to reduce this 
variability by better design. 

CONCLUSIONS 

It is useful to distinguish two kinds of 
research, exploratory and confirmatory. In 
exploratory investigations, the researcher is 
simply trying to "see what's going on" with 
respect to a system. This preliminary 
reconnaissance is for the purpose of hypothesis 
generation and will likely entail at least a 
cursory examination of many variables, in order to 
determine those that might be influential. In 
exploratory research, a variety of stepwise and ad 
hoc procedures are acceptable. Results of an 
exploratory investigation are hypotheses for 
further testing, not \oJell founded conclusions on 
which management practices can credibly be based. 
For the more definitive answers necessary for 
prediction and management, confirmatory research 
is needed. 

A confirmatory investigation is more in the 
mold of a classic scientific experiment, in which 
a hypothesis is stated, an experiment conducted to 
test that hypothesis, and the outcome used either 
to reject the hypothesis or to retain it. It i's 
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clear that this research, unlike the exploratory 
investigation, demands a precise hypothesis, 
clearly stated and unambiguous. The design also 
needs to be rigorous and the analysis must be 
statistically correct. A fresh set of data must 
be brought up; the data used in the exploratory 
stage to generate a hypothesis cannot be 
resurrected in the confirmatory stage to test it. 
Confirmatory research is more difficult to apply 
to ecological problems than is an exploratory 
investigation, but management of ecological 
systems requires the more definitive methods if it 
is to prove successful. The following suggestions 
are offered for an investigator planning a 
confirmatory study of habitat in relation to 
wildlife. [Green (1979) · presented "ten 
principles" for environmental studies, many of 
which are equally applicable to wildlife-habitat 
studies.] 

1. Think carefully about the objectives of 
the study and ask yourself, and other qualified 
scientists, if the procedures are truly designed 
to meet those objectives. 

2. Remember that correlation (as well as 
regression and discrimination) is not necessarily 
causation. 

3. Try to obtain habitat measurements that 
are relatively uncorrelated, to avoid the bias 
associated with the errors-in-variables problem, 
and for other good reasons as well. This approach 
appears far preferable to many ex post facto 
methods for reducing the number of variables, such 
as stepwise procedures and principal components 
analysis. 

4. Learn about the kinds of variability in 
the measurements. Would the same values be 
obtained tomorrow as today? Would another 
qualified investigator record the same values? 
How different would another randomly selected 
point be? Answers to questions such as these will 
not only help assess the bias due to the 
errors-in-variables problem, they will also 
facilitate cooperative and comparative studies. 

5. Sample sizes should be large, especially 
in relation to the number of variables involved. 
Samples should be large enough to yield stable and 
reliable estimates, but methods of reducing the 
inherent variability of measurements may be more 
fruitful than simply increasing the sample size. 

6. And finally, for the ecologist, consult 
your friendly neighborhood statistician. Consult 
him early, in the project design phase. Consult 
him often, as data-gathering proceeds. Then, when 
you consult with him about analysis and 
interpretation, he will be of much better humor 
and of far greater benefit to you. 
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DISCUSSION 

JIM WOEHR: Is a distribution of plots system
atically with respect to space a random sample of 
plants? 

DOUGLAS JOHNSON: No, but it may be adequately 
represented by a model of randomness. The crucial 
issue is to define the population of which the 
sample is representative. Random sampling insures 
that condition if the sample is infinitely large, 
although finite ones can certainly be mi srepre
sentative. The Bayesian concept of exhangeability 
is analogous. 

The immediate question is whether the plants 
might conceivably vary sysmatically in space. In 
North Dakota, for example, plots located 1 mile 
apart might not give a representative portrayal of 
the plants. . If the initial transect was along a 
roadside, most subsequent ones would be also, and 
smooth brome (Bromis inermis), for instance, would 
appear much more-commonly in the plots than in the 
state as a whole. An interval of a different 
length between plots could yield rather accurate 
results, however. 
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DISCRIMINANT ANALYSIS IN WILDLIFE RESEARCH: 

THEORY AND APPLICATIONS1 

Byron Kenneth Williams2 

Abstract.--Discriminant analysis, a method of analyzing 
grouped multivariate data, is often used in ecological 
investigations. It has both a predictive and an explanatory 
function, the former aiming at classification of individuals 
of unknown group membership. The goal of the latter function 
is to exhibit group separation by means of linear transforms, 
and the corresponding method is called canonical analysis. 
This discussion focuses on the application of canonical 
analysis in ecology. In order to clarify its meaning, a 
parametric approach is taken instead of the usual data-based 
formulation. For certain assumptions the data-based 
canonical variates are shown to result from maximum 
likelihood estimation, thus insuring consistency and 
asymptotic efficiency. 

The distorting effects of covariance heterogeneity are 
examined, as are certain difficulties which arise in 
interpreting the canonical functions. A "distortion metric" 
is defined, by means of which distortions resulting from the 
canonical transformation can be assessed. Several sampling 
problems which arise in ecological applications are 
considered. It is concluded that the method may prove 
valuable for data exploration, but is of limited value as an 
inferential procedure. 

Key words: Canonical analysis; covariance hetero
geneity; discriminant analysis; eigenvector. 

INTRODUCTION 

Discriminant analysis is a technique which 
has come to be much used in ecological 
investigations. It is applicable to the study of 
niche breadth, niche overlap, resource 
partitioning, habi t.at selection, community 
structure, and many other topics. In fact the 

1 Paper presented at The Use of multi variate 
statistics in studies of wildlife habitat: a 
workshop, April 23-25, 1980, Burlington, Vt. 

2 Biometrician, U.S. Fish and Wildlife 
Service, Migratory Bird and Habitat Research 
Laboratory, Laurel, MD 20811. 
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methodology is potentially useful for any 
ecological situation in which an association is 
desired between well defined groups and a set of 
ecologically meaningful measurements. 

The data for a discriminant analysis comes to 
the investigator in the form of a categorical 
"response" variate and a corresponding set of 
(usually continuous) "predictor" variates. One of 
the objectives of the analysis is to predict the 
category to which an observation belongs, based on 
values of the predictor variates and an 
appropriate underlying statistical model. Such a 
formulation is essentially classificatory, and the 
prediction equations which result are called 
classification functions. Alternatively, the 



Table 1. Examples of discriminant analysis from the ecological literature. A 
numb.er' of measurements are made on each sample, and samples are aggregated into 
groups-according to a grouping index. 

Groups defined by Observation measurements Authors 

Faunal species habitat structural 
characteristics 

Green (1971, 1974); James 
(1971); Bertin (1977); 
Cody (1978); Dueser and 
Shugart (1978, 1979) 

Vegetation species faunal species abundances Ricklefs (1977) 

Species presence/ 
absence 

habitat structural 
characteristics 

Anderson and Shugart 
(1974); Conner and 
Adkisson ( 1976) 

Animal behavior habitat structure, climate Conroy et al. (1979) 

Season photosynthetic rates Kowal et al. (1972) 

Species and sex behavioral measurements Conley (1976) 

Geographic area 

Abiotic categories 

Artificial classes 

vegetation densities 

habitat factors 

vegetation densities 

Norris and Barkham (1970) 

Smith (1977) 

Grigal and Goldstein 
(1971); Goldstein and 
Grigal ( 1972) 

Faunal species meristic and morphometric 
characteristics 

Montanucci (1978) 

Faunal species song and feeding behaviors 
1978c) 

Rice (1978a, 1978b, 

Geographic area faunal abundance Buzas ( 1967) 

Soil groups chemical concentrations Horton et al. (1978) 

Socially defined 
breeding demes 

body measurements 

objective of the discriminant analysis may be to 
establish optimal "separation" of groups, based on 
certain linear transforms of the predictor 
variates. This latter approach aims at 
interpretation as well as prediction, and the 
linear functions used to explain group separation 
are called canonical variates. As indicated 
below, under certain distribution assumptions the 
classification approach to discriminant analysis 
is logically consequent to the canonical analysis. 
It can be shown (Williams, publication submitted) 
that the canonical variates themselves may be used 
to develop a classification procedure entirely 
equivalent to that produced by the predictive 
methodology. 

Applications of discriminant analysis in the 
ecological literature are many and varied. A 
substantial proportion of these, though by no 
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Buechner and Roth (1974) 

means all, concern the assessment of 
species-habitat associations. There is a 
preponderance of applications to avifauna and, to 
a lesser degree,. to small mammals. Many are 
single-species studies in which groups are 
determined by presence or absence of an individual 
species. Table 1 displays some examples of the 
use of discriminant analysis reported in the 
literature. As indicated in the table, the 
grouping index can range over many different 
attributes, from vegetation types to faunal 
species to artificial classes built by clustering 
procedures. The corresponding measurement 
variables can range over a variety of habitat 
measurements, such as plant densities or 
vegetation structure characters, and faunal 
measurements such as species abundance or 
behavioral and morphological characteristics. 



(aJ lbl 
Figure 1. Partition of an environment by species utilization. (a) The 

unpartitioned environment, at each point of which there corresponds a 
vector ~· (b) The environment partitioned into species-specific 
habitats. 

Most of these studies involve the use of 
canonical variates at some point in the 
investigation. Observations are plotted in a 
"canonical space" of reduced dimensionality, and 
the patterns displayed are interpreted. Attempts 
generally are made to interpret the canonical 
functions themselves, often by an examination of 
coefficients. These efforts are hampered by 
certain statistical and conceptual difficulties 
which arise in applications with ecological data. 

In view of the increasing use of canonical 
variates in ecological investigations, this paper 
focuses on the theory and applications of 
canonical analysis. For purposes of elucidation 
the general probability model for discriminant 
analysis is introduced below, along with a brief 
description of linear classification based on it. 
Then canonical analysis is investigated from the 
point of view of vector transformations. My goal 
is to specify precisely the model, the estimation 
procedures and the geometric logic of canonical 
analysis. A geometric approach, by clarifying the 
structure of canonical analysis, reveals the 
importance of its statistical assumptions and the 
possible consequence of their violation. 

PROBABILITY STRUCTURE 

The probability structure to which 
discriminant analysis applies is specified as 
follows. Consider a mixture of g populations 
1T 1 , •.. ,'1rg with mixing proportions q1 , •.• qg, 

represented by the vector g. Associated with each 
individual in the mixture is a vector [i,x']' of 
p+1 components, the first of which (i) specifies 
population membership. The remaining p components 
in ~ are a set of measurement values associated 
with the individual. Random selection from the 
mixture defines a random variable I for population 
membership and a random vector ~ of measurement 
values. The probability structure of the mixture 
is defined by a set of distributions: 
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( i) P (I = i) = qi 

the probability that an individual chosen at 
random from the mixture is in population 1r. (the 
values in g are often called prior probabilities); 

(ii) fXII<~Ii) = fi(~), 

the conditional distribution of X over the 
population 1T.. If the set of conditional 
distributionlf1{x), ... ,f {x) is given as t_he - g-

vector f, then the mixture is represented by an 
ordered -pair (_f,g). 

For the ensuing discussion it may be of value 
to think of the sampling universe, denoted by H, 
as a habitat which is partitioned by way of 
species utilization. A set of habitat variables 
is measured on each sample plot, for example 
canopy height, ground cover and shrub density. 
These variables have a frequency distribution f(~) 
over the habitat H with mean ~ and covariance ~T· 

In addition, each plot has associated with it a 
variable which indicates which species utilizes 
it. This variable partitions H into specific 
habitats, each with its own frequency distribution 
f. ( x) of habitat variables. The proportion of H 
wfti~h is included in the habitat of species i is 
q .. Such a partitioning is shown in figure 1 for 
tftree groups. 

Figure 1 (a) indicates the sampling universe 
H, over which can be measured vector values of x. 
The distribution of x over H is given by f( xT, 
with mean ~ and covariance ~T. No partitioning 

principle is involved in this distribution. In 
Figure 1(b) H has been partitioned into three 
subsets. The values that x can take in subset H. 
define the conditional distribution fi(~) witft 
mean~. and covariance L •• Mixing proportions q. 
specifg the proportion or H constituted of H., ana 
the relationship of moments in parti tionetl and 
unpartitioned spaces is given by 



and 

where 

and 

,IT = ! + !_, 

g 

A =. L qi (l!.i - ..!:!.) (.l!i - ..!:!.) I • 

1=1 

It is, of course, not required of the 
specific habitats that their corresponding 
measurements x be grouped into disjoint sets. H. 
and Hj may both contain pl~ts characterized by th~ 

same measurements x, and in fact the range of 
measurements may be-identical over Hi and Hj. It 

is necessary, however, that the statistical 
distribution of habitat values differs across 
species. Discriminant analysis seeks to highlight 
these among-group statistical differences. 

CLASSIFICATION PROCEDURES 

The classification problem may be stated in 
terms of the structure exhibited above: to 
predict population membership for an individual 
chosen from (f. ,g) , given that ! = .! . Stated 
differently, the problem is to classify 
individuals ·into one of the g populations based on 
observed values .!· Classification is determined 
by 

P[I = i I! = _!]' 

the probability that a sampling unit with observed 
values .! is a member of population 1r.. A 
procedure which minimizes classification er}or is 
to assign an individual to 1ri if 

P[I = il! =_!]=max {P[I = jl!_ = _!]:j = 1, .•• ,g}. 

Since 

qifi(_!) 

P[I=il!_ = _!] = g 
1: q.f.{x) 

j:1 J J -

this procedure is equivalent to classification 
based on 

qifi(_!) =max {q//_!): j=1, ••• ,g}. 

The earliest and best developed discriminant 
methodology assumes a multivariate normal 
distribution. That is, the conditional 
distribution of predictor variates is given by 
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where i indexes population 1r. and ~-, 1:. are the 
corresponding mean vector ahd covcfriaJce matrix. 
Linear discrimination results for the assumption 
of covariance homogeneity: 

!i = l' i = 1 ' ••• 'q. 

In this case the conditional distributions can be 
rewritten in group-specific terms: 

f.(x) = (21T)-p/2 1!1- 112 exp[1/2~'l- 1~J 
1-

[( ) ' -1 ] exp .! - 1 /2 l!i _I l!i 

-1 
= w(_!)exp[(_!- 1/2 l!i)'! l!i], 

where w(_!) is free of group-specific parameters 

l!i· 

For these distributions the optimal 
classification rule may be simplified by noting 
that 

qifi(_!) ~ qjfj(~) 

if and only if 

Since 

and ln w(x) has no discriminating power, 
classification rule can be specified with 
linear function 

the 
the 

The procedure is to classify an observation into 
group i, based on the observed values_!, if 

Li(_!) =max {Lj(_!)lj=1, ••• ,g}. 

This is simply Fisher's linear discriminant 
function (Fisher 1936). When l!.i, l_, and qi are 
unknown, the maximum likelihood estimates may be 
used in the expression for L. ( x). A substantial 
body of literature exists ~n the statistical 
consequences, especially in error rate analysis, 
of this replacement (see, e.g., Toussaint 1974). 

SAMPLE-BASED CANONICAL ANALYSIS 

A different approach to discrimination, which 
sometimes yields additional information about 
group differences, is based on the use of 
canonical transformations. The usual data-based 
methods of canonical analysis involve the 
determination of linear transforms 

',; .· 



z = a'x 

which maximize 

g 
E n. ( z. 

i=1 1 1 

where 

and 

z = a'x. i - -1 

-z)2/ ~ ni 
" E ( z. j 

i=1 j:1 1 

g -
z = ~' ( 1 /n. E ni.!_i). 

1=1 

In these expressions n. is the sample size for 
1 

population 
g 

'11". and n= E n .• If the data 
1 

i=1 
1 

sample from the mixture (_f,_g) are aggregated 

g n. 
T = E 1:1 (x .. - x) (x .. - ~)I 

j=1 -1J - -1J 

= 

i=1 

g n. 
E 1:1 (X .• - x.) (x .. -

i=1 j:1 -1J -1 -1J 

g 
+ L n. (x. - ]) (_!i - x) I 

i= 1 1 -1 

= !!. + ]., 

X.) I 
-1 

for a 

by 

then the procedure above is formally equivalent to 
finding eigenvectors corresponding to the g-1 
non-zero eigenvalues from 

[]. - A !!_] ~ = Q.. 

These eigenvectors define g-1 canonical variates 

zi = ~i '..!• i=1, .•• ,g-1 

which are often described as linear transforms 
which "maximize among-group variation relative to 
within-group variation." 

PARAMETRIC CANONICAL ANALYSIS 

Under certain probability conditions this 
intuitive and essentially non-parametric method 
can be generated by a parametric procedure which 
considers linear transformations of population 
means. The goal once again is to establish 
separation of group means, but in this instance 
the focus initially is on population differences 
and the parameters characterizing them. Data 
enters the analysis by way of parameter 
estimation, at which point the appropriate 
computing forms can be developed. This approach 
in some sense reverses the foregoing data based 
analysis: rather than manipulating data into a 
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statistic by which to interpret sample structure, 
a geometric focus emphasizes the parametric 
structure which then is estimated with the data. 
The intended result from this orientation is a 
sharpening of the assumptions for canonical 
analysis and a clarification of its utility for 
inferences in ecological studies. 

Consider the group means ~-, i=1, ••• ,g and 
common dispersion l· ~le seek -ln the canonical 
analysis to describe the separation of these means 
in a statistically meaningful way. The global 
mean of the population mixture (£, ~) is given by 

l! = 
g 

E q. ~-' 
i= ,1-1 

and the population deviations l!i - ~ are defined 
by the difference between group and overall means. 
Let L be any arbitrary line through l! with 
direction cosines ~· Then the projection of 
J!i - ~ onto L is a vector with squared length 
g1ven by 

di [a' (.!!.i - ~)]2 

= a'(~. - ~)(~. -~)'a. 
- -1 - -1 - -

The average of squared lengths is 

g 
E q.d~ 

i=1 1 l 

g 
E qi~'(.!!.- ~)(J!- .!!.)'~ 

i =1 

g 
= a ' [ L q . ( l.l . - J!) (]:! - J!) ' ] ~ 

i=1 l -1 

= ~'! ~· 
which is maximum for some particular direction a* 
of the projection line. It can be shown that a* 
is the dominant eigenvector of A. The optimal 
direction which is orthogonal to- a* is given by 
the second dominant eigenvector of-_!, and so on. 
Since ! is of rank g-1 there exist g-1 orthogonal 
directions by which to separate means, 
corresponding to the non-zero eigenvalues of !· 

The use of a* (and the remaining eigen
vectors) to separate group means is optimal in the 
sense that for no other projection line is the 
average of squared distances between means as 
large. This method is suboptimal, however, in 
that it does not account for variances and 
covariances within each population. The failure 
to accomodate the covariance structure can lead to 
two highly undesirable results. First, variates 
with high variation (and therefore low information 
content) have the same influence on the analysis 
as do variates with low variation (and high 
information content). Second, the effect of 
weighting highly correlated variables equally is 
to base the analysis less on statistical content 
than merely on the number of variates included in 
it. In such a situation one could force group 
separations to reflect any arbitrarily chosen 
variate merely by including additional positively 



correlated 
distortions 

variates in the 
and abritra~iness 

analysis. Such 
are precisely the 

kinds of effects which motivate the use of ~- 1 in 
the Mahalanobis distance formula. 

Canonical analysis includes the same 
adjustment, the effect of which is to eliminate 
covariances and unequal variances. This 
adjustment utilizes a square-root factorization 

E
112 of E to define new variables 

X* -- -1/2 ~ _! 

-1/2 
with conditional mean ~ .!!.i and identity 
covariance (Graybill 1976). TYius the original 
variates are transformed into unit variance, 
uncorrelated variates, eliminating ambiguities and 
distortions. 

The same projection argument as above may be 

-1/2 
used on the transformed means ~ .!!.i. The 
corresponding deviations are 

-1/2 
~ (.!!.i - _!!). 

and the least squares lines fitting these 
deviations are based on a spectral decomposition 
of 

g 
-1/2 ( -1/2 

E qi 1 J!i - ..!:!.) (_!!i - ..!:!.) ' 1 
i=1 

-1/2 -1/2' 
=! A1 
The corresponding matrix equation is 

[ -1 /2 -1 /2' 
1 !1 A I] ~ = .Q_, 

which may be written as 

-1/2 -1/2' 
1 [! - A !] ! ~ 0 

or 

( 1 ) 

where 

-1/2' 
.!! =! ~· 

Canonical variates are then given by 

' ~ = ~ _!* 

' -1/2 
v l _! 

= .!:! .!· 

There are g-1 such variates, corresponding to the 
non-zero eigenvalues of equation (1). They may be 
represented by the canonical transform 

' ~ = Q ~. (2) 

where the columns of U are vector solutions of 
equation ( 1). 
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In most situations none of the parameters for 
the population mixture is known with certainty, 
and they must be estimated from the data. Assume 
that a random sample of size n from the population 
mixture is obtained, n. of which are from 
population 1T.. Based on the multivariate normal 
assumption \he following maximum likelihood 
estimates result: 

n./n 
1 

g n. 
1 I ( n-g) E E 

1 
( x . . .... x. ) ( x . . - x. ) ' 

i=1 j=1 -1J -1 -1J -1 

g 
E 

i =1 

1/n B = 

g n. 
1/n E E1 

i=1 j=1 
.!ij 

g 
1/n E n. (x. - x)(x. - x)' 

i=1 1 -1 - -1 

When these maximum likelihood estimates are used 
in equation ( 1) in place of the population 
parameters, the equation becomes 

( 3) 

or 

[1/n ~- A§_] _!:! 

1/n [B n/(n-g) A ~] _!:! 

= 0 

Equation (3) has the same eigenstructure as does 

[~ - A ~] _!:! = 2_. 

The effect of n/(n-g) is to scale the eigenvalues, 
leaving eigenvectors unchanged. This can be seen 
by 

[~- A n/(n-g) ~ J.!! 

= w1/2 [~-112 ~ ~-1/2'-A n/(n-g) IJ ~1/2'.!!· 

from which it follows that n/(n-g) A is an 

eigenvalue and 
1 /2' 

~ ~ the corresponding 

eigenvector of w-1/2 B H-1 /2' Therefore 
eigenvectors of 

[_!- A .V ~ 0 

and 

[~ - A ~] u = 0 

are identical. This demonstrates the equivalence 



of parametric and data-based approaches to 
canonical analysis~ given the following three 
assumptions: -

(i) the data consist of a random sample from 
a population mixture of multivariate normal 
populations; 

( ii) covariances are homogeneous across all 
populations; 

(iii) maximum likelihood estimates are used 
in place of parametric values. 

In ecological investigations it is hoped that 
an intelligent sampling plan can be combined with 
the central limit theorem to approximately satisfy 
condition (i). Also, the many advantages of 
maximum likelihood estimation make condition (iii) 
a reasonable procedure. Therefore the 
applicability of canonical analysis in ecological 
investigations seems to hinge on condition ( ii), 
the homogeneity of covariance. 

It is noted parenthetically 
canonical variates in equation 
uncorrelated and have a variance 
Furthermore, it can be shown that 

' ~i !~i = Ai' i=1, ..• ,g-1 

that the 
(2) are 

of unity. 

(Williams, publication submitted). Two extremely 
useful invariance properties follow (let the 
transformed population means be represented by 
~i = ~~~i' i=l ... ,g): 

First, relative distances are maintained in 
canonical space. That is, if Mahalanobis 
distances in observation and canonical space are 
defined by 

( ( -1 ( 0 i ~) = ~- ~i)' l ~- ~i) 

and 

respectively, then 

D.{x)- D.(x) = D.(z)- D.(z) 
1- J- 1- J-

(Williams, publication submitted). Second, group 
mean differences are also maintained: 

( ~ . - ~ . ) ' i:-1 ( ~ . ~J· ) 
-1 -J - -1 

<ni- nj)'(ni- nj). 

This last result is of obvious importance in the 
study of resource partitioning and niche overlap 
(MacArthur and Levins 1967, Harner and Whitmore 
1977). 

INEQUALITY OF COVARIANCES 

It remains to rationalize the procedures of 
canonical analysis under the assumption of unequal 
conditional covariance matrices. Given conditions 
(i) (iii) above, the canonical analysis 
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represents a statistically meaningful attempt to 
optimally separate population means. Its meaning 
when condition (ii) is violated becomes more 
problematic, and obviously depends on what matrix 
i: is used in equation ( 1). It should be noted 
that the square root transform, invoked to 
eliminate covariances, will most certainly fail to 
have its in tended effect when group-spec i fie 
covariances are unequal. Indeed, no matter what 
"covariance" matrix i: is used in the analysis, the 
resulting conditional covariances are still 
heterogeneous and have the form 

-1/2 -1/2' 
l !i l . 

In effect nothing of value. for covariance 
stabilization has been gained by the transform, 
and the meaningfulness of the canonical procedure 
is thrown into question. 

An often used approach is simply to use the 
overall mixture cov aria nee !T, or to use an 

"average" covariance defined by 

(4) 

That these two matrices yield the same eigen
structure can be easily shown: 

Since 

f +A 

we have 

[! - A !TJ ~ 

[! - A (_I + A)] ~ 

= [(1 -A)!- A fJ ~ 

(1 - A) [!- A/(1 - A) YJ ~ 

o. 

Therefore lT and I yield the same eigenvectors 

when used in equation ( 1). Note that when 
conditional covariances are identical, i: in 
equation (4) is simply their common value, and the 
equation 

is equivalent in its eigenvectors to equation (1). 
When covariances are unequal, however, both f and 
lT are defined only over the population mixture, 

and neither generates an eigenstructure equivalent 
to that based on individual dispersions !i· 

One result of heterogeneous covariances is 
that the canonical variates are uncorrelated over 
the mixture (£, ~), but not over the conditional 
distributions. For any given conditional 
population they may be highly correlated, and this 
greatly complicates their interpretation. 
Furthermore, the representation of conditional 
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(a) 
(b) 

Figure 2. Population representatives in observation and canonical space. 
(a) The dispersion of two populations in observation space. Canonical 
axis are superimposed by dotted lines. (b) The sample population 
dispersions in canonical space. 

populations in the g-1 dimensional space defined 
by a canonical analysis may severely distort their 
geometric configurations. An example is shown in 
figure 2. 

Figure 2(a) shows two conditional distribu
tions in observation space, one (n 1) with its 

dominant axis nearly orthongonal to the canonical 
axes z1 and z2 . Representation of these popula-

tions in canonical space is shown in figure 2(b). 
Such group specific distortions result from the 
projection of p-variate distributions into g-1 
dimensions, and they greatly complicate the 
interpretation of areas in canonical space. It 
follows that one must exercise caution in 
analyzing conditional population dispersions with 
canonical variates. This is not unexpected, since 
the fundamental purpose of discrimination is the 
assessment of group differences, rather than the 
analysis of dispersion. 

INTERPRETATION OF CANONICAL VARIATES 

The canonical analysis assumes its most 
obvious value for ecologists by providing 
interpretable transforms of data. As mentioned 
above, these transforms are specifically chosen to 
separate group means in an optimal manner. The 
canonical variates which result are uncorrelated 
linear combinations of observation variables, the 
coefficients in which may be given ecological 
interpretations. At this point in the analysis 
biological insight is of fundamental importance. 
It is, however, important to recognize certain 
limitations on interpretability with these 
transforms. 

Both magnitude and sign of the canonical 
coefficients often are used for interpretation. 
Under certain conditions, e.g., when one 
coefficient dominates all others in the canonical 
transform and the correlation structure is simple, 
this is an acceptable practice. In such a 
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situation it is fairly straightforward to assess 
the "meaning" of the canonical variate, i.e., to 
specify what it represents biologically. When the 
correlation structure is complex and there are 
several coefficients of significant size, however, 
interpretation is not so direct. The difficulty 
arises from the fact that the observation 
variables in the canonical transforms are 
correlated, some of them perhaps highly 
correlated. Individual canonical coefficients in 
this case reflect not only the influence of their 
corresponding observation variables, but also the 
influence of other variables as reflected through 
the correlation structure of the data. Most 
people who have worked with discriminant analysis 
have probably seen cases in which positively 
correlated variates have canonical coefficients 
with different signs. These apparently 
inconsistent coefficients indicate that the two 
corresponding variables include information from 
the remaining observation variates which 
influences the canonical variate in opposing ways. 
It can be shown (Williams, in prep.) that the 
correlation of the canonical variate zi and an 
observation variate xj is 

where * a ij 

= 1/1>..
1
. (a* .. + E a*.k pkJ.), (5) 

lJ k;r!j 1 

is the "standardized" canonical 

coefficient of x. in the ith canonical transform. 
J 

This expression reveals that the effect of an 
observation variable on the canonical variate is 
only partially given by the numerical value of its 
corresponding coefficient. Terms involving the 
remaining coefficients and the correlation 
structure between variables also influence the 
association between zi and xj, and sometimes this 

latter influence is predominant. It follows that 
one cannot safely interpret the coefficients 
singly. A similar argument can be made against 
interpreting pairs, triples, or any subset of 



coefficients in a canoncal function. As one might 
expect, this same problem also arises in ordinary 
least squares tegr~ssion: the values of 
individual parameters reflect the correlation 
structure of the data. For complex structures, 
magnitudes and even signs of coefficients are 
dependent on what additional variables are 
included in the model (Weiner and Dunn 1966). It 
makes little sense in that case to base one's 
interpretations on individual coefficients. A 
safer technique is to examine the correlation of 
the canonical variate either with individual 
observation variables included in the canonical 
analysis (5), or with ancillary information not 
included in it (Green 1971, James 1971, Dueser and 
Shugart 1978). High correlations may then provide 
an interpretable "meaning" of the canonical 
variate. 

There is in the literature one other method 
of interpretation, about which some words of 
caution should be voiced. This involves the use 
in canonical space of "equal frequency ellipses", 
defined in multivariate populations by 
hyperellipses of constant probability density 
(Harner and Whitmore 1977). For a given 
distribution with moments (l!i, _fi), a point in 
observation space will be on only one such 
ellipse. When g populations are defined in a 
discrimination analysis, the observation lies on 
ellipses which are speci fie to each population. 
It is noted that when populations are normally 
distributed these ellipses are defined by 
Mahal anobi s distances. They may be used to 
generate a classification methodology identical 
with the usual classification procedure as 
outlined above. 

Severai results concerning equal frequency 
ellipses follow from the equal covariance 
assumption. First, they intersect along straight 
lines in the observation space. Second, the 
optimal classification procedure based on them is 
linear. These two properties are of course 
equivalent, since the linear classification 
functions correspond to a linear partitioning of 
the observation space. Third, the relative 
distances of points in canonical space as measured 
by D. (z), are identical to those in observation 
spacl (Williams, publication submitted). This 
effectively means that equal frequency ellipses in 
canonical space can be used to assess the position 
of an observation 'relative to the group means: 
there is, in essence, no important "loss of 
information" about conditional distributions when 
canonical variates are used. Thus ecologists are 
justified in using the canonical variates rather 
than the original data to investigate ecological 
distributions. The invariance property is 
indicated below with Mahalanobis distances, using 
three group means and an observation vector ~: 

Ranking 

2 

3 

Observation Space 

-1 
(~-_!!i) 'l (~-J!l) 

) -1 
(_!-_!!2 '! (_!-.1!2) 

-1 
(~-_!!3) I l (_!-j!3) 

Canonical Space 

-1 
(~-_!l1)'y_ (~-.!1.1) 

-1 ) (~-_!12) 'Y. (~-.!!.2 

(~-.!13) 'y_-
1 (~-.!1.3). 
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Since the canonical variates are uncorrelated with 
unit variance, the covariance y_ is in fact_rhe 
identity matrix 1_. The terms (_!-l!i )! (_!-~i) 
define equal frequency ellipses on which 
classification may be based, and the corresponding 
ellipses in canonical space are given by 

(z-n.)'V- 1(z-n.). Equal covariances assure 
identical ran~ings of observations in both 
observation and canonical space. 

Unfortunately none of these characteristics 
obtains when covariances are unequal. In 
particular, the identity of rankings in canonical 
and observation space no longer holds. This lack 
of invariance may be indicated ~y 

Ranking 

2 

3 

Observation Space 

(~-~1) 'ii d 
1 

(_!-.l!i) 

-1 
(_!-~2) '!2 (_!-~2) 

-1 
(~-J!3)'.f3 (~-.1!3) 

Canonical Space 

(z-n.) 'v:-1 (z-.!1.·) 
- -1 -1 - 1 

(z-n .) 'v-:1 
(z-nJ.) - -J -J --

<~-nk) '41 <~-.!l.k) • 
Unequal covariances in observation space are 
indicated by E., i=1 ,2,3. Covariances of the 
canonical vari~\.es are also unequal, since the 
canonical transform generates variates which are 
globally uncorrelated but conditionally 
correlated. V. expresses these conditional 
correlations. - 1 Note that the rankings of 
Mahalanobis distances in canonical space are not 
given a priori by their rankings in observation 
space. Since the canonical transform 

~ = Ux 

maintains rankings when covariances are equal, 
this shift in rankings is a direct result of 
covariance heterogeneity. This is shown by noting 
that conditional covariances for transformed and 
untransformed variates are related by 

y_i = Q. !i Q.' ' 

where U is the (g-1) x p 
generated in equation ( 1). 
distances are given by 

transform matrix 
Then Mahalanobis 

D.(z) = (z- n.)' V-~ (~- .!!.
1
·) 

1 - - -1 - 1 

= [!:!_ (_!- .l!i)]' (!:!_ li !:!_)-1 [!:!_ (_!- J!i)]. (6) 

The influence of u on D. ( z) - D. ( z) clearly 
1- J-

depends on the difference between u E. U' and U E. 
--1- - -J 

U' -' which in turn depends on the structures of L 
-1 

and z .• 
-J 

Therefore the relative magnitudes of 

Mahalanobis distances in canonical space are ~ 
priori indeterminate. 

A measure of the distortion induced by 
covariance heterogeneity may be defined by means 
of the function 



h .. (x) 1 if D. (x)=D .(x) or D. (z)=D .(z) 
1J - 1 ,- ' J - 1 - J -

= j(D.Ci).,.;D .(x))/(D.(z)-D .(z)) I 
1 - J - 1 - J -

otherwise, 

where Di(~) is given by equation (6) and 

-1 
Di(_!) = (_!- lJi)' _f. (_!- lJi). 

This function assumes only positive values, and 
when covariances are equal its value is unity for 
all x t:: H. Also, as covariances become more 
heterogeneous the dispersion of its values 
increases correspondingly. Now let h*( x) be the 
maximum value of 1/2(h .. (x) + 1/h .. (x)) over all i 
and j: 1 J - 1 J -

h* (_!) 

max [ 1 /2 (h .. ( x) + 1 /h .. ( x) ) : i = 1 , ... , g, 
1J - 1J -

j=1 .•• g, iij]. 

Then the canonical analysis is defined to be 
distortion-free (within an t::-tolerance) if 

1 - €: ~ h*(_!) ~ 1 + €: 

over some appropriate proportion of the sampling 
universe H. Note that this condition will be met 
as long as relative Mahalanobis distances are 
approximately maintained in canonical space. 
Since relative distances are exactly maintained 
when covariances are equal, h*(_!) 1 for all 
.! t:: H and the transform is completely free from 
distortion. 

It should be emphasized that a canonical 
analysis is distortion-free only for certain 
combinations of covariance matrices li' i=1 ... ,g, 
and that the property cannot be automatically 
assumed. When the canonical procedure is not 
distortion-free, statistical relationships between 
distances in observation space and their canonical 
representations are complex and non-intuitive. 
Under such conditions one cannot base inferences 
about observation da~n statistical 
characterizations in canonical space. Before the 
canonical analysis can be interpreted with equal 
frequency ellipses, distortion induced by 
covariance heterogeneity must be assessed. 

A practical consequence for ecologists is 
that, contrary to the case with equal covariances, 
one cannot safely use equal frequency ellipses in 
canonical space for interpreting group 
differences. The inferences drawn from the 
canonical analysis are not translatable back to 
the observation space, because distance measures 
(and the corresponding probability measures) are 
distortted by the canonical transform. One 
conclusion seems inescapable: the canonical 
analysis, which possesses so many positive 
geometric and statistical properties for 
homogeneous covariances, is fraught with problems 
and ambiguities otherwise. Any recommendation to 
use this methodology when covariances are 
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demonstrably unequal should be cautiously offered, 
and cautiously accepted. While heterogeneity of 
covariance may in fact result in no major 
misinterpretations, this is by no means a 
certainty. The point of this discussion is that 
the canonical analysis requires specific 
well-defined assumptions, violations of which may 
have unforeseen and potentially serious distorting 
effects. The canonical analysis then becomes an 
ad hoc procedure for generating linear data 
transforms which may or may not focus the 
researcher's attention on meaningful 
relationships. The hope that it will suggests 
that there may be value in the methodology, even 
when its assumptions fail. The same claim of 
course can be made of any data analysis procedure, 
or indeed of any activity whatever. 

CONCLUSIONS 

This discussion has focused on a parametric 
development of canonical analysis and its 
relationship to the usual data-based approach 
suggested by Fisher ( 1936). Notwithstanding the 
problems associated with covariance heterogeneity, 
it is fortuitous that maximum likelihood 
estimation for normal populations yields the 
familiar computing forms. This insures 
consistent, asymptotically efficient estimators. 
Nevertheless, there remain a number of problems 
concerning the effects of sampling. For example, 
nothing has been said about small sample 
variability, rates of convergence, and possible 
effects of stratified sampling designs . 

Results from simulation studies, further 
theoretical investigations and many different data 
analyses provide a fairly bleak picture for the 
use of canonical analysis as an inferential 
procedure in ecology. The statistical assumptions 
which insure that the canonical analysis 
corresponds to posterior classification are almost 
never met by ecological data. Frequency 
distributions are almost always non-normal, 
usually highly skewed, often bimodal, in a great 
many cases discrete, and covariances are almost 
universally heterogeneous. The separate and 
combined effects of these violations on the 
canonical analysis ·are almost totally unknown. 

Even when the assumptions are met, small 
sample stability problems arise. Preliminary 
simulation results by the author indicate 
considerable instability of the canonical 
coefficients, due solely to sampling variability. 
This instability increases rapidly with increases 
in numbers of variables and groups, and with 
decreases in sample size and distances between 
group means. What this means in practice is that 
any pattern exhibited by the canonical 
coefficients may be accidental and therefore of no 
ecological consequence. The effects of sampling 
variability on the canonical coefficients remain 
largely unexplored, though the work of Anderson 
( 1 963), Rao ( 1965, 1 966) and others provides a 
theoretical starting point. 



Other problems arise when the canonical 
analysis is based on data gathered by a stratified 
sampling design.· · The canonical analysis is 
sensitive, to a i argel y unknown degree, to 
relative as well as absolute sample sizes. This 
means that decisions concerning relative sampling 
intensities of groups may have a major impact on 
the structure of the canonical functions 
irrespective of the underlying probability 
structure of the mixture. Such an inherent 
indeterminancy can undermine any interpretation of 
the analysis. 

There are, in short, a number of more or less 
serious problms in the application of canonical 
analysis. That they remain unresolveed at the 
present time is not an argument to abandon the 
technique. It does suggest, however, the need for 
careful planning of studies utilizing canonical 
analysis, and a heal thy scientific skepticism in 
both the interpretation and the reporting of 
results. 
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DISCUSSION 

LESLIE MARCUS: Your approach requires that each 
sample of the habitat correspond to a unique 
species utilizing it. In some restricted cases 
this is appropriate, but in a great many others it 
is not. More generally there is some probability 
of use by each of the species, so that a technique 
like canonical correlation is more appropriate. 

KEN ~ILLIAMS: I agree. The conceptual framework 
of DA requires the ~existence of distinct 
statistical populations and an unambiguous 
association of sampling units to them. There is a 
very large number of problems which fit this 
framework, as indicated in my paper. However, 
multiple use of sampling units by different 
species does not. Problems of species-habitat or 
community-habitat relationships for such cases 
could better be handled by something like 
canonical correlation. Another possibility might 
be to combine correspondence analysis and multi
variate multiple regression. 

BARRY NOON: There are instances in the literature 
where principal components analysis (PCA) and 
discriminant analysis (DA) have been used with the 
same set of data. How does one interpret 
differences in ordination loadings? 

KEN WILLIAMS: These two procedures focus on 
different structural features of the data, and 
address different questions. It is important to 
recognize this, in order to avoid misinter
pretation of the different results. Some 
confusion about the relationship of PCA and DA 
probably arises from their mathematical similar
ities. Both, for example, involve an eigen
structure analysis, and both can be used to assess 
differences among groups of observations in a 
space· of reduced dimensionality. In the case of 
PCA the space is defined by the dominant eigen
vectors of a covariance (or correlation) matrix, 
whereas for DA the space is generated from eigen
vectors of a matrix involving group means 
themselves. Nonetheless, both techniques 
represent a coordinate rotation of multi variate 
measurements and a reduction of their 
dimensionality. 

The basic difference between them is in the 
way the group structure is accounted for. DA 
requires well defined groups, and utilizes this 
feature by means of the equation 

[B - A}'!)~ = 0. 

PCA, on the other hand, uses the data matrix 
without reference to structure: 
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[T - )._!_]~ = 0 

or 

[R - )._!_]~ = 0, 

where ~ is the correlation matrix based on I. and 

T = B + !f. 

Clearly the relationship of axes for PCA and 
DA depends on differences in structure for I. ~ 
and _!!. To see how these differences may affect 
interpretation of the data, consider a partition 
of data into groups such that the group means lie 
along the dominant axes of disRersion. In two 
dimensions this situation appears as: 

Then provided A.l~ A. is close to unity (i.e., the 
1 i 1 

first eigenvector dominates the eigenstructure of 
T) the principal component ~i = f1 ~ and canonical 

variate ~1 = ~; ~ will be approximately the same 

1 in ear function. Under these conditions the 
clustering of groups will be displayed in 
component as well as discriminat space. 

Now consider a partition which looks like: 

~2 

The dominant principal component will not display 
clustering of groups in this situation, since 
groups overlap extensively along the dominant 
axis. DA, however, displays almost total 
separation of groups along the dominant canoni
cal axis, reflecting the data partition. This 
difference between principal components and the 
canonical functions demonstrates that group 
structure, though highlighted by appropriate 
linear transforms (the canonical variates), may be 
completely obscured by others (the principal 
components). 



Thus there is no guarantee that PCA will 
display important data structures; nor can one 
conclude a lack of: s~ructure based on projections 
of data in component space. This is not 
unexpected, since PCA is designed specifically for 
variance maximization rather than maximum group 
separation. In fact, every linear transform of 
observation data gives us a different look at the 
multivariate system. What one sees depends in 
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large measure on the manner in which he looks, 
i.e., the transform he uses. PCA provides insight 
into the components of overall variation for a 
system, but not necessarily its group structure. 
DA gives a look at group separation, but not at 
overall variation. That these two procedures 
often ordinate in quite different ways therefore 
should come as no surprise. 



THEORY AND METHODS OF FACTOR ANALYSIS AND 

PRINCIPAL COMPONENTS1 

Helen Bhattacharyya2 

Abstract.--A brief discussion is given on the historical 
development of factor analysis, the kind of data for which 
factor analysis is applicable, and the kind of result one may 
obtain. The distinction between principal components 
analysis and factor analysis is clarified, and the 
relationship between the unique factors and the communalities 
in the reduced correlation matrix described. A derivation of 
the principal components is given, followed by a description 
of the principal factor solution and interated principal 
factor solution. Without mathematical details, the concept 
of maximum likelihood solution is introduced. Once a direct 
solution is obtained possible rotations, orthogonal and 
oblique, are discussed as attempts at deriving more 
conceptually meaningful common factors. The nonuniqueness of 
factorization of the correlation matrix is shown. The 
concept of simple structure is introduced and a graphical 
representation is given illustrating the meaning of rotation 
of factors. Factor scores and scoring coefficient matrix are 
described. 

Key words: Characteristic equation; characteristic 
root; communalities; correlation matrix; factor analysis; 
least squares; maximum likelihood; principal components. 

INTRODUCTION 

In understanding factor analysis, it helps to 
know a few things that the procedure does not do. 
Unlike discriminant analysis, factor analysis does 
not attempt to distinguish two or more distinct 
populations. There is no classification problem. 
Unlike multiple regression, factor analysis does 
not estimate any relationship between a set of 
independent variables and one or more dependent 
variables. The kind of data for which factor 
analysis is applicable usually consists simply of 
one sample of multi variate observations. With a 

1 Paper presented at The use of multi variate 
statistics in studies of wildlife habitat: a 
workshop, April 23-25, 1980, Burlington, Vt. 

2 Mathematical Statistician, USDA Forest 
Service, Southeastern Forest Experiment Station, 
Research Triangle Park, NC 27709. 
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sample size N and n variables, the raw data for 
factor analysis would be of the following form: 

Obs. 
1 
2 

N 

where z1' z2' Z denote the n variables 
n 

measured for each observation. An example of the 
variables zi' i = 1' 0 0 0' n' follows: 

Eight Physical Measurements (Harman 1968) 

Z 1 Height 
z2 Arm span 
z

3 
Length of forearm 

· ... · .. •· 



z4 = Length of lower leg 
z
5 

Weight 
z6 = Bitrochant~ric diameter 
z
7 

Chest gir'th-
z8 = Chest width. 

The primary purpose of factor analysis is to 
bring about a reduction in dimensionality, to 
explore relationships among large numbers of 
observed variables in an effort to find "factors" 
that reduce the complexity of the situation. In 
the example, the goal is to find a relatively few 
underlying common factors such that the eight 
measurements may be described as a linear function 
of these common factors. 

HISTORICAL BACKGROUND 

Spearman ( 1904) first introduced the concept 
of factor analysis in an article titled "General 
intelligence, objectively determined and 
measured." Early researchers in the field were 
primarily concerned with finding one common 
underlying factor, intelligence for example, that 
would help explain an individual's performance on 
a variety of different tests. Spearman called 
this the two-factor theory, one common factor and 
another specific to a particular test. By the 
early 1930 1 s it became evident, through the 
writings of Thurstone (1931) and others, that the 
two-factor theory was not sufficient to describe a 
battery of psychology tests. In the 1930's, there 
developed the concept of multifactor theory; that 
is, there can be more than just one common factor. 
The subject of factor analysis, then, is to find 
the common factors and the relationship between 
the observed variables and the common factors. 

FACTOR ANALYSIS MODEL 

Let the observed variables be denoted by z1 , 

z2 , Zn and the common factors by F1, F2, .•• , 

Fm where m < n. With the inclusion of the unique 

factors, u1 , u2 , un. the basic linear 

relationship between variables and factors may be 
written: 

+ a1mFm + d1u1 

+ a2mFm + d2U2 

where a .. and d
1
., i=1, ••• ,n, j=1, •.• ,m, 

1J 

constants. The matrix ((aij)) is called 

are 

the 
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factor pattern matrix, and an element a. . is 
lJ 

called the factor loading of variable Z. on factor 
F j. The unique factors Ui are assdmed to be 

independent of the common factors and independent 
of each other. For simplicity of exposition, the 
common factors may be assumed orthogonal to each 
other, although this is not strictly necessary as 
will be seen in the discussion of oblique factor 
rotation. A further assumption is that Zi' Fj' Ui 

are all standardized to have mean 0 and unit 
variance. 

Referring to the above example, Zi would 
denote the observed variables height, arm span, 
••• , chest width, so that n=8. The Fj' j=1, ••• ,m, 

are the common factors. Prior to performing the 
factor analysis the common factors and the value 
of m are assumed unknown. Letting R denote the 
observed correlation matrix corresponding to the N 
n-variate observations, the problem is to find a 
numerical solution for the elements of the pattern 
matrix ((aij)) which would, in some sense, best 

reproduce R. 

PRINCIPAL COMPONENT ANALYSIS 

The use of principal components as a data 
reduction technique was introduced by Pearson 
(1901) and further developed by Hotelling (1933). 
The principal component solution will be described 
first as it avoids some of the inherent 
difficulties in factor analysis. 

Principal Component Model 

Let the principal components be denoted as 
P1, P2, ••• , Pn. The linear relationship between 

Zi, the observed variables, and Pj may be written: 

z1 = a 11 P1 + a 12P2 + 

22 = a21P1 + a22P2 + 

The principal components Pj, j:1, ••• ,m, where m=n, 

are assumed to be orthogonal to each other and to 
have variances Var(P1) ~ Var(P2) > ••• ~ Var(Pn). 

Note that this model differs from the factor 
analysis model in that m = n and that there are no 
unique factors. As in factor analysis, the 
objective is to find tl:le matrix of coefficients 
((aij)). 

. ':. 



Principal Component Solution 

Consider the ·de..rivation for P 1, the first 

principal component. Let P1 = a'Z = a 1z 1 + a2z2 + 

+ anzn' then 

Var(P 1) = _!'R_!, (1) 

where R is the covariance matrix of the Z. 's, or 
equivalently the correlation matrix of the 1. 's if 
all Z. 's are standardized to mean 0 and

1 
unit 

varian~e. Although standardizing the Z. 's is not 
necessary in principal component analysi~, this is 
usually recommended especially when the variables 
are measured in different scales. 

The next step is to maximize Var(P 1), subject 

t'o a normalizing restraint a'a = 1. Using 
Lagrange multiplier ~ and setting to 0 the partial 
derivatives with respect to ai' 

a [_!'R_! + A(1 - _!'_!)] = 0 
a a 

2(R - A!)_! = Q_. (2) 

For a nontrivial solution to (2) A must satisfy 
the characteristic equation 

IR-AII=O (3) 

The left hand side of (3) is a polynomial in A of 
degree n, hence there are n solutions A1, A2 , ••• , 

An· These are called the characteristic roots (or 

eigenvalues), and corresponding to each A. there 
is a characteristic vector (or eigenvecfor) a. 
such that - 1 

( R - A i I ) ,!i = Q. 

Premultiplying (2) by a' gives a'Ra - a'Ua = 0, 
or a'Ra = A. But, a'Ra Var(P1) -from (1). 

Therefore, Var(P 1) = A1, where A1 denotes the 

largest characteristic root; and P 1 = .! 1 '~. where 

.!1 is the characteristic vector corresponding to 

Similarly, the second principal component 
P2 = ~~~may be derived using restriction ~~~ = 1 

and the further restriction .!1 '~ = 0. However, 

this is not necessary. If the characteristic 
roots A1 ~ A2 ~ ••• ~An are ordered, then the ith 

principal component is Pi 
Ai. 

One may ask what has been accomplished. The 
n variables have resulted in n principal 
components. No apparent reduction in 
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dimensionality has been achieved if all principal 
components are kept. However, in defining the 
principal components, it is hoped that the sum of 
the m characteristic roots, m < n, would nearly 
equal n. The sum of the variances of Zi is 

n 
1: Var(Z.) 

i =1 
1 

= n x = n and the sum of the 
n 

variances of the principal components is 1: Var(P.) 
n m i=1 

1 

= . 1: Ai = n. If 1: Ai is very near n, then the 
1=1 i:1 

components corresponding to the smaller A., i = m 
+ 1, n, contribute very 1 i ttle 1 to the 
variation in the Zi and, hence, may be neglected. 

FACTOR ANALYSIS 

Recall the factor analysis model given 
earlier, 

i=1, ••• ,n, 

where F. are orthogonal to each other 
independ€nt of Ui, 

m 
= 1 = Var( ~ a .. F.) + Var(diUi). 

j=1 1J J 

and 

Let h. 2 = 1- Var(d.U.). 1 1 1 The quantity of h. 2 , 
1 

i=1, ••• ,n, is called the communality of Zi because 
it represents the variance of Zi due to the common 
factors Fj' j=1, ••• ,m. 

In solving for the factor pattern matrix, the 
object is to find that set of loadings a .. which 

1J 

best reproduces the correlation matrix. Since the 
variance of Zi due to the common factors Fj, 

j= 1, ••• ,m, is h. 2 rather than unity, 
1 

it is 

reasonable then to substitute h. 2 for unity in the 
diagonal elements of the correl~tion matrix. The 
result is called the reduced correlation matrix 
and computationally this constitutes the basic 
difference between the principal component 
solution and the common factor solution. Note 
that in principal component analysis the variance 
of Z. due to the components is necessarily unity 
sincJ there is no provision for a unique factor. 

Two commonly used methods for estimating the 

communalities are 1) take h. 2 to be the square of 
the multiple correlation c~efficient between Z. 

1 

and the other n-1 Z' s and 2) take h. 2 to be the 
largest (absolute value) correlation ln each row. 

Principal Factor Solution 

Once the numerical value of each element 



including the communalities in the reduced 
correlation matrix i.s qbtained, the solution for 
the factor pattern-.matrix may proceed as with the 
principal components 'holution. The characteristic 
equation is formed and solved for the character
istic roots and characteristic vectors. The 
reduced correlation matrix for the example is 

z. z2 z3 z4 z5 z6 z7 z8 1 

z1 t 2 

(symmetric) 1 

z2 
2 

0.846 h2 

z3 0.805 0.881 h 2 
! 3 
i 

h 2 z4 !0.859 0.826 0.801 4 

Z5 0.473 0.376 0.380 0.436 h 2 
5 

z6 0.398 0.326 0.319 0.329 0.762 h 2 
6 

z7 0.301 0.211 0.231 0.327 0.730 0.583 h7 2 

Z8 0.382 0.415 0.345 2 
0.365 0.629 0.577 0.539 h8J 

At this point, the question that usually 
arises is how many factors should be retained. 
Although under certain normality conditions the 
statistical significance for the number of factors 
can be tested, the usual rule of thumb is to keep 
only those characteristic roots of value greater 
than unity. This concept is intuitively 
reasonable since Var(Z.) 1, and any common 
factor which accounts f6r less than unit variance 
would not be very helpful in achieving parsimony. 

A number of other factorization methods are 
available. ··Two other methods will be described 
briefly, the iterated principal factor solution 
and the maximum likelihood solution. 

Iterated Principal Factor Solution 

This method may be considered an improved 
principal factor solution. Beginning with initial 
estimates of communalities, factor loadings are 
obtained by the principal factor method. Using 
the factors extracted, new estimates of 
communalities are computed and new factor loadings 
obtained. This iterative procedure is continued 
until the new communalities differ by less than a 
predetermined small amount from the previous 
communalities. 

Maximum Likelihood Solution 

Although the principal factor solution was 
well accepted by psychologists and social 
scientists, there were mathematical statisticians 
who continued trying to find a solution within the 
rigorous framework of statistical inference. The 
breakthrough carne when Lawley (1940) developed 
equations for the maximum likelihood estimation of 
factor loadings. Although the derivation and 
algorithms are extremely difficult, the basic 
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concepts involved are those of standard maximum 
likelihood estimation. 

The variables Z. , i= 1 , ... , n, are assumed to 
follow an n-variate n~rrnal distribution, hence the 
sample covariance matrix follows a Wishart 
distribution. (Recall in the principal factor 
solution no assumptions were made on the 
underlying distribution of the variables Z .• ) The 
goal is to find the expression for the loadings 
which would maximize the Wishart density. No 
assumptions are made about the communalities, but 
it is necessary to assume the number of common 
factors. This number, however, may be tested 
subsequently for goodness of fit using a 
likelihood ratio test. The maximum likelihood 
solution for factor loadings has the usual 
desirable properties of maximum likelihood 
estimators, such as consistency, asymptotic 
efficiency, and asymptotic normality. One 
disadvantage of the method at the present time is 
that it does not always converge properly 
depending on the particular data set and the 
computer package used. 

ROTATION OF FACTORS 

The ability to describe a set of n variables 
in terms of rn factors implies that the observed 
data points essentially lie in an rn-dirnensional 
space imbedded in the original n-dimensional 
space. However, there is not a unique set of 
axes, or factors, for describing this 
rn-dirnensional space. It can be shown 
algebraically that the factorization of the 
correlation matrix is not unique. 

The factor analysis model presented earlier 
may be writ ten as Z = AF if we orni t the unique 
factors and use A to denote the n x rn pattern 
matrix. Assuming the common factors to be 
orthogonal and standardized, the variances and 
covariances of the standardized variables 
Zi = ai1F 1 + ai 2F2 + ••• + airnFrn' i=1, ... ,n, may 

be denoted as 

rn 2 
z a. . and 

j= 1 lJ 

so that the correlation matrix of Z. may be 
written R = AA'. If T is an orthonorm111 matrix 
and the transformation B = AT is made, then BB' = 
(AT)(AT)' = ATT'A' = AIA' = R. Factorization of R 
is not unique since it may be factored into AA' as 
well as BB'. The question, then, is which factor 
pattern matrix should be chosen, A or B. 

Intuitively, it is obvious that the factor 
pattern chosen should be the one which leads to 
conceptually meaningful factors. Thurstone (1935, 
1947) gave the following rules which he called 



simple structure principles for choosing the 
factor pattern matri~. 

1. Each row of the factor matrix should have 
at least one zero. 

2. If there are m common factors, each 
column of the factor matrix should have 
at least m zeros. 

3. For every pair of columns of the factor 
matrix there should be several variables 
whose entries vanish in one column but 
not in the other. 

4. For every pair of columns of the factor 
matrix, a large proportion of the 
variables should have vanishing entries 
in both columns when there are four or 
more factors. 

5. For every pair of columns of the factor 
matrix, there should be only a small 
number of variables with non-vanishing 
entries in both columns. 

The ideas embodied in these rules, simplification 
of the rows and simplification of the columns, 
were formalized by Carrol ( 1952), Kaiser ( 1958), 
and others and led to the orthogonal and oblique 
rotations commonly used today. 

Quartimax Rotation 

This is an orthogonal transformation which 
attempts to simplify the rows of the pattern 
matrix. The quantity maximized is 

n m 4 Q E E a .. ( 4) 
i=1 j=1 lJ 

The name quartimax is applied because a .. is 
lJ 

raised to the 4th power. This procedure is 
equivalent to minimizing Q' where 

n m 2 
Q' = E E (aijaU.) . (5) 

i= 1 j<Jl.=1 

It is evident from (5) that minimizing Q' 
simplifies the rows of the pattern matrix. It 
will be shown now that maximizing Q is equivalent 
to minimizing Q'. 

Since communalities, and hence the squares of 
communalities, remain constant under orthogonal 
transformations, we have 

m 2 2 
0: ai j ) 
j=1 

m 4 m 2 
Ea •. + 2_ E (aiJ.aiJI.) 

j:1 lJ J(Jl.:1 
constant. 

Summing over the n variables gives 

n m 4 
E E aij 

i=1 j=1 
constant. 

Since the sum of the two terms on the left hand 
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side is a constant, max1m1z1ng the first term is 
equivalent to minimizing the second term. 

Varimax Rotation 

This orthogonal transformation attempts to 
simplify the columns of the pattern matrix. If a 
simple factor is defined as one with only O's and 
1's in the column, then the varimax rotation 
attempts to bring about this simplicity by 
maximizing V .. 

J 

v. 
J 

n 2 2 _ 
11

n2 n 2 2 
E (a .. ) ( E a .. ) , 

i=1 lJ 1.=1 lJ 
1/n 

j=1, 2, m, the variance of the squared 
m 

loadings in each column. Maximizing E V. results 
j:1 J 

in a rotation overly influenced by the size of the 
communalities of the variables. In practice, this 
is taken into account and the quantity actually 
maximized in the varimax rotations is 

Oblique Rotation 

The criterion of simple structure remains as 
with orthogonal rotations, but the method is no 
longer limited to orthogonal transformations of 
the factors. The use of oblique factors is 
becoming increasingly popular because it affords 
more flexibility in defining the underlying 
factors and because computational difficulties are 
no longer an obstacle with the availability of 
computer packages. Harman (1968) gives an 
excellent discussion of several oblique rotation 
methods. 

Graphical Representation 

Thurstone's (1935, 1947) simple structure 
principles may be interpreted graphically as 
requiring the data points to li.e, to the extent 
possible, on or near the reference axes defined by 
the factors. Factor rotation then is an effort to 
rotate the axes to achieve this goal. Figure 1 
gives an illustration of orthogonal and oblique 
rotations for two factors. Data points are 
denoted by X's. The original factor solution is 
represented by F1, F2, the rotated orthogonal 

solution by G1, G2 , and the rotated oblique 

Numerical Example 

The factor patterns under different rotations 
for the example is given in table 1. Two factors 
were retained in the initial sol uti on. Under all 



'rotations, variables z 1 to z4 loaded heavily on F1 

and variables z
5 

t~ .z
8

.: ·loaded heavily on F 2. An 

examination of these variables leads us to 
conclude that Factor 1 is a measure of lankiness 
and Factor 2 is a measure of stockiness. 

FACTOR SCORES 

Often the interest in factor analysis does 
not end in simply being able to obtain the factor 
pattern and verbalize the factors extracted. 
Sometimes one may wish to go one step further and 
find the "observed" values, or scores, of the 
factors; that is, to describe the factors in terms 
of the observed variables. This may be useful, 
for example, in carrying out a regression analysis 
using m factors instead of the original n 
variables as the independent variables. 

In principal component analysis, the 
computation of the scoring coefficient matrix is 
straightforward. In the model Z = AP, the matrix 
A is square and usually full rank, and the 

solution for ~ is simply ~ = A- 1z. 

For the factor analysis model, 

Z = A~ + D~, (6) 

where the matrix A is n x m and D denotes the 
diagonal matrix containing the coefficient di of 
the unique factors, a least squares regression 
approach is generally used. If DU is the error 
term, then (6) may be considered a linear 
regression of Z on A where F are the coefficients. 
From standard regression theory the least squares 

solution for F is F 

Figure 1. Graphical representation of factor 
rotation illustrating original factor solution 
(Fd,F 2); rotated orthogonal solution (G 1,G2); 
an rotated oblique solution CG 1,G' 2). 

COMPUTER PACKAGES 

Computer programs for factor analysis may be 
found in SAS (Statistical Analysis Systems 1979), 
SPSS [Statistical Package for the Social Sciences 
(Kim 1975) J, and other statistical packages. 
Typically, the programs are easy to use and only 
require a few lines of code. In SAS, for example, 
the following code would produce a factor analysis 
using the iterated principal factor method and the 
varimax rotation on variables z 1, z2, ••• , z8 • 

PROC FACTOR METHOD:PRINIT ROTATE:VARIMAX SCORE; 
VAR Z 1 - Z8; 

Table 1. Factor patterns for example on eight physical measurements. 

Factor pattern 
Initial Quartimax Varimax Oblique 

solution rotation rotation rotation 
F1 F2 F1 F2 F1 F2 F1 F2 

z1 0.86 -0.33 0.90 0.20 0.88 0.27 0.78 0.05 

z2 0.85 -0.41 0.93 0.13 0.92 0.21 0.84 -0.03 

z3 0.81 -0.41 0.90 0. 10 0.89 0.18 0.81 -0.05 

z4 0.83 -0.34 0.88 0.17 0.86 0.25 0.77 0.02 

z5 0.75 0.56 0.32 0.88 0.24 0.90 -0.00 0.83 

z6 0.64 0.51 0.25 0. 77 0.18 0.79 -0.01 0.71 

z7 0.56 0.49 0.20 0.72 0.13 0.73 -0.06 0.70 

z8 0.62 0.37 0.31 0.66 0.25 0.68 0.09 0.57 
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Output would include the correlation matrix, 
characteristic ropts,. t;.he factor pattern matrix, 
the rotated fact6~ ~aitern matrix, and the scoring 
coefficient matrix. To create a new data set 
containing the factor scores for the original 
observations, the above code may be modified. 

PROC FACTOR METHOD:PRINIT ROTATE:VARIMAX 
SCORE OUT:COEFF; VAR Z1 - Z8; 

PROC SCORE DATA:OLD SCORE:COEFF OUT:NEW; 

In this example OLD is the name of the original 
data set containing the N observations on 
variables z1, z2 , ... , z

8
, and NEW is the name of 

the newly created data set containing the N factor 
scores on the factors F 1, F2 , ..• , Fm. 
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DISCUSSION 

JAMES DUNN: I question the statement that PCA 
does not assume anything. Certainly the existence 
of second-order moments, i.e., a covariance 
matrix, is assumed. It seems nonsense to apply 
PCA to this if the variances and covariances 
depend on the mean values, i.e., as in sampling 
from multivariate Poisson distribtution. But the 
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only distribution in which the covariance matrix 
is not functionally related to the mean is 
multinormal. 

HELEN BHATTACHARYYA: Principal components and 
factor analysis are performed on the sample 
covariance or sample correlation matrix, which 
always exists with any reasonable data regardless 
of the existence of the population moments. 
Classical factor analysis is a method of 
determining the dimensionality of the data space 
and does not attempt at statistical l.nference or 
tests of hypotheses, procedures for which 
assumptions on underlying distributions are 
necessary. There is no disagreement on the 
assumption of multivariate normal distribution 
when the maximum likelihood method of 
factorization is used. 

As to the functional dependence of the mean 
and the variance, surely the variance of a uniform 
distribution on (c-a, c+a) is not functionally 
dependent on the mean c. 

JAMES DUNN: What is your impression of the 
usefulness of oblique factor solution in habitat 
analysis? 

HELEN BHATTACHARYYA: Since our interest is in 
extracting factors that are conceptually 
meaningful rather than mathematically expedient, 
there is no reason to limit ourselves only to 
orthogonal factors. 

KEN MORRISON: Is there a reason why you did not 
mention equamax rotation? 

HELEN BHATTACHARYYA: Equamax rotation is somewhat 
of a compromise between quartimax rotation and 
varimax rotation and may be considered very 
desirable. There was no reason why it wasn't 
mentioned, other than that a number of other 
rotation methods were also not mentioned. 

MICHAEL KINGSLEY: Principal components are known 
not to be invariant against linear transforms of 
data. Is factor analysis free of similar quirks? 

HELEN BHATTACHARYYA: It is true that PCA when 
performed on the variance covariance matrix is not 
invariant under linear transformations of the 
variables. Factor analysis is performend on the 
correlation matrix and does remain invariant as 
correlations remain invariant under linear 
transformations. 

JAMES SKALEY: When using PCA or factor analysis 
there can be non-linear relationships in the data 
set along with unequal covariances. The results 
have been distorted, and we cannot assume the 
underlying linear model. Are there guidelines for 
the interpretation of the results from these 
analysis? 



HELEN BHATTACHARYYA: Factor analysis assumes the 
observed variables may be expressed as a linear 
combination of the factors. If this is not true 
then the methodo16~ies described are not 
appropriate. If factor analysis is performed, I 
do not believe there can be a general guideline on 
interpreting the results. For a discussion on 
nonlinear reduction of dimensionality see R. 
Gnanadesikan ( 1977. Methods for statistical data 
analysis of multivariate observations. John Wiley 
& Sons, New York, N.Y.). 

B. KEN \HLLIAMS: Just a comment: there are both 
scale-free and non-scale-free techniques for 
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deteriming factor loadings. A good description is 
found in N.H. Timm (1975. Multivariate analysis 
with applications in education and psychology. 
Brooks-Cole, Monterey, Calif.). 

JAMES HARNER: This is merely a comment. I see a 
fundamental difference between principal 
components analysis (PCA) and factor analysis. 
PCA is simply a rotation of axes to achieve 
certain criteria, whereas factor analysis is based 
on a model. Also the question of measurement 
scale is important in ecology. A PCA can be done 
by scaling with other means than just using the 
correlation matrix. 



CANONICAL CORRELATION ANALYSIS AND ITS USE IN 

WILDLIFE HABITAT STUDIES' 

Kimberly G. Smith2 

Abstract.--Canonical correlation is the generalized case 
of multiple regression wherein one attempts to examine 
interrelationships between two (or more) sets of variables 
simultaneously. This is accomplished by maximizing the 
correlation between a composite of variables from one set 
with a composite of variables from the second set. The 
statistical assumptions involved are discussed briefly and a 
geometric representation of the procedure is presented. 

A major problem with canonical correlation analysis has 
been interpretation of results. Cross-validation aids in 
detection of sample-specific covariation to which canonical 
correlation is quite sensitive. The test of redundancy 
offers a method whereby relationships between data sets 
themselves can be examined rather than relationships between 
composites of two data sets by calculating the variance of 
one set that is accounted for by the second set. Selection 
of variables is critically important; sample sizes should be 
as large as possible; and jackknifing estimators and use of 
robust estimators may be helpful. 

Canonical correlation analysis has been used most often 
in the fields of education and psychology. It has met with 
limited success in phytosociological studies partly because 
the requirement of linear relationships between variables is 
too strict. In ecological research, studies have sought to 
characterize morphological and behavioral data with 
environmental data. Most animal community studies that have 
used canonical correlation have suffered from small sample 
sizes. Canonical correlation analysis seems to hold some 
promise for wildlife habitat studies, and its use should 
increase as researchers become more familiar with it. The 
need for planning and appropriate data collection methods are 
extremely important. 

Key words: Bartlett's test of significance; canonical 
correlation analysis; cross-validation; jackknifed 
estimators; ordination; redundancy; robust estimators. 

1 Paper presented at The use of multi variate 
statistics in studies of wildlife habitat: a 
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2 Research Ecologist, University of 
California, Bodega Marine Laboratory, P. 0. Box 
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INTRODUCTION 

Ecological researchers often collect data on 
two sets of variables and attempt to elucidate 
relationships between the sets. The two data sets 
may have a cause-effect (predictor-criterion) 
relationship; but, more commonly, one is 
interested in relating biotic and abiotic factors, 



e.g., the response of an animal population to a 
su'i te of environmental factors along some 
gradient. Measurement's may be from only one area, 
or encompass data 'c~'llected simultaneously in 
several areas. The available statistical options 
include reporting simple product-moment 
correlations (r), principal component analysis 
combining the two sets of variables, or canonical 
correlation analysis (Barkham and Norris 1970). 
In most cases, calculating simple correlations is 
not very informative, and complexity (and usually 
confusion) increases with the size of the data 
set. Combining the two data sets into one 
principal component analysis does not maintain the 
distinctiveness of the two data sets and is 
therefore difficult to interpret although it does 
highlight variables that covary. Canonical 
correlation analysis, a multivariate statistical 
technique that attempts to find maximal 
correlations between two data sets, would appear 
therefore to hold some promise for wildlife 
habitat studies. Canonical correlation can also 
be used as a multiple partial correlation 
technique (Cooley and Lohnes 1971 ) and has been 
employed with limited success as an ordination 
technique (Gauch and Wentworth 1976). 

Canonical correlation analysis was developed 
by Hotelling (1935, 1936) to examine the 
relationships between a set of mental test scores 
and measurements of performance on the same test 
subjects, although seeds of the technique can be 
found in the works of Gal ton, Edgeworth and 
Pearson at the turn of the century (see Bryant and 
Atchley [1975] for historical.development and 
comprehensive bibliography). Because calculations 
involved are extremely laborious to perform by 
hand, canonical correlation did not become a 
widely used statistical tool until the advent of 
computers and publication of a computer program by 
Cooley and Lohnes ( 1962). other problems that 
have been associated with the use of canonical 
correlation are the availability of more familiar 
techniques; the difficulty of interpreting 
results; and the tendency of results to be 
situation-specific and not generalizable 
(Thorndike and Weiss 1973). Canonical correlation 
has been applied widely in psychological and 
educational research, but has seen little use in 
biological research, despite recommendations 
(e.g., Dunn 1972, Pielou 1977). 

Another reason canonical correlation may have 
been overlooked in biological research is that 
often biologists are more interested in explaining 
variance associated with individual measurements 
(e.g., through the use of principal component 
analysis) whereas psychological and educational 
workers have been more interested in correlational 
relationships (Rao 1955). In some instances, 
principal component and canonical correlation 
analyses will produce similar results (e.g., 
Cassie and Michael 1968, Gauch and Wentworth 
1976); however, differences in results from the 
two procedures may also be of interest (e.g., 
Barkham and Norris 1970). Cassie ( 1969) pointed 
out the great potential for establishing important 
correlational relationships in biological 
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research, especially when it is tedious and/or 
expensive to obtain one of the desired data sets. 
For example, Cassie suggested it would be easier 
to monitor water temperature and salinity 
automatically than to collect and analyze plankton 
samples. Conversely, it would be easier to 
collect samples of beach infaunal organisms than 
to determine particle size distributions of the 
substrate at many sampling sites. The potential 
value of establishing correlational relationships 
in such decision-making processes as environmental 
impact statements or management programs is 
obvious. 

CANONICAL CORRELATION ANALYSIS 

Statistical Assumptions 

The usual multivariate statistical 
assumptions apply to canonical correlation 
analysis: 1) The covariance matrix must be of full 
rank (Morrison 1976), i.e., there must be more 
samples than number of variables in both data sets 
combined. 2) No singularities can exist within 
the data matrices, i.e., all rows (or columns) 
must be independent. Singularities arise when a 
row (or column) of the data matrix is a linear 
combination of one or more of the other rows (or 
columns) (see Gauch and Wentworth 1976). 
Canonical correlation analysis has no solution 
when a matrix singularity is encountered. The 
possibility of singularities in large sets of 
distributional data may limit the usefulness of 
canonical correlation as an ordinational technique 
(e.g., Barkham and Norris 1970). 

Two other statistical conditions are usually 
associated with canonical correlation: a 
multivariate normal (or multinormal) distribution 
and linear relationships between variables (see 
Cassie 1969). The constraint of linear 
relationships between variables (inherent in any 
linear model, e.g., principal component analysis) 
limits the usefulness of canonical correlation as 
an ordination technique for communi ties, such as 
in phytosociological studies (Gaugh and Wentworth 
1976), but should not limit use of canonical 
correlation in situations where correlations along 
a gradient are of interest. Canonical correlation 
analysis does not require a multi variate normal 
distribtuion per se (Morrison 1976), but the 
closer the data approach normality and linear 
relationships between variables, the more 
realistic and more easily interpretable (usually) 
the relationships between variables will be 
(Williams 1981). Elsewhere in this volume, Dunn 
( 1 9 81 ) discusses the use of transformations to 
arrive at homogeneous variance, an attribute of a 
multinormal distribution; see also Smith (1977). 

Description 

Canonical correlation analysis is a technique 
for finding the correlation between one group of 
variables, taken as a set, and a second group of 
variables, also taken as a set, and in many 



respects is like principal component analysis with 
two data sets instead ;bf one. More precisely, we 
are interested ·in;· finding linear combinations of 
variables in each set that have maximum 
correlation. Several linear combinations of the 
two sets of original variables are possible and 
each pair of functions is so determined as to 
maximize the new correlation, subject to the 
restriction that new correlations must· be 
independent of previously defined ones (i.e., 
orthogonal) (Cooley and Lohnes 1962). The 
following discussion draws heavily on a readable 
discussion of canonical correlation by Thorndike 
(1978). For other useful discussions, see Cooley 
and Lohnes (1962, 1971), McKeon (1965), Blackith 
and Reyment (1971), Bock (1975), Harris (1975), 
and Morrison ( 1976). Gittens ( 1979) presents an 
exhaustive review of the use of canonical 
correlation in biological sciences, with an 
emphasis on botanical research. 

Definitions 

An understanding of the following definitions 
is important for the discussion of canonical 
correlation. In all examples addressed in this 
paper, analyses are concerned with two sets of 
original variables, such as beach organisms and 
substrate characteristics, for example. Through 
the use of iterations, new values are found for 
the original variables that taken together are 
maximally correlated. These new values are called 
canonical variates and the canonical correlation 
is the maximum Pearson product-moment correlation 
between variates. It is important to remember 
that the canonical. correlation is not between 
original variables, but between variates 
calculated from the variables. Weights used to 
derive variates from variables are called 
canonical coefficients and should not be confused 
with canonical factors which are correlations 
between the original variables and the variates. 

Canonical correlations are invariant 
statistics since, being product-moment 
correlations, they are unaffected by linear 
transformations of the variables in either set. 
Several authors, e.g., Kettenring (1971), have 
generalized canonical correlation analysis to 
three or more sets of original variables, but I 
know of no biological studies where more than two 
data sets have been used. 

Geometric model 

Geometrically, canonical correlation can be 
considered as a measure of the extent to which 
entities occupy the same relative position in the 
space defined by each of the data sets (Cooley and 
Lohnes 1962). For example, Barkham and Norris 
(1970) stated that their canonical correlation 
study attempted to measure the extent to which 
study sites occupied the same relative position in 
vegetation space as in soil property space. 

A geometric representation of canonical 
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Figure 1. Geometric representation of canonical 
correlational analysis in two planes A and B. 
See text for explanation. (from Thorndike 1978) 

correlation is presented in figure 1. A set of 
original variables, A and B, defining plane 1 
comprise data set 1. Data set 2 is composed of 
variables C and D and defines plane 2. This 
example of ·two sets each with two original 
variables is the simplest canonical correlation 
situation; if one data set contained only one 
variable, this would be a multiple regression 
problem. Canonical correlation analysis will 
reveal a composite of A and B, in this example a 
line called 1c (fig. 1), that is correlated with 

composite of C and D, line 2c. Remembering that 

the objective is to define new values of the 
original variables that taken together will be 
maximally correlated, if the correlation between 
1c and 2c were the highest that could be found for 

the data sets 1 and 2, lines 1 c and 2c would be 

the first canonical variates. The correlations 
between A and B with 1 and C and D with 2 would c c 

be vectors of canonical factors. The canonical 
correlation (R) is the cosine of the angle between 
1 c and 2 c, dot ted in figure 1. As the angle 

approaches 
approaches 

oo, 
1. 00. 

the 
The 

canonical correlation 
canonical correlation is 

usually squared and R2 is the proportion of 
variance in the canonical variate of one set that 
is accounted for by the variate of the other set. 
Again, the relationship being described is between 
the variates, not between the original variables 
themselves. 

R2 is a symmetric index in the sense that the 
proportion of variance in one set accounted for in 
the composite of the other set is independent of 
which set is considered first. In other words, 
there is no difference in the statistical 
treatment of the two data sets so that one does 
not have to make the distinction between a 
predictor set and criterion or outcome set (Harris 
1975). 

Test of Significant Roots 

As many canonical correlations can be found 
as there are variables in the smaller set of 



original variables. Early workers assumed that 
only the first c.ano.nical correlation was 
important, although,, tbis is not always the case. 
More than the firs~ ~~nonical correlation may be 
important depending on the question being asked 
(Cooley and Lohnes 1962). Bartlett (1941-42) 

2 developed a x test that tests the probability 
that a particular canonical correlation is 
significantly different from that which would have 
been expected with random data. The null 
hypothesis is that the canonical variates derived 
from one data set are unrelated to the variates of 
the second data set. Harris (1976) questioned the 

use of 
(1978) 
( 1959) 

2 Bartlett's x test, but Mendoza et al. 
challenged Harris's arguments. Lawley 
suggested a slight improvement for 

Bartlett's x2 test of significance. 

Thorndike (1978) cautioned that statistical 
significance does not guarantee meaningful 
biological relationships, a point which may 
explain many of the interpretational problems 
researchers have had with canonical correlation. 

Also, Bartlett's x2 test is very sensitive to 
departures from normality in data (Barkham and 
Norris 1970). Blackith and Reyment (1971) comment 
that biologically meaningful combinations may 
still be present between data sets that have no 
statistically significant canonical correlations. 

Some Solutions To Problems Of Interpretation 

Cross-Validation 

Some controversy (e.g., Barcikowski and 
Stevens 1975) has arisen concerning whether one 
should investigate relationships between weights 
(coefficients) or correlations between original 
variables and variates (canonical factors). 
Coefficients are usually difficult to interpret, 
if not meaningless (Cassie and Michael 1968), so 
that most researchers have investigated canonical 
factors (e.g., Meredith 1964). As pointed out by 
Poore and Mobley ( 1980), examining canonical 
factors has two advantages: 1) species with high 
correlations with the same canonical variate are 
grouped together, and 2) environmental variables 
which have high correlations with the species 
groupings are elucidated. Usually one would want 
to consider any factor above 0.50 (e.g., Webb et 
al. 1973); factors below 0.30 are probably trivial 
(Cooley and Lohnes 1971). Bock ( 1975) has 
suggested using correlations of the variates from 
one set with original variables of the other set 
to characterize between set relationships, but I 
can find no studies that have applied this 
technique. 

The problem of using correlations between 
original variables and variates is that 
interpretation becomes dependent upon the specific 
relationships between measured variables. 
Situation-specific covariance, such as that 
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arising from the manner in which data were 
collected, may become a problem so that one cannot 
generalize the results to other situations. One 
would, of course, like the covariance to reflect 
that of the whole population, not just the subset 
sampled. Thorndike and Weiss ( 1973) proposed a 
check of canonical correlation analysis to 
discover if any abnormalities in the data are a 
consequence of site-specific covariance (see also 
Thorndike 1978). Using this technique, called 
cross-validation, the original data sets are 
randomly split into two subsets, canonical 
correlation is performed on one subset, and 
relationships in the second subset are examined 
using the weights derived from the analysis on the 
first subset. If the results within both subsets 
are similar, then situation-specific covariance 
is assumed to be minimal. Also, double 
cross-validation may be performed whereby both 
subsets are submitted to canonical correlation 
analysis and both are cross-checked using weights 
obtained from the opposite analysis. To my 
knowledge, no one has attempted this procedure 
with biological data. One needs a fairly large 
data set to afford the luxury of splitting the 
data set in half. 

Redundancy 

From an interpretational point of view, 
another major problem with canonical correlation 

analysis is that R2 represents variance shared by 
canonical variates and not variance shared between 
data sets. Thus, canonical correlation cannot be 
interpreted as correlations between sets of 
original variables. A strong correlation may be 
obtained between two canonical variates even 
though these variates do not extract significant 
proportions of variance from the respective sets 
of original variables. To help with this problem 
of interpretation, Stewart and Love (1968) 
developed a measure they called redundancy, 
whereby one can calculate the amount of variance 
in one set of original variables that is explained 
by the variate of the other data set. By 
calculating redundancy for all variates of a data 
set and summing the results, the proportion of 
variance of one set that is accounted for by the 
other set can be calculated. Since the amount of 
variance of one set explained by another set does 
not necessarily equal the amount of variance of 
the second set explained by the first, the measure 

of redundancy is not symmetrical (as was R2) and 
must be calculated for both data sets. Moreover, 
the first canonical correlation need not and often 
does not have the highest redundancy. This 
procedure is thoroughly discussed in Cooley and 
Lohnes (1971) and Thorndike (1978). 

Several biological investigators have used 
the measure of redundancy recently and use should 
increase as the technique becomes more well-known. 
In an investigation of estuarine diatoms, Mcintire 
( 1978) found 41% redundancy in species data, 
meaning that 41% of variation associated with the 



26 taxa used could be accounted for by variation 
in the six environm€ntal variables measured. 
Likewise, Poore a'nd;· Mobley ( 1980) found that 48% 
of variation in 22 species of marine benthic 
animals sampled near a sewage treatment plant 
outwash was associated with variation in nine 
environmental variables they measured. Note that 
in both cases, the reverse redundancy calculation, 
i.e., how much of the environmental variation can 
be accounted for by the variation in species, is 
probably meaningless. 

In studying dietary relationships among 
shrubsteppe passerine birds, Rotenberry (1980) 
found variation in prey size taken could be 
accounted for by redundancies of only 24% in 
horned lark (Eremophila alpestris), 28% in sage 
sparrow (Amphispiza belli), and 38% in western 
meadowlark (Sturna negfeCta). Grouping species 
data togethe~dundancy was still about 30%, 
leading Rotenberry to conclude that the 
relationship between diet and morphology is more 
general in nature than other authors have 
suggested. One would, of course, have expected 
high redundancy values if morphology and diet were 
tightly coupled. 

Selection of Variables 

All too often investigators cannot interpret 
the factor correlations that appear between 
environmental and organismal data. Proper 
selection of variables may help reduce this 
problem. Variables should be chosen with some a 
priori knowledge that a relationship exists 
between the data se.ts; the ease with which some 
environmental variables are measured is no reason 
to assume that they relate to the distribution of 
organisms of interest. Also, data should be 
collected specifically for use in canonical 
correlation analysis rather than using canonical 
correlation analysis as an ad hoc or ~ posteriori 
approach. 

In most environmental studies that have 
applied canonical correlation analysis, the 
situation has commonly occurred where 
investigators have measured many variables, but 
collected few samples. Since the 
sample-to-variable ratio must be greater than 1 
(the greater the better--see section after next), 
which variables to exclude from analysis becomes 
important. Thorndike ( 1978) found that 
elimination of some variables in most cases did 
not change the magnitude of the first canonical 
correlation. He argued that for a given 
magnitude, the fewer the variables, the greater 
the likelihood that a canonical correlation is 
attributable to real population-wide sources of 
covariation, rather than to situation-specific 
covariance. 

Poore and Mobley ( 1 980) tried three schemes 
to reduce the number of variables in their marine 
benthos study. Initially, they eliminated all 
rare species (average capture < 1 per sample), 
reducing the total number of species considered 
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from 246 to 49. For the first analysis, they 
further eliminated all species with less than 118 
individuals sampled which reduced the number of 
species to 22. They found that this procedure 
produced results that were very difficult to 
interpret. For , the second analysis they deleted 
all species found in less than half the sampling 
stations, reducing the 49 species to 18. This 
procedure eliminated species found only at a few 
stations, but since they were interested in the 
subtle influence of sewage on species 
distributions, this elimination defeated the 
purpose of the study. For the third analysis, 
they deleted species correlated with only 1 or 2 
of 13 environmental variables measured and also 
deleted any environmental variables correlated 
with 6 or less of the 49 species. This left a 
total of 22 species and 9 environmental variables. 
This procedure gave the most easily interpretable 
results since it eliminated both species and 
environmental variables which were behaving 
independently of the pattern they were 
investigating. Care should be used in this 
procedure, however, since Cassie (1969) found that 
adding and subtracting variables at random 
"capriciously" changed values of the corresponding 
canonical coefficients. In some situations these 
changes in coefficient values may be desirable, 
such as in the empirical step-up and step-down 
procedures discussed in Thorndike (1978). 

Plot of Sample Scores 

Interpretation of results of a canonical 
correlation analysis can usually be aided by 
plotting individual sample canonical scores in a 
simple two-dimensional plot. Canonical scores are 
the summation of canonical variates (data for 
original variables multiplied by canonical 
coefficients) and are usually available from any 
canonical correlation computer program. 
Standardized scores are used in most cases 
(Morrison 1976:262). One score will be produced 
for each sample in each data set. For example, in 
the study of lizard behavior and microclimate 
discussed later, James and Porter ( 1979) plotted 
sample scores from the first canonical correlation 
with microclimate on one axis 'and behavior on the 
other (see fig. 4). In ecological research, as 
pointed out by Poore and Mobley ( 1980), the 
spatial relationship within the sampling stations 
(or between data points) may be important. 

Sample Size 

One goal of canonical correlation analysis is 
the generalization of results to other situations. 
In order to reach this goal, one must have faith 
that canonical coefficients and factors actually 
reflect underlying relationships; stability in 
estimates of weights and factors should be 
expected when sample sizes vary. Monte Carlo 
examinations of weights and factors (Mendoza et 
al. 1978) demonstrates that the smaller the sample 
size, the greater the variability in weight and 
factor estimates. This argues for large sample 



sizes. Thorndike (1978) suggests as a "rule of 
thumb" that sample si~e should be the total number 
of variables in bot!'): m;Bt,rices squared, plus 100 or 
so for good measure. -He suggests minimal sample 
size to be 10 times the total number of variables 
plus 100 for good measure. 

Few ecological studies have approached sample 
sizes of the magnitude suggested by Thorndike. 
Since individual samples in ecological research 
usually have greater meaning than test results of 
anonymous individuals in psychological and 
educational research (Poore and Mobley 1980), a 
sample size of three or four times the number of 
variables is probably adequate in most instances. 
The inherent problem is that as sample sizes 
approach the number of variables, the canonical 
correlation approachs 1.00 and statistical 
significance of the first canonical correlation is 
assured. Biological significance, however, should 
be questioned in such situations and results based 
only on canonical correlation with equal or near 
equal numbers of samples and variables should be 
viewed with skepticism. Although it has been 
suggested (e.g., Green 1971) that multivariate 
statistics are still useful when the statistical 
assumptions are relaxed if the results are 
biologically meaningful (e.g., see Dueser and 
Shugart 1979), I would still argue for statistical 
rigor in the application of multivariate 
statistics. 

A case in point is the study by Herrera 
(1978), in which an attempt _was made to depict 
differences between non-resident and resident 
passerine bird species in Spain using six 
measurements of avian community structure to 
characterize each group. These measurements were 
calculated for each month and canonical 
correlation analysis was used to compare monthly 
changes in community structure. With only 12 
samples (1 per month) and 12 variables (6 for each 
bird group), Herrera (1978) understandably found a 
high canonical correlation (1.00), resulting in a 
linear plot with fall, winter and spring avian 
communities at one extreme and the summer 
community at the other (fig. 2). A linear 
ordination is indicative of a 1.00 canonical 
correlation, and the high canonical correlation is 
most probably an artifact of the small sample-to
variable ratio. Herrera ( 1978) discussed at 
length differences between resident and 
non-resident canonical factors, but certainly 
stability of the canonical factors, as well as the 
lengthy discussion of their importance must be 
questioned. 

Another example of the sample size problem is 
the investigation of Aart and Smeenk-Enseink 
(1975) into the distribution of 12 spider species 
compared to 17 environmental variables. With only 
29 samples, this study also found a canonical 
correlation of nearly 1. 00 and the plot of data 
points was linear. 

Several statistical options are now available 
for examining stability of coefficient and factor 
estimates. To reduce bias that may be associated 
with the estimates, especially when sample sizes 
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Figure 2. Ordination of 12 monthly samples (e.g., 
01 = January) based on canonical correlation 
analysis (R = 1.00) of resident and non-resident 
bird communities studied in southeastern Spain. 
Summer bird communities (April, May, June and 
July) are separated from other monthly samples. 
Results are questionable (see text) and 
linearity of the ordination is due to 1.00 
canonical correlation. (from Herrera 1978) 

are small, jackknifing estimates is appropriate 
(see Dempster 1966, Miller 1974). This is a 
procedure (appendix I) whereby the estimates are 
recalculated, deleting (usually) one sample from 
each run. Thus, if one had 15 samples total, 15 
canonical correlation runs would be made with 14 
samples, each time deleting a different sample. A 
new value for each estimate is calculated based on 
the sum of the new runs, and a t-test can 
determine if the new estimates are significantly 
different from original ones obtained using all 
samples (appendix I). If there is no significant 
difference between original estimates and 
jackknifed estimates, the confidence one places in 
the estimates is greatly increased. Confidence in 
results of the Herrera ( 1978) and Aart and 
Smeenk-Enseink (1975) studies would have been 
greatly improved by jackknifing estimates of 
canonical factors and coefficients. 

Dempster (1966) suggested that for canonical 
correlation, deletion of one degree of freedom in 
each run may be superior to deleting complete 
samples, which have two degrees of freedom. In 
the example above, 30 new canonical correlations 
would be run deleting one sample from one of the 
two data sets each time, and new values for each 
estimate would be calculated based on the sum of 
30 runs. 

To reduce the effect of multivariate outliers 
(data points that do not appear to be members of 



the multivariate, population under study), 
canonical correlati~n ·using robust estimators can 
be helpful (Gnanadesikan 1977:127-137). True 
multivariate outliers can severely affect 
estimates obtained in most results. Robust 
estimation decreases, to varying degrees depending 
on which type of robust estimator is used, the 
contribution of outlying samples to the estimation 
of weights (Harner and Whitmore 1981). 
Gnanadesikan (1977) cautioned that care should be 
used in the application of robust estimators to 
small data sets; an apparent "outlier" may in fact 
only be due to inadequate sampling of the 
population of interest. 

APPLICATIONS OF CANONICAL CORRELATION ANALYSIS 

Considering the length of time since 
development of canonical correlation, the 
technique has not 6een applied widely in 
biological research (see review in Lee [ 1969]). 
One of the earliest uses was by Hughes and Lindley 
( 1955) to investigate environmental factors in 
vegetation trends. Other researchers have 
attempted to use canonical correlation for 
phytosociological studies (Austin 1968, Barkham 
and Norris 1970) but, as mentioned earlier, the 
use of canonical correlation as an ordinational 
technique may be limited (Gauch and Wentworth 
1976). Webb et al. (1971) found canonical 
correlation useful in determining the potential of 
forested areas as agricultural land. Sparling and 
Williams (1978) suggested the use of canonical 
correlation for analyzing bird vocalizations, but 
Martindale (1980) questioned that application. 

Correlations Between Morphology and Environment 

In animal ecology, some of the most promising 
applications of canonical correlation have 
attempted to correlate morphology with some aspect 
of the environment. In a series of investi
gations, Jameson and his colleagues used canonical 
correlation analysis to explore relationships 
between environmental and morphological variation 
in the ectothermic Pacific tree frog (Hyla 
regilla). Since Pacific tree frogs exhibit a wide 
array of morphological variations which are 
potentially related to climate and weather through 
the need to conserve water and energy, canonical 
correlation analysis was chosen as an appropriate 
means of depicting the relationships. Calhoon and 
Jameson ( 1970) examined relationships between 10 
morphological variables and 16 environmental 
variables that all corresponded to weather 
patterns the year prior to collection of tree 
frogs. Tree frogs were collected during one 
spring from seven different populations in 
southern California. Discovering that many 
weather variables were intercorrelated, they 
performed a second canonical correlation analysis 
with 8 weather and 10 morphological variables and 
discussed only the results of the second analysis. 
Only the first canonical correlation was 
s.tatistically significant and the results were 
interpretable as a trade-off between maximizing 
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water conservation by large body size and 
minimizing heat absorption by small body size. 
Although not statistically significant, the 
authors discussed the second canonical correlation 
as being biologically significant. 

In a similar study, Vogt and Jameson (1970) 
investigated phenotypic variation in one 
population of Pacific tree frogs sampled monthly 
over a 3-year period near San Diego, California. 
In this canonical correlation analysis, 7 
morphological measurements of male tree frogs were 
investigated with 24 environmental (weather) 
variables covering the 2 years previous to 
collection of specimens. . Five canonical 
correlations were significant and, taken together, 
results generally confirm that milder weather 
correlated with rounder frogs, while decreased 
rainfall correlated with more elongated animals. 
Toe length showed the strongest correlation with 
weather variables suggesting that it responded 
most rapidly to changes in precipitation. More 
importantly, canonical correlational analysis 
elucidated two significant periods in the life of 
Pacific tree frogs when weather patterns are 
important: the amount of rain during growth and 
metamorphosis in spring and the extremes of the 
high temperatures during fall. 

In an expanded version of the two previous 
investigations, Jameson et al. (1973) examined the 
relationships of weather patterns, both short- and 
long-term, to morphological variation in male, 
female, and juvenile tree frogs from 14 locations 
in ~estern Oregon. As before, 10 morphological 
measurements were used and these were correlated 
to 19 weather variables that characterized weather 
the year previous to tree frog collection. A 
second analysis was performed with morphological 
data using the long-term average (from available 
weather stations) for the 19 weather variables. 
The first analysis was termed a "weather" 
relationship and the second a "climate" 
relationship. The analyses were performed 
separately on male, female, and juvenile data 
sets. The authors concluded that there were 
meaningful parallels between intraspecific 
variation and weather and climate. Large males 
were found in areas of low summer temperatures, 
but this pattern was not evident in females. 
Males were more highly correlated with weather 
patterns, while females were more highly 
correlated with climatic patterns, a pattern 
consistent with field observations that males 
inhabit a more variable microhabitat (ponds). 
Juvenile morphology was more closely related to 
weather than climate, presumably because the 
developmental period they pass through only lasts 
several weeks. However, the juvenile results were 
highly variable, suggesting to the authors that 
there may be selection for variability of response 
in offspring, a strategy that fecundity of the 
tree frogs would allow. The major conclusion of 
this work was that natural selection appears to 
operate on the size and shape of frogs in 
different directions during different life history 
stages and at different localities. 



All three tree frog studies illustrate 
exemplary uses of canon~cal correlation analysis. 
Another excellent example is by Boyce ( 1978) who 
examined climatic 'variability and body size in 
muskrats (Ondatra zibethicus). Results of his 
analysis are summarized in figure 3. Ten climatic 
variables were compared with nine morphological 
measurements and the first canonical correlation 
was 0. 776. (The first six canonical correlations 
were significant.) Body length (BODY), total 
length (TOT), condylobasal length (CB) and 
zygomatic breadth (ZB) were all highly correlated 
with the first morphological variate and represent 
body size variation. This is not surprising since 
the first canonical correlation will almost always 
be a size-related axis. Longitude (LONG), annual 
range of evapotranspiration (Rev), and annual 

coefficient of variation of monthly evapo
transpiration (Sev) had high correlations with the 

climatic variate. Boyce interpreted these results 
as showing that body size variation is positively 
correlated with climatic seasonality. Discovering 
this relationship supported the notion that 

R, M1 

Figure 3. Diagram of the first pair of canonical 
variates in study of climatic variability and 
body size variation in muskrats (from Boyce 
1978). Definitions of important climatic 
variables and morphological variables are given 
in text. c1 is the first climatic canonical 
variate, M1 is the first morphological canonical 
variate, 0.776 is the canonical correlation, and 
the numbers along the arrows are correlations 
between original variables and canonical 
variate. 
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herbivore body size is positively correlated with 
primary productivity. Boyce concluded (in part) 
that the larger individuals may be favored in 
seasonal environments because they can subsist 
longer without food. 

Another important study is that of Karr and 
James ( 1975) in which 196 species of birds from 
several continents were compared using 17 
morphological measurements and 14 ecological 
variables, asking the question "What are the 
ecological correlates of patterns of morphological 
variation?" The first six canonical correlations 
were statistically significant and relationships 
between morphology and ecology became apparent: 
relatively longer thinner bills and smaller body 
size (first correlation), relatively longer legs 
and narrower bills with ground foraging (second 
correlation), etc. (see Karr and James [1975:table 
6] for complete listing). The authors chose to 
discuss in depth the second canonical correlation 
since the first correlation related primarily to 
size phenomena, the results of which were somewhat 
misleading due to the influcence of the 
morphologically extreme hummingbirds and sunbirds. 

Karr and James (1975) cautioned that care 
should be used in the selection of variables and 
generalization of results. They purposely 
restricted analysis to primarily forest-inhabiting 
bird species and did not generalize their results 
beyond that. Addition of, say, water-dependent 
species such as ducks and herons would have 
changed the results dramatically (due to the 
changes in morphology) and the scope of the study 
would have changed accordingly. Occasionally 
researchers have combined variables which do not 
appear to have any apparent relation. For 
example, DesGrandes ( 1978) related seven 
morphological measurements of 21 hummingbird 
species in Mexico with five ecological variables 
in order to support his field observations that 
large birds tend to be sedentary and dominant 
while smaller species tend to be highly vagile and 
subordinate. The canonical factors from the first 
canonical correlation that demonstrate this 
relationship are presented in table 1. It is 
unclear what relationship "altitude" has with 
other variables. Such variables should be culled 
from canonical correlation analyses and only 
variables that clearly relate to the same 
phenomenon should be included in the respective 
data sets. 

Behavioral Applications 

A recent paper by James and Porter ( 1979) 
demonstrated the applicability of canonical 
correlation to ecological behavioral 
investigations. They were interested in relating 
behavior of the African rainbow lizard (Agama 
agama) to microclimatic variables. ---siX 
microcl imatic variables were measured at hourly 
intervals over several days in October, January, 
and April and the behavior of a dominant male 
lizard was also categorized at the same hourly 
intervals. The authors used canonical correlation 



Table 1. Canoniccjl ~factors associated with first 
canonical root (R ·= 0.93) showing relationship 
between dominance and large body size of 
hummingbirds contrasted with subordinance and 
small body size. Data from analysis of Mexican 
hummingbird communities (DesGrande 3 ). 

Ecological 
variables 

Dominance 

Altitude 

Status 

Territory 

Food 

Factors 

0.92 

-0.08 

-0.65 

0.40 

0.19 

Morphological 
variables 

Length 

Culmen 

Bill width 

Bill depth 

Bill curve 

Wing disc 
loading 

Dimorphism 

Factors 

0.85 

0.71 

0.85 

0.89 

o. 14 

-0.23 

0.65 

'Personal communication with J-L. DesGrandes, 
Canadian Wildlife Service, Quebec Region, Ste-Foy, 
Quebec, Canada. 

analysis to investigate relationships between 
behavior and microclimate, and obtained a nice 
depiction of the effect of heat load on behavior 
(fig. 4). · The distances between columns is a 
function of the relationship between responses to 
low (body flattened) and high (body vertical) heat 
loads. Obtaining the same pattern in October and 
April argued against a seasonal variation in these 
relationships. 

This work is also important because it 
employs two methods which improve the usefulness 
of a canonical correlation analysis. First, 
although only six microclimatic variables were 
actually measured in the field, 17 were used in 
the analysis. These additional 11 variables were 
constructed by defining various interactions 
between variables (see James and Porter [1979] for 
details). The technique of building interactions 
into the model is used widely in multiple 
regression, but few workers have considered 
applying it to canonical correlation analysis. 

The second improvement concerns the removal 
of singularities. Since behavioral data are 
mutually exclusive, i.e., a lizard cannot be doing 
two behaviors at the same time, all behavioral 
rows add up to the same value ( 1 since all data 
were categorized). Therefore, the behavior 
"resting" was eliminated from the analysis so that 
the sum of the rows was now different. The 
elimination of one column of data does not affect 
the conclusions, and in this case, removed the 
singularity. 
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Figure 4. Representation of the relationship 
between microclimate and behavior of the African 
rainbow lizard based on canonical correlation 
analysis (R = 0. 72) of data collected between 
11-14 January 1971 in Ghana (from James and 
Porter 1979). Ordination depicts behavioral 
changes as heat load increases. Each point 
represents an hourly measurement of behavior and 
microclimate. 

Animal Community Ecological Applications 

Using canonical correlation analysis, Webb et 
al. (1973) were able to present a land-use scheme 
for nature conservation in Australia based on 
vegetational characteristics and bird communi ties 
of tropical forests. Few other studies have used 
canonical correlation analysis in terrestrial 
community ecology, and most that have, suffered 
from small sample-to-variable ratios (e.g., 
Herrera 1978) • 

Use of canonical correlation analysis is 
increasing in marine ecological studies, which is 
understandable since specific environmental 
factors enter prominently into the distribution of 
many marine invertebrates. One of the first 
applications was by Cassie and Michael (1968) in a 
study of invertebrate distribution and sediment 
size on an intertidal mud flat near Auckland, New 
Zealand. They were interested in the relationship 
between eight invertebrate species and nine 
sediment variables sampled at 21 locations. The 
analysis suffered from a small sample to variable 
ratio, and the authors obtained much better 
results with principal component analysis for 



which they had 40 samples. But, realizing the 
sample-to-variable rat~p problem, they suggested 
that canonical oorr:-elation analysis may still be 
useful in larger · studles. 

Two recent studies have been more successful 
with canonical correlation analysis. Mcintire 
(1978) investigated distribution of 26 
non-planktonic diatom taxa based on six 
environmental variables in an estuary on the 
Oregon coast. The first canonical correlation 
(R=0.98) ordinated the species along a salinity 
gradient. The second canonical correlation 
(R=0.95) highlighted mean daily salinity range and 
mean temperature, which Mcintire interpreted as a 
gradient to salt tolerance (stenohaline to 
euryhaline species). In Victoria, Australia, 
Poore and Mobly (1980) used canonical correlation 
analysis to ordinate 22 benthic invertebrate 
species based on nine environmental variables 
measured at 36 stations at the outwash of a sewage 
treatment plant. Although the sample-to-variable 
ratio was small, the authors still found useful 
results. The first canonical correlation (R:0.99) 
reflected a depth gradient based primarily on 
amount of fine sand associ a ted with shallow 
waters. The second canonical correlation (R:0.98) 
separated the middle samples from the shallow and 
deep water samples (figure 5). Such a "horseshoe
shaped" ordination is to be expected when 
attempting to ordinate species distributions along 
a steep gradient (e.g., see Phillips [1978]). 

CV2 

0 5 

46 

... 
A 

Figure 5. Ordination of benthic marine samples 
from outwash of sewage treatment plant based on 
first two canonical variates (CV1 and CV2) (from 
Poore and Mobley 1980). Separation is along 
depth gradient: A' = very deep samples, A = 
deep samples, B = intermediate depths, and C = 
shallow water samples (ellipses drawn by eye). 
Placement of some sample stations outside of 
ellipses (e.g., 14, 72, and 63) is due to 
unusual environmental conditions at those sites 
(see Poore and Mobley 1980 for details). 
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CONCLUSIONS 

The major point that researchers who use 
canonical correlation should keep in mind is that 
the larger the sample-to-variable ratio, the more 
stable canonical factors and weights become, so 
that sample sizes should be as large as possible. 
As relationships between variables approach 
linearity and data sets approach a multi variate 
normal distribution, results should become more 
easily interpretable. 

By perusing the works that have succ~ssfully 

used canonical correlation to date, it becomes 
clear that experimental design and planning are 
critical. It is imperative that~ata be ~ollected 
with canonical correlation in mind. All too often 
application of multivariate statistics appears to 
be an ad hoc or a posteriori approach rather than 
the a priori approach that it should be. The 
selection of variables is extremely important and 
much of the past troubles with interpretation may 
relate to researchers having no idea how the 
environmental variables measured actually 
influence the organism(s) of interest. The 
problem of adequate sample size may make use of 
the technique prohibitive, although this has 
rarely stopped anyone yet! 

With proper planning, canonical correlation 
analysis can become a very useful tool for 
wildlife habitat studies, and probably will become 
more widely used as researchers become familiar 
with it. Planning is certainly the key to 
successful use and ~annot be stressed too heavily. 
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APPENDIX I 

Jackknife estimation 

(written by James E. Dunn) 

@ = usual estimate based on all data 

Divide data set at random into g groups of h 
observations each, e.g., typically g = n, h = 1. 

Compute @-i' i.e., usual estimate with ith group 

deleted, i=1,2, ... ,g 

Compute pseudo values ei = g@- (g- 1) 

i = 1,2, ... , g 

Jackknifed estimate is 

8 = 1 
g 

g 
E 

i=1 

-.--.......... 
VAR[e] 

e. 
1 

g 
E 

i=l 

Test of significance: 

t 

g-1 

H 
0 

El 
0 

@ . 
-1 

··-.. ·. 



DI~~USSION 

JAKE RICE: In 'yo"ur talk you stressed that 
canonical correlation was exactly that: a 
correlation method, and one does not need to 
identify predictor and criterion sets of 
variables. Suppose you did have some biological 
reason for identifying one set of variables as 
predictors and the other set as criteria variables 
(as is common in simple regression studies); would 
(or could) one do anything different that might 
improve the findings? (As in some contexts 
regression methods provide results preferable to 
correlation methods on the same data set.) 

KIMBERLY SMITH: James Dunn has an answer to that 
question. 

JAMES DUNN: If SAS PROC GLM is available, write a 
MODEL statement with the criteria variables on the 
left and the predictor variables on the right. 
MANOVA mode will work equally well if the 
predictors are continuous or categorical. In the 
former, it may be necessary to arrange the MODEL 
statement properly, specify Type I SS, and 
accumulate the derived number of H matrices into a 
composite H

0 
before computing a likelihood ratio 

test based on 
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or a union-intersection test based on max 

JOSEPH FOLSE: In multiple regression analysis, 
inclusion of extraneous variables does not bias 
other regression estimates whereas deletion of 
important variables does. What effects does this 
have in canonical correlations? 

KIMBERLY SMITH: One way that has been suggested 
of attempting to improve canonic~l correlations is 
to eliminate variables that have low loadings (or 
weights) and repeat the analysis with the reduced 
model. Interestingly, Cassie ( 1969) has 
suggested, however, that if one starts to delete 
variables randomly, the relationships obtained 
from canonical correlation change rather 
capriciously. Thus, the same relationship appears 
to hold true for canonical correlation - inclusion 
of extraneous variables should not bias other 
correlation estimates, whereas deletion of 
important variables will. 



DATA-BASED TRANSFORMATIONS IN MULTIVARIATE 

ANALYSIS1 

James E. Dunn2 

Abstract.--Univariate transformations are considered 
initially, because of the common practice of transforming 
separately the marginal distribution of each variable of a 
multi variate observation. Familiar examples include those 
based on ~ priori assumptions about the underlying sampling 
distribution, as well as several general classes of empirical 
transformations recommended in a recent text by Mosteller and 
Tukey. Multi-normal criteria are considered as a basis for 
obtaining and evaluating multivariate transformations, 
including the likelihood criterion and various 
transformations to uniform statistics. The extension of 
power and shifted-power transformations to multivariate 
analysis is reviewed in detail, including recently published 
work involving q-sample problems. 

Key words: Multivariate; power transformation; uniform 
statistics. 

INTRODUCTION stabilizing transformation. 

At first exposure, a student without data 
typically will be intimidated by the wilderness 
which exists in the world of data transformations. 
"How," he will ask, "can I interpret a significant 
difference between means of logarithms of my 
data?" With data he will seem perfectly 
comfortable in comparing mean pH values (-log H ). 
When life testing with an automatic termination 
date, say, after 15 days, he will automatically 
compare means of reciprocal response times, where 
'starter' values of 1/16 are routinely assigned 
for any survivors. An arbitrary error of at most 
1/16 for any survivor seems perfectly acceptable 
in this context. If asked to compare the means 
when sampling from two populations whose variances 
clearly are unequal, he wi 11 agree that any 
comparison is ambiguous until a common metric (cr) 
is established through use of a variance 

1 Paper presented at The use of multi variate 
statistics in studies of wildlife habitat: a 
workshop, April 23-25, 1980, Burlington, Vt. 

2 Professor and Statistical Consultant, 
Department of Mathematics and Statistics, 
University of Arkansas, Fayetteville, AR 72701. 
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Even though this manuscript is directed 
toward multivariate problems, univariate 
transformations are considered initially because 
of the common practice of transforming the 
marginal distribution of each variable separately. 
Even though marginal normality does not guarantee 
multivariate normality, as may be demonstrated in 
rather contrived examples, numerous cases have 
occurred where this approach has seemed 
sufficient. 

Multivariate transformations are introduced 
in the following section in the natural language 
of matrix notation. Capital letters are used to 
denote matrices (e.g., A, I, 1:), lower case 
letters underscored for column vectors (e.g., J_, 
j, B), and lower case letters in general for 
scalars, either random variables or constants, 
including the elements of vectors and matrices. 

A natural danger in a paper of this type is 
to focus on the taxonomy rather than the 
systematics (ecology) of transformations. To 
avoid this, I have tried to emphasize what I 
consider in the process of selecting a data-based 
transformation. 



In the interest 9f space, two interesting 
categorical responSe' situations can only be 
mentioned here. The''GSK model (Grizzle, Starmer, 
and Koch 1969) foranalysis of categorical 
response using linear models has promise for 
studying multivariate relative frequency problems, 
such as bird counts by species at different 
locations, or stomach contents by taxonomic group. 
Dunn and Cappy (1979a, 1979b) have studied the 
problem of invertible transformations in this 
context. The multivariate logistic model 

p = [1 + exp(-B'x)J-1 has come into focus as a 
robust classifier compared to multi-normal 
classification functions (cf. Efron 1975, Press 
and Wilson 1978). In particular, it lends itself 
to use of categorical response variables and 
non-linear boundaries. 

UNIVARIATE TRANSFORMATIONS 

Even though the material in this section is 
generally known, it is reviewed here for 

completeness. If y ~ N(~, o2), then it is evident 
from the uniqueness of the cumulant generating 

function Ky<t) ~t + a2tl2 that the normal 

distribution is the only possible distribution in 
which the mean and variance are functionally 
unrelated. Since most of our familiar hypotheses 

tests (e.g., t, F, 
normality assumption, 
non-normal data whose 
mean seems to be 
normalization. 

2 x , etc.) depend on the 
finding a transformation of 
variance is unrelated to the 

a logical approach to 

Variance Stabilization From A Priori Assumptions 

Suppose that y has mean~ and variance 02 (~), 
and we require a transformation t = t(y) such that 
var[t] is a constant c to some acceptable order of 
approximation. Using the familiar stochastic 
Taylor's series expansion of t(y) about ~ leads to 
the well-known defining equation (cf. Rao 1952) 

(1) 

For example, suppose that y has a Poisson 

distribution with ~ = A and a2 C~) = A• 

Then 

t (A) = IC !A -
1 12 dA = 2.,tc IX = -11 , 

provided we specify the approximate variance to be 
c = 114. In actual fact if t = .,ty, then var[t] = 

1 I 4 + 3 I ( 32 A ) + ( • ) I A 2 + • • • = 1 I 4 + 0 ( 1/A ). 
Anscombe (1948) produced a still more stable 
transformation t = /y + 318 with var[ t] = 114 + 

0(11A2). Clearly, variance stabilization is more 
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effective for Poisson counts with large rather 
than small means. Familiar transformations, 
including improvements suggested by Anscombe 
(1948) appear in table 1. They are data-based in 
the sense that they reflect our prior beliefs 
about the parent population being sampled. 

A Data-Based Power Transformation 

Suppose that y is sampled from a population 

with mean ~ and a2 C~) = a~b, i.e the variance is 
proportional to some unknown power of the mean. 
Using equation (1), one obtains the result 

t(~) = IC7a ~~- 612 d~ 

= {~ 1 -BI2 
with c = a(1 - 612)

2 
if B i 2 

tn(~) with c = a if B = 2. 

If a sample is available from each of q 
populations, or if a large sample from a single 
population is divided at random into q subsamples, 
then one may estimate B from the sample means and 

variances {(y.,s~):i=1, ••• ,q} as the slope of the 
1 1 

regression of tn (s~) on tn (yi). Then t = tn(y) 

or t = y1-t12 , depending on the proximity of~ to 
2. 

Mosteller-Tukey Transformations 

Mosteller and Tukey ( 1977) approach the 
problem of selecting a transformation using only 
prior knowledge that certain parts of the range of 
t(y) should represent a differential shrinkage or 
expansion of the domain of y. Selecting a proper 
transformation is visualized to be an evolutionary 
process, i.e., try, look, and try again, with 
interactive access to the data set assumed. 
Visual display, to look for linear trend or 
parallel trends, is important to see if progress 
is being made in the sequence of steps. General 
families of transformations suggested by Mosteller 
and Tukey ( 1977) are summarized in terms of the 
scale of measurement required. Most readers will 
feel at ease with their use of 'starter' values 
t(y +c), though justification of the recommended 
c = 116 is somewhat mysterious. 

Amounts and counts. Assuming that y ~ 0, one 
may use 

t(y) 
= {A(yiA)Pip + (1- 1/p)A if pi 0 

A tn(yiA) + A if p = 0 

if a match t(y) = y is required when y = A. A 
choice of p > 1 will cause expansion of the tails 
of the t axis, with the converse holding for 
p < 1. If the data contain zeros, then use of 
t(y + 116) is suggested. 



'rabl;e' 1 ~· Familiar univariate, variance-stabilizing transformations. 
~-: ·:<;·..!, 

Distribution/Mean/Variance t var[t] 

Poisson/>../>.. ly + 378 

Binomial/np/np(1-p) sin-1/(y + 3/8)/(n + 3/4) 

1/4 + 0( 1 />..2 ) 

(4n + 2)-1 

where n must be a constant. 

Negative binomial/ 
m/m(1 + m/k) 

sinh-1/(y + 3/B)/(k- 3/4), k > 2 ljl(k) /4 

ljl(k) tn(y + k/2), k < 2 

s 2 (Normal population)/ 

a
2/(2c//(n-1)) 

where k must be known. 

tn<s2> 2/( n-1) 

where n must be a constant. 

Counted fractions. The typical situation is 
"Y successes in n trials". If a started fraction 
is defined to be 

f = (y + 1/6)/[y + 1/6) + (n - y + 1/6)] 

= (y + 1/6)/(n + 1/3), 

then either the folded square root (froot) 

t(y) = 17UT - /1 f) or the folded 

logarithm (flog) 

t(y) = 1/2 tn f- 1/2 tn(1-f) = tn/r~tn~ 

= 1/2 tn(y + 1/6) 1/2 tn(n - y + 1/6) 

is recommended. Note that f = 1/2 and t = 0 in 
either case when y = n/2. Hence, a 50% response 
corresponds to a symmetry point for t, with little 
differential expansion in the neighborhood of t = 
0 and considerable expansion in either tail. 

Ranks. If n objects are assigned ranks 
r 1 , ••• , r n, then the counted fraction trans-

formation may be applied as 

ti = 1/2 tn[(ri - 1/3)/(n + 1 - ri - 1/3)] 

(i=1, ••• ,n). 

Alternatively, 'rankits' variously defined as 

(Tukey) 

~
-1 [(ri - 1/3)/(n + 1/3)] 

ti = - 1 [(ri 3/8)/(n + 1/4)] (Blom)(i=1, ••• ,q) 

-1 [(ri/(n + 1)] (Vander Waerden) 

are also commonly used in this context ( cf. SAS 
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1979), where t is the standard normal cumulative 
distribution function (c.d.f.). 

Grades. Here, the observations are simply 
classifed into one of q mutually exclusive, but 
ordered classes a 1, a2 , ••• , aq. Suppose that the 

observations are to be scored in terms of an 
assumed standard distribution with c.d.f. F(y). 
If the relative class frequencies are 

q i 
P1' p2 , ••• ,pq (I pj = 1), and si =I Pj' then 

j:1 j:1 
cut-points are defined by c0 = ~, cq = ~ and ci = 

-1 F (s
1

) for i=1, ••• ,q-1. The score lli to be 

assigned to an observation in the i'th class is 
the conditional mean of the standard distribtuion 
on the interval (ci_1,ci)' that is 

ci 
ll· = J y dF(y)/pl. 

1 ci-1 
(i=1, ••• ,q). 

In the normal case with F(•) = t(•), this becomes 

2 2 
lli = [exp(-ci_112) - exp(-ci/2)]/pi~' 

(cf. Kendall and Stuart 1967), while for the 
logistic as the standard distribution, Mosteller 
and Tukey (1977) give 

lli = [h(si) - h(si_1)J/pi' 

where h(s) = s tn(s) + (1 - s)tn(1 - s). Note the 
attractive feature that c 1, ••• ,cq need not be 

obtained explicitly in the latter case. In any 
case, considerable time generally will be required 
to complete the data recoding in multivariate 
applications. Cockrell (1980) will distribute (on 
request) a SAS procedure RECODE which seems to fit 
this application quite nicely. 



MULTIVARI4~E TRANSFORMATIONS 
\' .':-:~ 

In a search for a class of generally useful 
transformations of a univariate response y, Box 
and Cox (1964) proposed the power transformation 

y(A) {<l- 1)/A for A ~ 0, 
(2) 

~n(y) for A = 0, 

provided y > 0, or the shifted-power transform-
at ion 

y<A) 
{[(y + ,,. - 1]/A for A ~ 0 

(3) 
~n(y + f;) for A = 0, 

for y + f; > O, where f; either may be a starter 
value supplied by the user or else treated as an 
additional parameter to be estimated. Since 
typical statistics such as t and F are invariant 
with respect to changes in location and scale, use 

of y(A) is identical to use of yA or (y + f;)A, 
thus equivalent to the power trans format ion 

derived above. The particular form of y(A) simply 
emphasizes the fact that ~n(y) is a continuity 

point of y< A) at A = 0, that is 

lim y(A) lim(y + E;) A ~n(y +f,;) = ~n(y + f;). 
A+o A+o 

If Z1 = (y1, ... y ) is a p-variate response vector, 
then Andrews Pet al. ( 1971) suggested a 

multivariate extension by defining 

z<A) = [y (A1) 
1 ... , y ~ Ap)] I. where ( Ak) 

yk is 

defined by equations (2) or (3) in terms of 
parameter sets {Ak} or {Ak,f;k} for k = 1, .•• ,p. 

In order to choose 1 best 1 values for either 
of the above parameter sets in any particular 
application, we must specify our criteria. First, 
since almost all multivariate analyses depend on 
statistics which are functions of the covariance 
matrix, (e.g., principal components, canonical 
correlation, discriminant functions, and 
multivariate classification), we shall want a 
transformation to new variables whose covariance 
matrix contains all of the information about 
inter-relationships among the variables 
(independently of the mean). Again, considering 
the uniqueness of the cumulant generating function 
K (t) = ~ 1 t + t 1 Et/2 for y ~ N(~,E), this suggests y_- -- - - - -

that any criteria for the transformation be based 
on a characterization of multi-normality. Two of 
these possibilities are considered in the 
remainder of this section. Second, since the 
development of a transformation is likely to be an 
iterative process, we shall require an easily 
comprehended measure of our progress toward the 
optimum and an assessment of our final result. 
Finally, since in most applications, the original 
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scales of measurement are meaningful, only 
coordinate dependent approaches will be consid~ 
here [cf. Cox and Small (1978) for coordinate 
independent approaches]. 

Likelihood Criterion 

Let us consider the general q-sample (q > 1), 
multivariate case [which includes the q-sample, 
univariate case discussed by Box and Cox ( 1964), 
and the one-sample, multivariate case treated by 
Andrews et al. ( 1971)]. Suppose that a random 
sample zi 1, ••. ,zi,n. of size ni is drawn 

1 

independently from each of' q, p-variate 
populations (i=1, ••• ,q). Considering the simpler 
case of the transformations defined by equation 
(2), we shall want to find an estimate of the 
parameter set {Ak} such that 

( 4) 

for i=1, ••• ,q; j=1, •.. ,ni; and k=1, ••• ,p. The 

requirement of covariance matrix stabilization, 
E1 = ••• = Eq = E (E unspecified), as well as 

normalization seems realistic in light of the 
usual multivariate procedures. Following Dunn and 
Tubbs ( 1980) , the joint likelihood for the data 
set {y .. } can be re-expressed as the concentrated 

-1J 

likelihood function 

L(A1•···•Ap) 
np/2 -n/2 

= exp(-np/2)(n/2~) ~<A 1 , ••• ,AP) (5) 

where 

G = q ~i ) 
E (ziJ' - zi)(ziJ' - ~i I 

i-1 j:1 - - -

-1 z. = n. 
-1 1 ~ij 

(6) 

q 
II 

i :1 

~iy. . ) 1 /n 
. 1 1Jk 

(k = 1, ••• ,p). 
J= 

Dunn and Tubbs ( 1980) have successfully applied 
the Fletcher-Powell conjugate gradient algorithm 
to obtain an iterative minimization of (6) with 
respect to {Ak}' equivalent to maximizing (5), 

using a FORTRAN IV program locally known as 
VARSTB. Elements of the required gradient vector 



v~<x 1 , ••• ,XP) are given in that paper. 

Example. F1sh~t'~ classical iris data (1936) 
consists of 50 observations from each of three 
varieties of iris, virginica, versicolor, and 
setosa. Each experimental unit consists of 
measurements of sepal length and width and petal 
length and width. This data is often used to 
illustrate classification and discriminant 
functions, implicitly assuming equality of the 
covariance matrices. If a check is performed, 

Bartlett's test gives x2 = 144.0 with 20 degrees 
of freedom (P < 0.0001). VARSTB, on an IBM 
370/155, converged to estimates t 1 = -0.43054, t 2 

= 0.51697, t 3 = 0.39843, and t = 0.55468 in three 

iterations, requiring 47.02 seconds, starting· with 
all exponents identically one. At convergence, 
the maximum stress between successive iterations 

was 3.3 X 10-14 • Retesting the transformed 

values, Bartlett's statistic was reduced to x2 = 
65.2. Even though still P < 0.0001, the reduction 
of Bartlett's statistic implies that the 
transformations have been effective. The 
necessity for transformations is substantiated by 
testing H0: x1 = x2 = x3 = x4 = 1, using the 

generalized likelihood ratio test 

2 x = n tn[~(1,1,1,1)/~(t 1 ,t2 ,t 3 ,t4 >J 

: 150 tn[1.5497 X 104/1.30735 X 104] 

= 25.51 with 4 degrees of freedom 

( P <O. 00005). The effectiveness of the transfor
mation will be examined further in a later 
section. 

In summary, this procedure seems to satisfy 
the three criteria very well. It is based on the 
multi-normal likelihood function whose covariance 
matrix is independent of the mean (homoscedastic 
in the q-sample case) • We may observe the 
decrease of ~ to its minimum in successive 
iterations, each step automatically determined by 
the last, and test the effectiveness of the 
proposed transformations at the end. Finally, the 
identities of the original variables are 
maintained, since each is simply raised to some 
power followed by a shift of location and a change 
in scale. Jackknifing is a logical means of 
examining the stability of the estimated powers as 
well as improving their robustness. Available 
computer time may become a 1 imi t i ng factor,· 
however, if extensive jackknifing is attempted. 

TRANSFORMATIONS TO UNIFORM (U) STATISTICS 

Because of their simplistic distributional 
properties, transformations to uniform (U) 
statistics have universal appeal. Gnanadesikan 
( 1977) summarized a variety of graphical methods 

97 

for assessing marginal and joint normality, based 
on approximate transformations to i.i.d. U 
statistics. The exactness of his procedures will 
always be. suspect, however, in that no 
compensation is made for replacing true mean 
vectors and covariance matrices by sample 
estimates. 0 'Reilly and Quesenberry ( 1973) 
demonstrated that by conditioning on sufficient 
statistics, the conditional distributions of a 
properly transformed subset of the original 
variables are exactly i.i.d. uniform, U(0,1). 
Because their results show the most promise due to 
their exactness and because they are scattered 
through a relatively recent 1i terature, they are 
detailed here so far as they apply to assessing 
both marginal and joint normality in single and 
q-sample problems. The actual transformations are 
considered first, followed by a consideration of 
omnibus means of assessing uniformity. Since it 
will be required so frequently in the remainder of 
this section, let G (•) denote the cumulative 

u 

distribution function (c.d.f.) of student's t 
distribution with u degrees of freedom. 

One-sample univariate. Suppose that 
r 

y1, ••• ,yn are i.i.d. N(~,cr2 ), and let yr = I y./r 
j= 1 J 

2 r - 2 
and s = I (y.- yr) /r for r = 3, ••• ,n. Then the 

r j =1 J 
n - 2 random variables 

(7) 

are i.i.d. U(0,1) for r = 3, ••• ,n (O'Reilly and 
Quesenberry 1973). In applications, one must 
guard against any systematic arrangement of the 
data (e.g., ordered from small to large) before 
applying the transformation given by (7). 

Q-Sample univariate (heteroscedastic). 
Suppose that a random sample yi 1, ••• ,yi,n. of size 

1 2 
ni is drawn independently from each of q N(~i'cri) 

q 
populations (i=1, ••• ,q). Then a set of I (n. - 2) 

i= 1 
1 

i. i .d. U ( 0, 1) random variables will result by 
combining the results of applying equation (7) 
separately to each sample (Quesenberry et al. 
1976). The homoscedastic case will be treated by 
means of an analogous result in terms of the 
general linear model. 

Univariate regression. Suppose that 

Xn ~ N(Xn!'cr2I) specifies the usual general linear 

model of full rank under homoscedastic, normality 
assumptions, where a is a p x 1 vector of 
regression coefficients to be estimated. Let ~; 

denote the r'th row and Xr denote the first r rows 



of the overall design m;:~trix Xn, r = p+2, ••• ,n. 

Provided that X i's full column rank, let r 

cr = y~[I - Xr(X~Xr)- 1 Xpyr denote the residual 

sum of squares after fitting the model Yr=Xr!+~r· 

Then the n - p - 1 random variables ur-p-1 G 1Cv ), where r-p- r 
= 

1/2 1 (r-p-1) [yr- x'(X'X )- X'y ] -r r r r-r 
(8) 

{[1-x'(X'X )-1x ]c -[ -x'(X'X )-1x' ]2} 112 
-r r r -r r Yr -r r r rYr 

are i.i.d. U(O, 1) for r = p + 2, .•• ,n (O'Reilly 
and Quesenberry 1973). In applications, one must 
avoid any systematic arrangement of the data while 
at the same time insuring that XP+ 1 is of full 
rank. 

Q-sample univariate (homoscedastic). Suppose 
that a random sample y i 1, ••• , y i, ni of size ni is 

drawn independently from each of q, homoscedastic 
q 

N(~i'cr2 ) populations (i = 1, ••• ,q). Let n = En. 
i= 1 

1 

represent the total sample size. Noting that the 
linear model yij = ~i + eij for 1-way ANOVA is 

full rank, then the previous result applies 
provided that X 1 contains at least one randomly q+ 

selected observation from each of the q 
populations. If { y ( ... ) } represents a randomized r 1J 

order across all ~amples of the remaining n-q-1 
observations, let y ( i) represent the sample mean 

based on n(i) observations from the i'th sample at 

the r 1 th step of transformation (8) (i = 1, ••. ,q). 
Let cr be the corresponding error sum of squares 

from 1-way ANOVA at the r 1 th step. Then the n-q-1 
random variables 

( 9) 

are i.i.d. U(0,1) for r = q+2, ... ,n. It will 
usually be informative to reassociate the random 
variables in their original sample groups once the 
above transformation has been made. In 
applications, the most common failure will be to 
forget to mix all the samples together in some 
random order before applying transformation (9). 

One-sample multivariate. Suppose that 
y 1, ••• •Yn are i. i.d. from a full rank, p-variate 

N(~ E) population. Let 
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-1 r 
Xr = r E yi' 

i=1 

A 1A = c-1 
r r r 

r 
cr = _E YrYir- rxrXIr' 

1:1 

(a Cholesky decomposition), 

- - -1 ( - 1/2 
~r = Ar(yr-yr)/[ 1 - 11r- (yr-yr)'Cr Yr-yr)] 

(zr 1'zr2 , ••. ,zrp)' (r=p+2, •.. ,n). 

Then the p(n-p-1) random variables given by 

u = G 2{z [(r-p+s-2)/ 
r,s r-p+s- rs . 

2 
(1 + z r1 + ••• + z2 )]1/2} 

r,s-1 
( 10) 

for r p+2, ••• ,n and s 1, .•• ,p are i.i.d. 
U(0,1) (Rincon-Gallardo et al. 1979). 

Clearly, the multivariate, q-sample 
heteroscedastic case can be treated analogously to 
the univariate case using (10). 

Q-sample multivariate (homoscedastic). 
Suppose that a random sample y. 1, ••• ,y. of size 

-1 -1,ni 

ni is drawn independently from each of q, 

homoscedastic, p-variate N (~i, E) populations 
q 

(i = 1, ••• ,q). Let n = E n.. Proceeding as in 
i= 1 

1 

the q-sample univariate case, let us select p + q 
of the observations at random in such a way that 
at least one observation is selected from each of 
the q samples, and obtain a randomized order 
{Y (. ")} across the samples of the remaining n-p-q 
-r 1J 

observations. Let Y(i) represent the sample mean 

vector based on n(i) observations at the r'th step 

of the transformation, and let Er be the error 

matrix of SS and SP obtained from 1-way MANOVA at 
the r 1 th step. If we obtain the Cholesky 

d "t" A1A = E-1 and define ecompos1 1on r r r 

z =A (y (" ")-Y("))/ -r r -r 1J - 1 

[ -1 - I -1 - ) ] 1 /2 
1-n(.)-(y (" .)-Y(·)) E (y (" ")-Y(·) , 1 -r 1J - 1 r -r 1J - 1 

= (zr1'zr2'""''zrp)
1 

then by an extension of results given by Rincon
Gallardo et al. ( 1979), it follows that the 
p(n-p-q) random variables 

u(ij) 
r,s G 1{z [(r-p-q+s-1)/ r-p-q+s- rs 

2 
(1 + zr1 + ••• + z2 )]1/2 

r, s-1 } ( 11 ) 



for r = p+q+ 1 , ... , n and s = 1, ... p are i. i. d. 
U(0,1). Again, it ,wi1l usually be informative to 
reassociate these,. r'andom variables in their 
original sample groups once the transformations 
are completed. 

Assessment of Uniformity 

Suppose that u ( 1 ) ~ u ( 2 ) < 

represents the ordered values of m uniform 
statistics produced by any of the foregoing 
transformations. Under normality assumptions, the 
expected value of u(j) is j/(m+1) for j = 1, ••. ,m, 

so that if we plot u(j) vs. j/(m+1) in Cartesian 

coordinates, then we should expect the points to 
fall closely about the straight line defined by 
g(u) = u. In q-sample problems, it will generally 
be informative to assign different symbols to the 
points associated with the separate samples, or 
produce separate plots, in making a visual 
evaluation. 

More formally, any of the standard, goodness

of-fit procedures (Pearson's x2 , Kolmogorov-Smirov 
one-sample, etc.) can be applied. Miller and 
Quesenberry (1975) have shown that a modified 

Watson's u2 statistic proposed by Stephens (1970) 

m 
u2 = (12 m)- 1 + I: [u( ") - (j - 1/2)/mJ 2 

j=1 J 

- m(u - 1/2)
2 

' 

m 

( 12) 

I: u( ·/m, has attractive power 
j=1 J 

where u 

properties as an omnibus test of uniformity. It 
has the additional advantage of having 
approximately constant 10, 5, 2.5, and 1 
percentage points of 0.152, 0.187, 0.221, and 
0. 267 respectively for all m > 10 under the null 
assumption. The null hypothesis is rejected in 

2 this case for large values of U This. test in 
association with transformations given by 
equations ( 10) or ( 11) provides the only known 
exact test for multi-normality in either the one 
or q-sample cases. The only apparent disadvantage 
of these procedures is that the results are 
somewhat dependent on the order in which the 
observations are transformed, as we shall see in 
the following example. 

Example. In order to study the effects of 
data presentation, 24 random permutations of 
Fisher's iris data, both with and without power 
transformations were subjected to the q-sample 
transformation defined by equation (11). The 
first p + q = 4 + 3 = 7 observations for each 
trial consisted of three randomly chosen 
versicolor and two each of virginica and setosa. 
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Table 2. Comparison of u2 statistics for testing 
joint normality/homoscedasticity of Fisher's 
iris data with and without power transfor
mations, using 24 random permutations of the 
data. 

Transformation 
Randomization No Yes 

(U2) (U2) 

1 0.470 0.248 
2 o. 110 0.084 
3 0.243 0. 115 
4 o. 126 0.031 
5 0.354 0.130 
6 o. 364 0.128 
7 0.083 0.054 
8 0.147 0.105 
9 0.603 0.217 

10 0.270 0.117 
11 0.057 0.060 
12 0.260 0.119 
13 0.254 0.095 
14 0.118 0.115 
15 0.199 0.047 
16 0.229 0.060 
17 0.215 0.059 
18 0.218 0.058 
19 o. 163 0.030 
20 0.260 o. 174 
21 0.354 o. 185 
22 0.072 0.063 
23 0.124 0.069 
24 0.251 0.153 

Mean 0.231 o. 105 
s.d. 0.130 0.058 

2 0.187 u2.o25 0.221 2 
0.267 uo.o5 = uo.o1 0 

Table 2 summarizes the u2 statistics resulting 
from equation (12) for testing the null hypothesis 
of joint normality and homoscedasticity. Clearly, 
VARSTB has had a beneficial impact, as reflected 

by the reduction of u2 in every case. Figures 1a 
-1 c show plots of the order statistics from 
randomization #21 for each variety before 
transformations were made, while figures 1d - 1f 
give the analogous results following 
transformations. It is evident that the setosa 
values are most affected. Applying the one-sample 
result of equation ( 10) to the setosa data alone 

yielded u2 = 0.236 (0.01 < p < 0.025) before, and 

u2 = 0.208 (0.025 < p < 0.05) after the 

transformations. Doubtless u2 could be reduced 
still further if VARSTB were applied to the setosa 
data in isolation from the versicolor and 
virginica data. 

. ··.; ... · 
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Figure 1. Plot of order statistics for Fisher's iris data: (a) original sertosa (b) original virginica 
(c) original versicular (d) power transformed sertosa (e) power transformed virginica (f) power 
transformed versicolor. A = 1 observation, B = 2 observations, C = 3 observations. 
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Table 3. Observed acceptance rates (a = 0. 05) for Bonferroni tests of 
joint normality/homoscedasticity on Fisher's iris data with and without 

·, pgwer transformations, based on 24 random permutations of the data. 
\·: :\)!; 

No 
Summary Trials/test 

1 2 

No. of tests 24 23 

No. of acceptances 9 5 

Acceptance rate 0.375 0.217 

A disconcerting finding in table 2 was the 

extreme variability of u2 due simply to 
rearrangements in the order of the data. For the 

untransformed cases, u2 was observed to range from 
a nonsignificant 0.057 to a highly significant 
0. 603. As summarized in table 3, the nu 11 
hypothesis acceptance rates (a = 0.05) were 0.375 
and 0.917 respectively for the original and the 
transformed data. In order to produce a test of 
greater overall power in the presence of this lack 
of symmetry, the logical recommendation is to 
subject s random permutations of the data to the 
foregoing procedures. If a signficance level of 
a/s is used in each trial, and we reject the 
overall hypothesis if a rejection occurs for any 
trial, then the familiar Bonferroni result 
guarantees an overall significance level of at 
most a. Table 3 summarizes empirical acceptance 
rates for the Bonferroni procedure with s = 2 and 

s = 5 applied to the u2 statistics of table 2, in 
the order shown. When s = 2, each successive pair 

2 2 
was compared to u0•0512 = u0•025 = 0.221 for an 

overall 0.05 level test. The analogous procedure 

2 2 
for s = 5 employed u0'05/5 = u0.01 0.267. On 

actual practice, either exactly s 2 or s = 5 
permutations would be tested.) Clearly, some 
increase in power is suggested by the decrease in 
acceptance rates, particularly when changing from 
s = 1 to s = 2 in terms of the untransformed data. 
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Transformation 
Yes 

Trials/test 
5 1 2 5 

20 24 23 20 

6 22 22 19 

0.300 0.917 0.957 0.950 
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MULTIV ARIATEANALYSIS OF NICHE, HABITAT, AND ECOTOPE1 

Andrew B. Carey2 

Abstract.--Comprehension of the components of a species' 
response to an environmental complex can be achieved best by 
partitioning the full range of environmental factors 
potentially affecting the species (the ecotope hyperspace) 
into intercommunity factors (the habitat hyperspace) and 
intracommunity factors (the niche hyperspace). Hyperspaces, 
and the parts of hyperspaces occupied by a species (hyper
volumes), are defined by multidimensional coordinates. 
Reduction in the number of dimensions of these hyperspaces 
and hypervolumes to increase comprehension of a species' 
response to them can be accomplished through multivariate 
analyses. The analysis of an ecosystem on a south-facing 
slope of the montane zone in Rocky Mountain National Park, 
Colorado is presented as an example. Principal component 
analysis was used to determine the major gradients in a 
habitat hyperspace defined by 21 environmental variables. 
Five principal components were interpreted as gradients of 
soil depth, soil moisture, ground cover, mammal distribution, 
and shrub abundance. Responses of five species of rodents to 
these gradients were determined by examining their relative 
positions on the principal components. Stepwise discriminant 
analysis (DA) was used to mathematically describe habitat and 
ecotope hypervolumes of the mammals. Comparison of the major 
determinants of each hypervolume of each species clarified 
the niche of the species. Furthermore, the distribution of a 
major ectoparasite of the mammals was analyzed by DA of 
environmental variables. Three levels of abundance of the 
wood tick Dermacentor andersoni could be predicted using only 
five environmental variables. The presence of a virus 
infecting both the ticks and mammals could be determined 
using seven environmental variables. 

Key words: Discriminant analysis, ecotope, Eutamias, 
habitat, niche, principal component analysis, Spermophilus. 

INTRODUCTION 

Understanding the relationships between a 
species and its environment is the basic premise 
for wildlife management; to further this 

1 Paper presented at The use of multivariate 
statistics in studies of wildlife habitat: a 
workshop, April 23-25, 1980, Burlington, Vt. 

2 Research Wildlife Biologist, Northeastern 
Forest Experiment Station, USDA Forest Service, 
Morgantown, WV 26505. 
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understanding is the foremost goal of wildlife 
research (Sanderson et al. 1979). Wildlife 
management and wildlife research have progressed 
to the point where precise and mathematical 
definition of basic terminology is necessary for 
further rapid progress. The response of a species 
(or ecotype) to its environment is usually 
examined in one of two contexts: the habitat (its 
response to extensive features) or the niche (its 
response to local features). Unfortunately, the 
communication of research results depends on the 
assumption of mutual understanding of terminology 
rather than on a basis of precise definition or an 



organized system of mathematical descriptions. 
Haskell (1940) pointed out that this assumption is 
characteristic of a. P.,oorly advanced science. 

Development of multidimensional treatments of 
habitat and niche (Hutchinson 1958) was concurrent 
with the adaptation of multivariate statistical 
methods to ecology (Hughes and Lindley 1955). 
These methods made practical the application of 
multidimensional thinking to field studies of 
species-environment relationships (Cody 1968, 
Green 1971, Hespenheide 1971, James 1971, Shugart 
and Patten 1972). 

Despite these developments, there is still no 
unanimity on precise definitions of habitat and 
niche. Most ecology texts refer to habitat as the 
"address" and niche as the "profession" of an 
animal in its environment and later, in a 
discoursive context, refer to Hutchinson's 
n-dimensional hypervolume (Odum 1971, 1975; 
Kendeigh 1974; Smith 1974, 1977; Richardson 1977; 
Brewer 1979; McNaughton and Wolf 1979). 
Vandermeer ( 1972) pointed out that such 
definitions are excessively vague and inadequate. 
Whittaker et al. (1973) stated that the two terms, 
habitat and niche--perhaps the two most important 
in ecology--are among the most confused in usuage, 
and that their unsystematic usage has led to 
further confusion of other terms and concepts. 

Nudds (1979) explained the need for applied 
wildlife research in a theoretical context, and 
Sanderson et al. (1979) reminded us that one of 
our major reasons for reporting wildlife research 
is to transfer that information from the research 
community to the management community. The need 
for clarity in interpretation and reports of 
research results and for some degree of unanimity 
on terminology is apparent. .Whittaker et al. 
( 1973, 1975) proposed a precise terminology (fig. 
1) and found support in Hutchinson ( 1978). 
Despite objections to this terminology (Kulesza 
1975, Rejmanek and Jenik 1975), I believe it 
offers the precise definition required to maintain 
a desirable level of clarity in the presentation 
of species-environment relationships. In this 
paper I will first discuss the terminology of 
Whittaker et al. (1973) with some additions from 
Hutchinson (1978), and then illustrate how it can 
be applied to a field study of a complex 
ecosystem. Finally, I will discuss the utility of 
the terminology in wildlife research and in 
management. 

NICHE, HABITAT, AND ECOTOPE 

Landscapes are characterized by spatial 
gradients of structural (stage-setting or sceno
poetic) variables (e.g., elevation, slope, soil 
fertility), and are composed of biotopes-
locations (physical spaces) that have convenient 
arbitrary upper and lower boundaries, and that are 
horizontally homogeneously diverse (their 
structural elements are small compared with the 
range of an individual) relative to the larger 
motile organisms within them. These biotopes in 

105 

.A Landscape ... Made Up Of Biotopes ... Containing Communities 

HABITAT 
VARIABLES 

-extensive 
-across communities 
--often scenopoetlc 
-may Include: 

elevation 
slope exposure 
soli fertility 
communities 

NICHE 
ECOTOPE VARIABLES 

VARIABLES -Intensive 
-within a community 

the full range .-often bionomlc 
of -may Include: 

external factors food 

affecting other species 
the species foliage height diversity 

den sites 

BIOTOPES: Homogeneously diverse spaces 
that contain recognizable communities ... 
defined relative to the range of the 
mot lie organism under consideration. 

Figure 1. A suggested terminology. 

the landscape pattern contain recognizable 
communities (fig. 1). Biological communities, 
however defined, are vaguely bound in space and 
time (Inger and Colwell 1977). The biotic context 
of a population is its community--an association 
of coexisting populations bound functionally by 
their interactions and spatially by their 
co-occurrence in a biotope (Colwell and Fuentes 
1975). 

The environmental variables with extensive 
spatial components are intercommunity or habitat 
variables; axes derived from these variables 
describe a multidimensional habitat hyperspace. 
Each species in the landscape occurs over some 
range of the habitat variables; the limits of 
these ranges define a habitat hypervolume--a 
fraction of the habitat hyperspace where a species 
occurs. Multivariate analyses can be used to 
reduce the number of dimensions defining 
hyperspaces and hypervolumes, and this allows 
comparison of the habitat relationships of the 
many species populations found in the habitat 
hyperspace. The response of a species population 
to habitat variables within its hypervolume 
describes its habitat; Maguire (1973) provided a 
method for examining such responses in terms of 
isopleths of population parameters projected on 
axes representing the reduced dimensions. 

The intracommunity or niche variables 
(intensive or local environmental variables, e.g., 
height above ground, seasonal time, prey size, 
"microhabitat" variables) likewise define a niche 
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hyperspace that interrelates the species of a 
community. The niche.~yperspace is analagous to 
the fundamental qr ,~p.reinteracti ve Hutchinsonian 
niche. Each species in the community 
differentially utilizes, occurs in, or is affected 
by some range of these variables; limits of these 
ranges define the niche hypervolume--a fraction of 
the niche hyperspace where the species occurs. 
The niche hypervolume is analagous to the realized 
or postinteracti ve Hutchinsonian niche including 
the "included niche" of Miller (1964). Niche 
variables are generally bionomic variables 
(resources for which there may be competition) and 
may define axes representing other member species 
of the community. The dimensions of niche 
hyperspaces and hypervolumes can be reduced 
through multivariate analyses, and isopleths of 
the population response to the niche variables 
(th~ niche) can be projected on them (Maguire 
1973).---

The landscape of communities (the compound 
hyperspace that represents the full range of 
external circumstances to which species in the 
landscape are adapted) is the ecotope hyperspace 
and contains an ecotope hypervolume defined by a 
species' limits on the ranges of the ecotope 
variables. The ecotope represents the full range 
of a species' adaptation to external factors and 
is the ultimate arena for consideration of its 
relations to its environment (especially in a 
broad evolutionary context) , whereas the niche 
focuses on the role of the species within its 
community (especially competitive interactions), 
and the habitat relates to the distributional 
response of the species to the intercommunity 
environmental factors (those with extensive 
spatial components). Niche differences are 
intracormnunity differences and involve genetic 
characteristics evolved in relation to other 
species; habitat differences reflect the 
evolutionary response to a gradient of 
environmental factors external to, although often 
modified by, the community. Niche breadth 
measures intrapopulation genetic characteristics; 
habitat breadth measures interpopulation 
differentiation based on mechanisms different from 
those responsible for niche breadth, for example, 
ecotypic and subspecific differentiation. 

It can be seen readily that most wildlife 
management efforts do deal with habitat variables; 
however, the strength of the concepts is that they 
provide a conceptual scheme for different kinds of 
diversity (Hutchinson 1978) and, with increased 
interest in managing diversity (Pimlott 1969, 
Siderits and Radtke 1977), the wildlife biologist 
may want to deal with niche differences (within 
habitat or alpha-diversity), habitat differences 
(between habitats or beta-diversity), or with 
broad geographical differences (gamma-diversity). 

The basic principle underlying multivariate 
analyses of species-environment relationships is 
the determination of points (limits of ranges of 
niche, habitat, or ecotope variables) in 
multidimensional space followed by the 
mathematical reduction of the number of dimensions 
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so that those rema1n1ng are all orthogonal, 
independent, and significant (Hutchinson 1978). 

AN ILLUSTRATION: A MONTANE ECOSYSTEM 

The landscape chosen for study (Carey et al. 
1980) included two south-facing slopes of the 
upper montane forest climax region in the Rocky 
Mountain National Park, near Estes Park, Colorado. 
The areas encompassed about 20 ha of varied 
terrain, ranging from steep (>30°) slopes with 
massive rock outcrops to gentle (2-8o) slopes with 
deep soil. Elevation was between 2,487 and 2,585 
m, and the areas were representative of the upper 
montane, and contained all major· plant communi ties 
found there: aspen stand complex, ponderosa pine 
complex, big sagebrush complex, and dry montane 
grassland complex (Marr 1967). Five species of 
rodents wer.e abundant on the areas; in order of 
decreasing abundance they were deer mice 
(Peromyscus maniculatus), Richardson's ground 
squirrels (Spermophilus richardsonii), golden
mantled squirrels (S. lateralis), least chipmunks 
(Eutamias minimus ), and Uinta chipmunks (~. 
umbrinus). 

Methods 

Sampling grids were surveyed on the two areas 
and consisted of 269 intersections (marked by 
stakes) 30 m apart ( 13 x 13 stakes on one area, 
10x10 stakes on the other). A number of 
structural variables (table 1) were measured on 
the 225 30m x 30m quadrats covering the 20 ha. 
Seven plant-frequency counts were taken from 20cm 
x 20cm quadrats randomly placed in the vicinity of 
each stake. Four traps (for small mammals) were 
placed in the vicinity of each stake; these were 
operated for 46,000 trap nights. Fecal samples 
were collected from droppings beneath traps 
containing a chipmunk or ground squirrel. Fecal 
samples were analyzed by the microhistological 
method (Sparks and Malechek 1968) to obtain the 
dietaries of the species populations. Blood 
samples for Colorado tick fever virus isolation 
attempts were collected from a subsample of the 
captured rodents. Traps for adult, fre,e-ranging 
ticks were placed in the center of 128 of the 225 
quadrats and were operated for 1,200 trap nights. 
For detailed procedures see Carey et al. (1980). 

Statistical Analyses 

Structural variables that were highly 
correlated (>0.90) with simpler (not 
transgenerated or more easily measured) variables 
or that were invariant (e.g., DIRNSL) were deleted 
from the data set. The remaining variables were 
averaged over the sets of four contiguous quadrats 
surrounding each point location (stake) in the 
landscape. These variables were taken to 
represent habitat variables, and mean values for 
each point location were paired with values of the 
rodent-capture variables for that point location 
(total captures of the five most abundant 
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Table 1. Structural v~riables measured on 30m x 
30m quadrats or,, ~.ransgenerated from measured 
variables. 

Acronym 

SOILD: 

%SOIL2: 

%EXPRK: 

RKRK: 

DSLOPE: 
DIRNSL: 
GRASSL: 
PINEL: 

WDDEBR: 

LNFTLG: 

DECOMP: 

SMPINE: 
LGPINE: 
NASPEN: 
%SHRUB: 
PUTR-P: 

RICE-P: 
ARTR-P: 

NJUSC: 
DJUCO: 
ARLU-RK: 

ARFR-RK: 

ROAC-RK: 
OPPO-RK: 

PESI-RK: 

CHVI-P: 

EXPRKRK: 
SHPUTR: 
SHRICE: 
SHARTR: 
SLPEXR: 
TOPINE: 
LNFTDC: 

Structural variable 

mean depth of soil exclusive of areas 
with < 5 em of soil 
percent of quadrat with soil < 5 em in 
depth 
percent of quadrat covered by exposed 
rock 
rank (0-4)1 of exposed rock for 
interstices 
degree of slope 
aspect (compass degrees) 
ranked abundance (0-4) of grass litter 
ranked abundance (0-4) of pine needles 
and cones 
ranked abundance (0-4) of wood debris 
less than 15 em in diameter 
length of logs > 15 em diameter 
multiplied by diameter 
rank (0-4) of decomposition of log 
litter 
number of coniferous trees < 15 em dbh 
number of coniferous trees > 15 em dbh 
number of quaking aspen 
percent of quadrat covered by shrubs 
presence-absence (1,0) of antelope 
bit terbrush 
presence-absence (1,0) of wax currant 
presence-absence (1,0) of basin big 
sagebrush 
number of Rocky Mountain junipers 

··diameter (em) of common junipers 
ranked abundance (0-4) of Louisiana 
sagewort 
ranked abundance (0-4) of fringed 
sagewort 
ranked abundance (0-4) of prickly rose 
ranked abundance (0-4) of plains 
pricklypear 
ranked abundance (0-4) of mountain 
ball cactus 
presence-absence ( 1 '0) of Douglas 
rabbitbrush 
%EXPRK x RKRK 
%SHRUB x PUTR-P 
%SHRUB x RICE-P 
%SHRUB X ARTR-P 
DSLOPE X %EXPRK 
SMPINE + LGPINE 
LNFTLG x DECOMP 

1Rank (0-4): Absen.t, 0; sparse, 1; scattered, 2; 
common, 3; abundant, 4. 

species). Principal component analysis (PCA) 
(Dixon 1976) was used to generate a smaller number 
of new variables (to reduce dimensions of the data 
set) that were interpreted as spatial gradients or 
major axes of the habitat hyperspace. 
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Mammal-capture variables were included in the 
analysis to obtain a measure of the habitat, or 
response, of each species to the hyperspace 
gradients. 

Point locations were grouped into species' 
ecotope and habitat hypervolumes and remaining 
hyperspaces according to the presence of each 
rodent species except for Richardson's ground 
squirrels and deer mice. The criterion for 
grouping stations in terms of Richardson's ground 
squirrels was that two or more ground squirrels 
had been captured near the point location. This 
criterion was used because single captures were 
scattered, and multiple-capture locations were 
clumped in distribution. The scattered captures 
presumably resulted from breeding season movements 
and dispersal behavior (Hansen 1962, Yeaton 1972, 
Michener and Michener 1977) and therefore, did not 
reflect habitat. Deer mice were trapped at 
virtually all locations. 

The habitat hypervolumes of chipmunks and 
ground squirrels were mathematically described by 
stepwise discriminant analysis (DA) (Dixon 1976) 
of 21 of the habitat (scenopoetic) variables. The 
ecotope hypervolumes of the sciurids were 
similarly described by stepwise discriminant 
analysis of 9 habitat variables, 11 plant
frequency variables representing the distribution 
of the major food items of sciurids, and 4 
mammal-capture variables (the four abundant 
species of rodents other than the species under 
consideration); these 24 variables collectively 
constitute ecotope variables. Results of the 
stepwise procedures (the best discriminating 
variables are chosen first) for the habitat and 
ecotope hypervolumes of a single species were 
compared to determine if the species was 
responding to habitat (scenopoetic) variables or 
to niche (bionomic) variables. 

Distributions of adult ticks and virus in the 
landscape were described mathematically by 
discriminant analysis of structural variables 
(Carey 1979). The purpose of this analysis was to 
determine if enough information was contained in 
the structural variables to allow DA to generate 
discriminant functions (DF) that would be useful 
in classifying other parts of the landscape into 
categories of relative abundance of ticks and 
virus. A jackknife procedure (Brown 1977) was 
used to obtain less biased estimates of the error 
of classification of these discriminant functions. 

Results 

Principal Component Analysis 

Five principal components (PC) were 
interpreted (table 2). These accounted for 64% of 
total variance in the data. 

PC1 is a soil depth gradient in the habitat 
hyperspace. Measures of shallow soil, exposed 
rock, and slope were heavily weighted at one end 
with deep soil measures at the other end. CHVI-P, 



ROAC-RK, and SRICH were at the deep soil end. 
Douglas rabbi tbrush , (Chrysothamnus viscidiflorus) 
was most abundant 'iry areas of deep dry soil, and 
prickly rose (Rosa ~cicularis) was most abundant 
in areas of deep moist soil. Richardson's ground 
squirrels were abundant in areas of deep soil. 

PC2 is a soil moisture gradient. Quaking 
aspen (Populus tremuloides), lush grass, and 
prickly rose were found on moist soil. Big 
sagebrush (Artemisia tridentata) grew only on deep 
dry soil, as did Douglas rabbitbrush. Fringed 
sagewort (Artemisia frigida) and shrub cover 
(antelope bi tterbrush, Purshia tridentata, etc.) 
were well distributed over areas with dry soil. 

PC3 is ground cover and abundant vegetation 
measures oppose litter measures. The order is 
vertical vegetative diversity, ranging from trees 
to shrubs to 1 it ter. PINEL was not highly 
correlated with TOPINE (r=0.16); pine litter 
accumulated in relatively closed stands and around 

scattered over-mature trees. 

PC4 is mammal distribution in the habitat 
hyperspace. Richardson's ground squirrels 
(SRICH)are at one extreme of the component and the 
golden-mantled squirrels (SLAT) and chipmunks 
(TOTCH) are at the other extreme; the deer mice 
(PMAN) are in the middle. 

PC5 is a shrub abundance variable. Shrub 
measures are at one end and exposed rock measures 
are at the other end. The presence of CHVI-P 
seems to contradict the ·interpretation of PC5. 
However, CHVI-P was a presence-absence variable, 
not a measure of abundance. Douglas rabbi tbrush 
was found in the absence of other shrubs in some 
deep dry soils and the stands of big sagebrush and 
antelope bitterbrush in other areas; it was rarely 
found in stands where antelope bitterbrush grew 
together with wax current (Ribes cereum) and 
boulder raspberry (Rubus deliciosus). TOPINE is 
associated with low shrub abundance in PC5; shrub 
cover was very low in pine stands. 

Table 2. The principal components and their variable coefficients (from Carey et. al. 1980). 

PC 1--Soil PC2--Soil PC3--Ground PC4--Mammal PC5--Shrub 
depth moisture cover distribution abundance 

Variable Coeff. Variable Coeff. Variable Coeff. Variable Coeff. Variable Coeff. 

%SOIL2 0.36 NASPEN -0.35 PINEL -0.36 SLAT 0.37 SHARTR -0.39 
%EXPRK o. 31 ROAC-RK -0.29 WDDEBR -0.27 TOTCH 0.34 %SHRUB -0.37 
TO PINE 0.28 GRASSL -0.24 LNFTLG -0.23 WDDEBR 0.29 ARLU-RK -0.36 
EXPRKRK 0 •. 26 NJUSC -0.23 SLAT -0.13 EXPRKRK 0.23 DJUCO -0.31 
ARLU-RK o. 26 SOILD -0.22 CHVI-P -0.07 %SHRUB 0.23 LNFTLG -0.29 
DSLOPE 0.24 DJUCO -0. 17 %SOIL2 -0.07 SHARTR 0.21 NJUSC -0.21 
NJUSC 0.23 PINEL -0. 15 DJUCO -0.01 SOILD 0.17 ROAC-RK -0.14 
PMAN 0. 17 TOTCH -0.08 ARLU-RK 0.03 %EXPRK 0.17 WDDEBR -0.15 
LNFTLG o. 15 SRICH -0.06 NJUSC 0.04 DJUCO 0. 17 NASPEN -0.09 
SLAT o. 15 LNFTLG -0.05 SOILD 0.08 CHVI-P 0. 15 ARFR-RK -0.09 
WDDEBR 0.11 WDDEBR -0.00 ARFR-RK o. 11 NASPEN o. 12 %SOIL2 -0.06 
TOTCH 0.07 %SOIL2 0.00 %SHRUB o. 15 ROAC-RK o. 11 GRASSL -0.05 
ARFR-RK o. 04 %EXPPRK o. 01 SHARTR o. 16 PINEL o. 10 DSLOPE 0.00 
PINEL 0.02 ARLU-RK 0.01 %EXPRK o. 19 PMAN 0.06 TOTCH 0.02 
DJUCO -0.05 PMAN 0.03 SRICH o. 18 LNFTLG o. 02 SRICH 0.05 
SHARTR -0.09 SLAT 0.05 TOTCH o. 19 GRASSL 0.02 SOILD 0.07 
NASPEN -0. 10 EXPRKRK 0.07 EXPRKRK 0.20 TOPINE 0.02 PMAN 0.09 
%SHRUB -0. 12 TO PINE 0.09 PHAN 0.22 NJUSC 0.01 PINEL 0. 13 
GRASSL -0. 14 DSLOPE o. 15 GRASSL 0.27 %SOIL2 -0.03 TO PINE o. 15 
ROAC-RK -0. 17 CHVI-P 0.26 NASPEN 0.28 DSLOPE -0. 10 %EXPRK o. 19 
SRICH -0.22 ARFR-RK 0.33 DSLOPE 0.30 ARLU-RK -0. 16 SLAT 0.20 
CHVI-P -0.28 SHARTR 0.34 TO PINE 0.31 ARFR-RK -0.35 CHVI-P 0.21 
SOILD -0.28 %SHRUB 0.34 ROAC-RK o. 32 SRICH -0.35 EXPRKRK 0.27 

Eigenvalue 6.3 3.6 2.2 2. 1 1.7 

Cumulative 0. 25 0.40 0.49 0.57 0.64 
percent 1 

1 Cumulative proportion of total variance explained by the principal components. 
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Thus, the major gradients in the habitat 
hyperspace were soil depth and soil moisture, and 
they accounted f9r two.:...thirds of the explained 
variance. Smaller ;'p6,rtions of the variance were 
explained by ground cover, mammal distribution, 
and shrub abundance. Barkham and Norris 
( 1970) pointed out that it is not uncommon for 
minor components to increase in complexity and to 
represent interaction effects. The last three 
components probably do, in part, represent the 
interaction of soil depth and soil moisture. PCA 
illustrated the plants' and mammals' responses 
(habitats) to the habitat hyperspace. 
Richardson's ground squirrels were strongly 
associated with deep soils (PC1). Golden-mantled 
ground squirrels were moderately associated with 
shallow soils (PC1) and exposed rock (PC1, PC5). 
Chipmunks were associated with golden-mantled 
squirrels (PC4). Deer mice were associated with 
grasses (PC3) and were intermediate on the other 
PC's. All of the mammals occupied intermediate 
positions on the soil moisture gradient. This 
indicates that soil moisture was not a major 
determinant of any species' habitat hypervolume 
and suggests that mammal distributions were a 
function of soi 1 depth. Richard son's ground 
squirrels almost exclusively used ground burrows 
for escape and denning. They assumed a 
characteristic "picket pin" posture for 
observation. They did not use rocks for escape or 
observation in the study areas. Golden-mantled 
ground squirrels used large rocks as observation, 
feeding, and basking posts. They commonly used 
rock interstices for escape cover and den sites. 
Chipmunks also used rocks as observation posts, 
escape cover, and den sites. 

Discriminant Analyses.on Mammals 

Results of DA on data sets of the habitat and 
ecotope hyperspaces are illustrated in table 3. 
The first five steps and the last step of the DA 
are shown. Group means of the habitat hypervolume 
and the remaining hyperspace were significantly 
different (P<O. 001) at each step for all species 
except the least chipmunk. For the least 
chipmunk, P=0.012 at the first step and P=0.019 at 
the last step. Group means of the ecotope 
hypervolume and the remaining hyperspace were 
significantly different (P<0.001) at each step for 
all species. Rates of change in the U statistics 
and the percentages of stations correctly 
classified showed that most information contained 
in the OF's was contributed by the first few 
variables in each case. More stations were 
classified correctly with the ecotope hyperspace 
variables than with the habitat hyperspace 
variables. U statistics were lower and station 
classifications were more successful for 
golden-mantled ground squirrels and Richardson's 
ground squirrels than for Uinta chipmunks and 
least chipmunks. 

Comparison of discriminating variables 
between the habitat hypervol umes and the ecotope 
hypervolumes showed that the ecotope hypervolume 
of the Richardson's ground squirrel differed 
little from its habitat hypervolume, and that its 
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Table 3. Results of stepwise discriminant 
analysis of hyperspaces for Spermophilus 
lateralis (modified from Carey et al. 1980). 

Variable 
set 

Habitat 

Ecotope 

Step 1 

2 

3 

4 

5 

21 

2 

3 

4 

5 

24 

%SOIL2 

WDDEBR 

CHVI 

PINEL 

EXPRKRK 

GRASSL 

SRICH 

PMAN 

ARLU-F 

EMIN 

%SHRUB 

EXPRKRK 

u % 

0.87 66 

0.81 12 

0.79 75 

0.78 75 

0.77 76 

0.72 11 

0.67 86 

0.65 86 

0.64 87 

0.63 87 

0.62 86 

0.59 88 

1 Step in stepwise procedure, variables included, 
Wilks A, cumulative percent of stations properly 
assigned. All group means signifincantly 
different at all steps (P<0.01). 

distribution was a response primarily to a 
structural variable, soil depth, and incidentally 
to a bionomic variable, captures of golden-mantled 
ground squirrels. The golden-mantled ground 
squirrel's distribution was a function of bionomic 
variables--captures of other mammals (primarily 
Richardson's ground squirrels)--rather than a 
response to habitat (structural) variables. 
Habitat variables (e.g., EXPRKRK) were equal in 
importance to bionomic variables (e.g., captures 
of golden-mantled ground squirrels) in describing 
the distribution of least chipmunks. The Uinta 
chipmunk responded to habitat variables. 

Summary of Species-Environment Relationships 

Richardson's Ground Squirrel.--Food habits of 
the Richardson's ground squirrels were similar to 
those of the golden-mantled ground squirrels. 
Spatial overlap between the two species in the 
habitat hyperspace was moderate, and ratios of the 
mean captures of the two in each other's habitat 
hypervolume were inversely related. Diet overlap 
with the least chipmunk was small; spatial overlap 
moderate. Richardson's ground squirrels were at 
one end of the mammal distribution component, and 
golden-mantled ground squirrels and chipmunks at 



the other end. PCA and means of the 
discriminating varia'Qle~ showed that the habitat 
hypervolume of Ric~a,~dson' s ground squirrel was 
characterized by deep soil, vegetative ground 
cover, and slight slopes. It was not 
characterized by either extreme of soil moisture, 
or by high values of exposed rock or shrub cover. 
Discriminating variables for the ecotope 
hypervolume demonstrated the overwhelming 
influence of the habitat (structural) variables, 
especially soil depth measures, but also indicate 
a degree of negative response to the 
golden-mantled ground squirrels. 

Golden-mantled Ground Squirrels.--Trophic 
overlap was great with Richardson's ground 
squirrel, and moderately low with the least 
chipmunk. Spatial overlap was small with 
Richardson's ground squirrel, and great with the 
least chipmunk. Capture I' ratios were inversely 
related with the ground squirrel, and one-sided 
with the chipmunk (in favor of the golden-mantled 
ground squirrel). Their habitat hypervolume was 
characterized by shallow, somewhat dry soil on 
steep slopes with sparse grass cover, moderate 
tree (ponderosa pine, Pinus ponderosa) cover, 
abundant litter, and abundant exposed rocks with 
interstices. The best discriminating variable for 
the ecotope hypervolume was the captures of 
Richardson's ground squirrel, a bionomic variable. 
Other discriminating variables contributed little 
to the description of the ecotope hypervolume. 

Least Chipmunk.--Overlap between the diet of 
least chipmunks and those of ground squirrels was 
small; the least chipmunk made greater use of 
arthropods for food than did ground squirrels. 
Spatial over+ap with the golden-mantled ground 
squirrel was high. The ground squirrel was near 
92% of the point locations in the chipmunk habitat 
hypervolume and outnumbered chipmunks throughout 
the habitat hyperspace. The habitat hypervolume 
of the least chipmunk was characterized by 
intermediate soil depth and moisture, moderate 
vegetative ground cover, and higher than average 
values of exposed rock, rock interstices, prickly 
rose, aspen, pine trees (~. ponderosa and f. 
contorta), and common juniper (Juniperus 
communis). Exposed rock with numerous interstices 
was the single best descriptor of the habitat 
hypervolume, regardless of whether rocks were in 
conjunction with deep or shallow soils, pine trees 
or aspens, or shrubs or grass. The ecotope 
hypervolume was characterized by the presence of 
golden-mantled ground squirrels. Deep soi 1 
indicators (NASPEN, POPR-F, ARTR-F) were less 
important discriminating variables, and described 
the part of the hypervolume not characterized by 
golden-mantled ground squirrels, for example, 
small rock outcrops in deep soil areas. 

Uinta Chipmunk.--Uinta chipmunks were 
relatively few in number and were caught in only 
16% of the trap stations. Their habitat and 
ecotope hypervolumes were characterized by the 
highest mean values for shallow soil, exposed 
rock, rock interstices, steep slopes, log litter, 
and pine trees, and by the lowest mean values for 
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soil depth, shrub cover, grass litter, and deep 
soil indicators, such as prickly rose and Douglas 
rabbitbrush. 

Discriminant Analyses on Ticks and Virus 

Ticks. --The relationship between habitat 
variables and adult wood tick abundance is 
illustrated in table 4. High tick abundance was 
associated with shallow soil, moderate shrub 
cover, abundant exposed rock and rock interstices, 
steep slopes, relatively abundant pine, and 
abundant log litter. Moderate tick abundance was 
associ a ted with intermediate values of the same 
variables, except for shrub cover, wt,ich was 
abundant. The di stri but ion qf ticks in the 
habitat hyperspace reflects their physiological 
tolerance for soil temperatures and moisture 
(Wilkinson 1967). 

The objectives of the DA of tick distribution 
were to obtain DF's of variables that were easily 
and quickly measured and that provided a high 
degree of discriminance in classifying areas on 
the basis of tick abundance. The discriminant 
functions in table 4 met those objectives. The 
two best discriminating variables were DSLOPE and 
%SOIL2. Less biased estimates of errors of 
misclassification were obtained with jackknifing 
procedures; they differed little from the 
cumulative percentages in table 4 (Carey 1979). 

CTF Virus.--The ·relationship between virus 
activity and the ecotope hyperspace variables was 
illustr,ated by Carey ( 1979). Virus was isolated 
from mammals captured in areas characterized by 
shallow soil, abundant exposed rocks and rock 
interstices, relatively abundant pine, moderate 
shrub cover, moderately steep slopes, relatively 
high numbers of golden-mantled squirrels, least 
chipmunks, Uinta chipmunks, deer mice, and 
immature ticks, and low numbers of Richardson's 
ground squirrels. The objective of the DA of 
virus distribution was to obtain DF of easily 
measured variables that would permit 
identification of areas maintaining virus 
circulation with a low probability 
of misclassifying areas with virus. The DF met 
this objective (Carey 1979). 

DISCUSSION 

I believe the foregoing is a demonstration of 
precise definition combined with methods of 
multivariate analysis. After the terminology is 
grasped, the results should be ordered and clear 
to the reader. The distinction between structural 
(scenopoetic) variables and bionomic (potentially 
measuring competition) variables should be clear; 
also the differences in scope between habitat 
(intercommunity), niche ( intracommuni ty), and 
ecotope variables should be clear. The enforced 
distinction between niche, habitat, and ecotope 
results in heuristic data analysis and 
interpretation of results that is clear. The 
compatibility between the terminology and the 
analysis is obvious. 



Table 4. Discriminating variables and discriminant functions for the 
distribution of adult, free-ranging wood ticks. All group means 
sig_ni,fi7·antly different at P<O. 01 using approximate F tests. 

Variable 

%SOIL2 

DSLOPE 

%SHRUB 

ARLU-RK 

SOILD 

GRASSL 

NASPEN 

Constant 

u 

0.519 

0.360 

0.324 

0.302 

0.291 

0.281 

0.263 

Cumulative 1 

% 

62.5 

68.8 

72.7 

72.7 

73.4 

74.2 

76.6 

DF Coefficients 2 

None-Few 
ticks 

0.21450 

0.19518 

0.24368 

1.16317 

1. 23637 

-0.17259 

0.33857 

-14.55902 

Few-Many 
ticks 

o. 25643 

0.44237 

0.21132 

2.19884 

1.21552 

-0.78330 

2. 63709 

-21.57874 

1 Cumulative percentages of stations correctly assigned by the DF. 
2 Coefficients of the variables for the discriminant function separating the 
two groups. 

These concepts (the ecological and the 
statistical) have been used to good advantage in 
the past, but, I believe, without precise 
definition. James (1971) clearly distinguished 
between intercommunity and intracommunity 
relationships in addition to formulating the 
niche-gestalt~. Anderson and Shugart ( 1974) used 
the same (Whittaker et al. 1973) definition of 
habitat hyperspace. Dueser and Shugart ( 1978, 
1979) also recognized the distinction between 
inter- and intracommunity relationships, but used 
a plethora of terms (habitat, microhabitat, 
habitat type, habitat association, habitat patch, 
patch type, forest stand type, forest type, desert 
community, rodent community, forest biome, 
fine-grained environment, etc.) in the 1978 paper 
(I am not criticizing the quality of their 
scientific contribution, I am pointing out the 
lack of precise terminology). Similarly M'Closkey 
(1975, .M'Closkey and Fieldwick 1975) recognized 
the inter- and intracommunity distinction and the 
applicability of multivariate analysis (M'Closkey 
1976) to the study of animal-environment relation
ships but not the use of precise terminology. 

The use of the suggested terminology and 
multivariate analysis in the study of animal
environment relationships is clear, but what about 
the applicability to wildlife management? Aside 
from the basic understanding of how a species (or 
ecotope) responds to its environment, I think the 
inter- and intracommunity distinction is one that 
will prove to be of great value to the wildlife 
biologist, especially if the trend towards 
management for diversity continues. The 
distinction between structural and bionomic 
variables is useful at the management level; 
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extensive management must focus on scenopoetic 
variables, but intensive management can consider 
bionomic variables. Understanding the concepts of 
spatial gradients and species' responses to them 
is fundamental to predicting results (or 
"environmental impact") of a management decision. 
The concept of homogeneously diverse biotopes 
coupled with inter- and intracommunity 
distinctions is of great value in determining 
scale or size for both sampling units and managing 
units. 

The use of the terms "hyperspace" and 
"hypervolume" may be confusing and, therefore, of 
less benefit. Simpler terms, for example 
"preinteractive" (or fundamental) and 
"postinteractive" (or realized) could be used to 
modify "niche space" and "habitat space" without 
changing the concepts. Applying theoretical 
concepts to field studies can be rewarding. In 
the example given, discriminant functions for the 
ticks and virus could be used to locate 
recreational facilities and activities for m1n1mum 
human exposure to the virus. The tick 
discriminant function could be used in the 
application of acaricides. Richardson's ground 
squirrel is a reservoir of plague (Yersinia 
pestis), and the golden-mantled ground squirrel is 
a reservoir of Colorado tick fever virus. Results 
of the analysis suggest that if Richardson's 
ground squirrels were controlled (killed) to 
minimize human exposure to plague (such a control 
effort was instituted in 1976 and 1977), they 
would be replaced by golden-mantled ground 
squirrels. This would not increase the risk of 
human exposure to Colorado tick virus, because the 
golden-mantled ground squirrels would have :noved 



out of the area that was climatically suited for 
ticks. 

Many authors, especially Green, (1971, 1974) 
have discussed the applicability of multi variate 
analyses in ecology; most of the comments apply 
equally to wildlife research. However, I have 
seen only two reports in the Journal of Wildlife 
Management (Klebenow 1969, Martinka 1972) 
describing the application of multivariate 
analyses to animal-environment relationships. I 
believe a functional organization and a 
standardization of ecological terminology can do 
much to promote the application of multi variate 
statistics to the more applied areas of wildlife 
reasearch. 
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DISCUSSION 

BOB CLARK: Were there age and sex biases in the 
captures? 

A.B. CAREY: Possibly. I attempted to m1mm1ze 
biases due to age and sex by disregarding single 
captures of Richardson's ground squirrels, to 
trap-happiness by only using the first capture of 
an individual in a sampling period, and to 
competition for traps by placing four traps at 
each point location in the landscape and by 
checking the traps up to four times daily. 
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BOB CLARK: By removing biases due to dispersal, 
would you improve the discrimination of the 
habitats? 

A.B. CAREY: Yes. However, the sample size was 
large and dispersal movements probably accounted 
for a small proportion of the captures used as 
captures seemed to be very clumped. In regards to 
other biases, it should be emphasized that I was 
interested only in generating a relatively crude 
measure of population response with the objective 
of determining hypervolumes. 

KEN MORRISON: Given that there are behavioral 
biases inherent in trapping data, would this bias 
any results and/or interpretations of such an 
analysis? 

A.B. CAREY: Yes, but see previous response to Bob 
Clark. 

R. DUESER: How important is the notion of the 
"homogeneously diverse biotope" to your 
distinction between "niche" and "habitat"? What 
would be the implications of the non-existence of 
homogeneously diverse biotopes? 

A.B. CAREY: The distinction between niche and 
habitat is that between intra- and inter
community, thus.- one must be able to assign a point 
location in the landscape to a recognizable 
community which occupies the homogeneously diverse 
space called the biotope, thus the notion is 
fundamental. "Homogeneously diverse" is relative 
to the range of a motile organism; if communities 
exists, so do biotopes; if they do not, niches 
don't either. 

JAMES DUNN: ( 1) If the principal components are 
properly named, can variation in soil really be 
independent of moisture? (2) Can variation in 
mammal distribution really be independent of 
variation in ground cover? (3) Why not confess 
that the fundamental variables need not be 
independent and proceed with an oblique factor 
solution. The additional benefit might be a 
measure of the association between say mammal 
factor and cover factor if essentially the same 
named factors result? 

A.B. CAREY: (1) Soil depth and soil moisture can 
be quite independent as is reflected by the 
community pattern in the landscape e.g., basin
big sagebrush on deep dry soils, and aspen stand 
complexes on deep wet soils. (2) Variation in 
mammal distribution can be independent of "ground 
cover" especially in a homogeneously diverse 
space. (3) Principal components beyond the 1st 
and 2nd components may show interaction effects 
(Barkham & Norris 1970) as mine do. However, I 
think my principal components nicely describe the 
spatial gradients in the landscape. I would say 
den sites (ground dens, rock dens) were more 
important than vegetative cover; there is also 
good evidence that food is not limiting and that 
the behavior of the speci~s causes them to avoid 
the densest cover. 

!, 



FORHAB: A FOREST SIMULATION MODEL TO PREDICT 

HABITAT STRUCTURE FOR NONGAME BIRD SPECIESI 

T.M. Smith2, H.H. Shugart3, and D.C. West4 

Abstract.--FORHAB (a deciduous forest stand stimulation 
model) was used to predict changes in available breeding 
habitat for the avian community inhabiting the Walker Branch 
Watershed in east Tennessee. A census was conducted to 
locate all breeding territories of the various bird species 
on the watershed. Data on vegetational structure of these 
territories were used to calculate linear decision scales, a 
classification procedure based on discriminant function 
analysis, which could be used to classify forest stands as 
potential breeding habitat for the various bird species. 
FORHAB was used to simulate changes in forest structure of 
the watershed due to both natural succession and certain 
introduced forest management practices (diameter-limit cut). 
Variables describing the vegetational,structure of the forest 
stands generated by FORHAB were used to determine 
availability of potential breeding habitat for each bird 
species through time using a subroutine based on the 
above-mentioned classification procedure. Predictions of 
available habitat for the ovenbird (Seiurus aurocapillus) on 
the Walker Branch Watershed are presented as an example of 
model output. 

Key words: Avian community; deciduous forest; 
discriminant function analysis; forest management; linear 
decision scales; nongame birds; simulation model; vegetation 
structure. 
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INTRODUCTION 

The effects of modern forest management 
practices on wildlife has been a subject of 
growing concern in recent years (Slusher and 
Hinckley 1974, Thomas 1979). A major portion of 
this interest has been directed toward the nongame 
bird component of an animal community (Smith 1975, 
DeGraaf 1978) particularly the effect that 
management-related disturbances have on the 
population dynamics of either a single species 
(e.g., endangered species) or the avian community 
as a whole. The majority of work in this area has 
been of a descriptive nature. Researchers have 
dealt primarily with general habitat preferences 
of selected species (fig. 1) or the role of 
structural heterogeni ty on the overall avian 
diversity of the forest (MacArthur and MacArthur 



1961). This information, coupled with a knowledge 
of effects of various,. stl vicul tural practices on 
structure of the·-· f6r~st', has been the basis of 
timber-wildlife ma~a~ement decisions to date. 
Problems of time and expense have limited the 
number of actual field studies which have 
monitored directly the effects of timber 
management on bird populations (Hagar 1960, 
Franzreb and Ohmart 1978). However, even these 
studies are of limited value. Si te-speci fie 
conditions and past history of the forest greatly 
1 imi t the generalization of results from a 
specific study to other forests. 

Recently, techniques of multivariate 
statistics have allowed analyses beyond 
qualitative methods of describing habitat 
preferences of avian species. With the use of 
multivariate statistical procedures, one can 
classify forest stands quantitatively with respect 
to habitat potential. Multivariate data analysis 
has been used to quantify the microhabitat 
selection patterns at both the species and 
community level (James 1971, Shugart and Patten 
1972, Ander son and Shugart 197 4, Whitmore 1975) . 
Conner and Adkisson ( 1976) proposed a method of 
classifying forest stands as sui table woodpecker 
habitat using a discriminant function analysis 
procedure based on variables describing structure 
of forest vegetation and stressed the potential of 
such techniques as management tools. However, 
applicability of such statistical procedures is 
hindered by lack of habitat data necessary for 
dynamic habitat analyses. Management is by 
definition a dynamic process. To assess potential 
effects of various management strategies on 
availability of habitat, quantitative data 
describing changes iri structure of the forest 
through time {s necessary. To date, quantitative 
information on structural changes of the forest 
resulting from various timber management practices 
is not available. A forest stand simulation model 
may very well remedy problems inherent in 
assessing habitat modifications associated with 
various management techniques. 
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Figure 1. General habitat preference of various 
animal species inhabiting a northeastern conifer 
forest. [Reprinted with permission from Smith 
( 1980) ]. 
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Forest stand simulators (Shugart and West 
1980), can be used to assess effects of alternate 
forest management strategies on selected bird 
species or for entire avian communi ties. Models 
vary in their mathematical structure, but 
typically function by considering tree-by-tree 
changes over time for an area that corresponds to 
that of a canopy tree or some sample unit. The 
spatial scale of these models corresponds to what 
has been termed the microhabitat scale for birds. 
Because such simulators have the ability to 
predict structural changes in the forest through 
time, one can couple this quantitative data with 
statistical classification procedures previousiy 
mentioned to project long-term consequences of 
different management practice~ on available 
habitat. 

Objectives of this research have been l) to 
integrate techniques of multivariate 
classification with the predictive ability of a 
forest stand simulation model, and 2) to use the 
resulting model to determine effects of forest 
management practices on availability of nongame 
bird habitat. This synthesis requires: a) a 
structural classification of forest stands in 
terms of suitability for speci fie bird species, 
and b) ability of the forest stand simulator to 
generate specific variables on which the 
classification is based. By introducing 
disturbances (e.g., fire, timber harvest) to the 
model, we can evaluate effects of natural and 
man-induced perturbations on availability of 
habitat for a specific species of bird. 

The remainder of this paper will be devoted 
to presenting an example of this method, FORHAB, a 
forest stand simulation model designed to predict 
impacts of certain forest management decisions on 
availability of habitat for the avian community 
inhabiting the Walker Branch Watershed. 

The Walker Branch Watershed is a 97.5 ha site 
on the D.O.E. reservation in Anderson County, 
Tennessee (fig. 2). The watershed ranges in 
elevation from 285 m to 375 m and occupies an area 
of steeply sloping ridges and narrow valleys. 
Girgal and Goldstein (1971), in an analysis of the 
structure of the watershed, found dominant forest 
types to be pine (predominately Pinus echinata), 
yellow popular (dominated b~riodendron 
tulipifera), oak-hickory (mixed Quercus spp., 
Carya spp.) and chestnut oak (typified by Quercus 
prinus). 

MODEL 

The following model, FORHAB, is a modified 
version of FORET (Shugart and West 1977), an 
Appalachian deciduous forest stand simulator. A 
detailed description of the model (FORET) can be 
found in Shugart and West (1977). For the purpose 
of this paper we will review briefly the general 
form of the model, but will discuss only 
modifications in detail. 
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Figure 2. Location of Walker Branch Watershed, 
Oak Ridge, Tennessee. 

FORHAB, like its parent model, simulates the 
annual change of a forest stand (0.085 ha circular 
plot) by calculating the growth increment of each 
tree growing on the stand (subroutine GROW), by 
tabulating the addition of new saplings to the 
stand (subroutines BIRTH and SPROUT), and by 
tabulating the death of trees present on the stand 
(subroutine KILL). These processes are modeled as 
stochastic functions. Growth parameters for tree 
species and climatic conditions included in the 
model are based on sites of lower slope positions 
located in eastern Tennessee. A flow chart for 
FORHAB is provided in appendix I. The main 
equations for the above subroutines are summarized 
in appendix ·u. CUT, HABIT and DISCRM subroutines 
will be dealt with separately. 

Subroutine CUT 

The CUT subroutine simulates various forest 
management practices which are applicable to the 
southeastern deciduous forest type. The version 
of this subroutine used for the following analysis 
was a diameter-limit cut. In this subroutine all 
commercially valuable species for sawtimber 
greater than 23 em dbh (diameter at breast height) 
were removed from the plot on a 60-year rotation. 
This form of timber management was practiced on 
the watershed prior to 1940. The rotation period 
of 60 years was determined by analysis of stem and 
basal area curves generated by FORHAB after 
initial simulations of logging on the watershed. 

Subroutine HABIT 

The process of classifying stands by their 
potential to provide habitat for a given bird 
species is carried out in subroutine DISCRM. The 
classification is based the following biomass 
variables which describe vegetational structure of 
the forest stand: 
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Foliage biomass of trees 1.2-8.4 em dbh 
Foliage biomass of trees 8.5-22.8 em dbh 
Foliage biomass of trees >22.8 em dbh 
Branch biomass of trees 1.2-8.4 em dbh 
Branch biomass of trees 8.5-22.8 em dbh 
Branch biomass of trees >22.8 em dbh 
Bole biomass of trees 1.2-8.4 em dbh 
Bole biomass of trees 8.5-22.8 em dbh 
Bole biomass of trees >22.8 em dbh 
Number of trees 1.2-8.4 em dbh 
Number of trees 8.5-22.8 em dbh 
Number of trees >22.-8 em dbh 
Foliage biomass of average tree 1. 2-8.4 em 

dbh 
Foliage biomass of averag~ tree 8. 5-22.8 em 

dbh 
Foliage biomass of average tree >22.8 em dbh 
Branch biomass of average tree 1.2-8.4 em dbh 
Branch biomass of average tree 8. 5-22.8 em 

dbh 
Branch biomass of average tree >22.8 em dbh 
Bole biomass of average tree 1.2-8.4 em dbh 
Bole biomass of average tree 8.5-22.8 em dbh 
Bole biomass of average tree >22.8 em dbh 

Model output in the form of species and tree 
diameters must be used to calculate these biomass 
variables. 

The HABIT subroutine divides all trees on the 
simulated plot into two groups, conifer and 
deciduous, and then into three size classes within 
each of these two groups. The foliage, branch and 
bole biomass for each tree is then calculated 
using regression equations in table 1, which are 
site specific to the Walker Branch Watershed 
(Harris et al. 1973). These values are then 
summed for all trees on a plot for each size class 
to provide the variables listed above. 

Subroutine DISCRM 

The classification of simulated forest stands 
as potential habitat for a given bird species is 
carried out in subroutine DISCRM. The 
classification is based on the statistical 
procedure of two-group discriminant function 
analysis (Morrison 1967). Classification criteria 
were constructed using vegetation data collected 
on 298 0.085-ha permanent census plots. Breeding 
territories of various bird species were located 
and mapped if they either contained or overlapped 
any of the 298 plots. If a plot was located 
within the terri tory of an individual bird 
(breeding pair), that plot was considered as 
potential habitat for that species. Conversely, 
if a given plot was not within the boundary of a 
terri tory of an individual of that species, that 
plot was classified as not providing habitat for 
that species. Thus data were obtained on areas of 
both suitable habitat and areas considered 
inadequate for the needs of the various species. 
Data on vegetation of these census plots, in the 
form of species and diameter for each tree on the 
plot, then were used to generate biomass variables 
for classification using the same regression 
equations as those in subroutine HABIT. 



Table 1., Ul'lcorrected regressions (ln-ln) of tree component weight (kg) on tree 
dhime;t~ 'breast height (em) used in subroutine HABIT. 

Dependent Intercept Slope 
R2 variable (a) (b) Nl 

Leaf All spp. -3.498 1.695 0.86 302 1. 34 
Hardwoods -3.862 1. 740 0.88 178 
Conifers -2.907 1.674 0.91 65 

Branch All spp. -3.188 2.226 o. 91 298 1. 26 
Hardwoods -3.173 2.224 0.89 231 
Conifers -3.461 2.292 0.95 51 

Bole All spp. -2.437 2.418 0.97 298 1.08 
Hardwoods -2.270 2.385 0.98 231 
Conifers -3.787 2.767 0.96 51 

Branch-bole All spp. -2 0 126 2.393 0.96 371 

1 N = Number of samples in each regression 
2K is the correction factor for bias on logarithmic transformation which is 
multiplied by exp [ln !] 

with 

Yi = a1x1 + a2x2 + ••• + aPXP 

Figure 3 is a hypothetical example of the 
actual classification procedure in subroutine 
DISCRM. For each bird species, census plots were 
placed into one of two groups, suitable habitat or 
unsuitable habitat, based on the process described 
above. The two elipses in figure 3 represent two 
populations of census plots plotted in two
dimensional space (with X 1 and X2 being two 
biomass vari?bles from table 1). These two 
populations were then subjected to two group 
discriminant function analysis. 

(where p is the number of variables in the 
classification). 

Discriminant function analysis is a 
statistical procedure for finding a linear 
combination of the original predictor variables 
(X1 and X2) which results in the largest 
difference between the two mean vectors (i.e., 
maximizes the ratio of among-group to within-group 
sums of squares). Let us examine the case of two 
populations, sui table habitat and unsuitable 
habitat plots, with samples of Nl and N2 
independent observations. The populations of P 
(number of variables) responses are multi variate 
normal with a common variance-covariance matrix E, 
but different mean vectors ~ and ~2 . If !1 and !2 

are the sample mean vectors for the two groups and 
S is the pooled estimate of E, our intention is to 
find a coefficient vector a of the linear compound 
aX of the responses which wi 11 maximize the 
distance between the two groups in P-dimensional 
space. It can be shown that 

-1 
.§. = s (!1 !2); 

and the general form of the resulting discriminant 
function is 
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In the case of two populations with 
multivariate nqr~l' distributions and respective 
mean vectors ! 1 arid '!2 , common covariance matrix S 

and prior probabilities of group membership h and 
( 1-h), the Bayes, or minimum expected loss, 
classification rule states that the observation 
vector ! should be assigned to population 1 if 

!'s-
1

<K1-"K2l- 112<"K1+K2l's-
1

<K1-"K2l..?. 1n C1-h) 
h 

and assigned to population 2 if this relationship 
does not hold. 

It should be noted that the first term in 
this equation is the linear discriminant score for 
the observation vector X and the second term is 
the point midway between the means of the 
discriminant function as computed for each group 
or population. For the purpose of classifying 
simulated observation vectors (subroutine HABIT) 
the prior probabilities of group membership can be 
assigned to be equal since there is no a priori 
reason for assuming group membership. As a result 
of this assumption, the term to the right of the 
inequality becomes zero and the equation can be 
expressed as 

!'S-
1

<!1-!2l..?. 112<!1+!2 l'S-
1

<!1-!2 l 

with the term to the left of the inequality being 
the discriminant score for the observation vector 
to be classified and term to the right being the 
midpoint between the discriminant scores as 
computed for the group mean vectors. 

By calculating the Yi scores corresponding to 

the mean vectors X1 and X2 (where X1 = sui table 
habitat and X2 =-unsuitable habitat) and then 
taking the midpoint of those values; 

Ymid = (Y1 + Y2)/ 2 

one can compute the linear decision scale as shown 
in figure 3. 

To classify a newly sampled response (such as 
a plot output by the model) into either group 1 or 
2, the Y. score must be calculated for that given 
response

1
vector. If the Y. value is to the group 

1 direction of Ymid thJn the plot would be 

classified as belonging to group 1, with the 
converse holding true if the Yi value was to the 
opposite direction of Ymid. 

Subroutine DISCRM consists of a series of 
these linear decision scales, one corresponding to 
each bird species comprising the avian community 
on the watershed. Each simulated plot is input to 
subroutine HABIT where the biomass variables 
necessary for classification are generated. These 
variables are then input to subroutine DISCRM 
where the Y. value is calculated for that plot. 
This value i

1
s then compared to the Ymid value for 
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each bird species and the decision as to whether 
that plot provides potential breeding habitat for 
each of the species of interest is output from the 
model. 

RESULTS 

A test of homogeneity of within covariance 
matrices for the two group discriminant function 
analysis of ovenbird (Seiurus aurocapillus) 
habitat found no significant difference between 

covariance matrices (as approximated by x2 , P > 
0. 05) and they were pooled for the analysis 
(Kendall and Stuart 1961). · The two groups 
(suitable and unsuitable habitat) were found to be 
significantly different (P _.?. 0.05) with respect to 
those structural variables measured, using the 

Hotelling ·T2 test statistic. Bayesian 
classification of initial observations (298 plots) 
based on the two group discriminant function 
analysis accurately classified group membership 
(suitable and unsuitable habitat) for 96% of the 
forested plots, with prior probabilities of group 
membership being set proportional to the number of 
observations in each group. 

Figure 4 shows results of a 500-year 
simulation of available habitat for the ovenbird 
(Seiurus aurocapillus) on Walker Branch Watershed. 
Results are presented as percentage of total land 
area which provides potential breeding habitat for 
the ovenbird over a 500-year period. Year zero 
represents the present structural configuration of 
the forest on the watershed. This was 
accomplished by initializing the model with 25 
randomly chosen census plots from the watershed 
using vegetation data collected on these plots in 
1977. Results are given for both simulations 
including timber management (diameter-limit cut) 
and undisturbed conditions. Simulations of 
undisturbed forest dynamics show an initial 
increase in available habitat for the ovenbird 
from 20 percent of the land area to approximately 
65 percent over the next 60 years. This decline 
to year 90 is followed by a general oscillation of 
available habitat from 10 to 20 percent for the 
remainder of the simulation with only one period 
of increase above 30 percent, that being at 
approximately year 250. 

In comparison, results of the simulation 
which included timber management showed 
considerable divergence from simulations of the 
undisturbed forest. Dynamics previous to the 
first cut at year 60 were identical for both 
managed and undisturbed simulations. Following 
the first cut at year 60, however, we see a 
divergence with the managed stands showing an 
increase in available habitat to 85 percent by 
year 90 as compared to the 5 percent available 
habitat for the undisturbed simulations. This 
increase is followed by a continuous decline over 
the next 30 years until the second cut at year 
120. At this time once again we see an increase 
in available habitat for the ovenbird to 50 
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Figure 4. Results from 500-year simulation of 
ovenbird habitat on the Walker Branch Watershed 
in east Tennessee. 
as percentage of 
watershed. 

Available habitat expressed 
total land area of the 

percent of the total forested area of the 
watershed. Following the second timber harvest at 
year 120 there is a decline in available habitat 
continuing to the next cut at year 180. Following 
the third cut there ·is a continuing decline to 
year 210, when the model predicts there will be no 
potential breeding habitat for the ovenbird on the 
watershed. In all remaining cuts there is an 
initial increase in available habitat following 
harvest. This is followed by a decline, which 
generally continues until the next cut, the last 
being at year 480. 

Figure 5 presents results of the same 
simulation under conditions of timber management 
that were presented in figure 4, only over a 
shorter time scale showing the short-term dynamics 
of available habitat following timber harvest 
(year 60). Once again there is an initial 
increase in availability of sui table habitat 
followed by a decline at year 30. This decline 
continues until the forest is cut at year 60, when 
those trees greater than 23 em dbh and of 
commercial value as sawtimber are removed from the 
forest. This thinning of the forest results in an 
increase of potential habitat for the ovenbird 
over the next 35 years, at which time a downward 
trend begins and continues through the remainder 
of the simulation. 

DISCUSSION 

Results presented in Figures 4 and 5 
represent predicted dynamics of available habitat 
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Figure 5. Results from 120 year simulation of 

available ovenbird habitat on the Walker Branch 
Watershed under conditions of timber management. 
Available habitat expressed as percentages of 
the total land area of the watershed. 

for the ovenbird on the Walker Branch Watershed .. 
The 500-year simulation in figure 5 is meant to 
show that extrapolations cannot necessarily be 
made from results of a single timber cut to cuts 
pending in the future. Resulting availability of 
habitat for the ovenbird following an initial 
diameter-limit cut on a 60-year rotation may not 
represent availability of potential habitat the 
forest wi 11 provide following future 
diameter-limit cuts. Availability of habitat 
following the first cut increased dramatically, 
but subsequent cuts on a 60-year rotation yielded 
quite different results. Secondly, failure to 
look at potential effects of repeated harvests may 
mislead the manager with respect to long term 
habitat dynamics. As can be seen in results of 
the 500-year simulation, the first cut was 
followed by a four-fold increase in available 
habitat for the ovenbird. Subsequent cuts, 
however, resulted in less dramatic increases and 
in some cases led to elimination of potential 
habitat. 

These results show the importance of historic 
considerations in determining effects of 
particular timber management practice on a given 
forest. Structural configuration of the forest 
prior to cutting is of utmost importance in the 
case of repeated long-term management plans. To 
date this type of information has been lacking. 
FORHAB and models of its type can be used to 
provide information on long-term management plans 
and combinations of management schemes before 
their actual implementation. 

Results (figs. 4 and 5) show an initial 



increase in potenti.i;ll ·habitat after the initial 
cut at 60 years~ ,:fhis increase contrasts with 
decline of habitat availability for undisturbed 
simulations. The increase after cutting is a 
result of thinning or general decrease in density 
of stands on the watershed. At present the forest 
has gone approximate! y 70 years without a timber 
harvest, so by year 60 the stand is approximately 
130 years in age. Thinning of larger trees, which 
leads to an initial increase in available habitat, 
is quickly followed by an increased density of the 
understory, reducing available habitat. This is 
the reason for the pattern of initial increase 
after cutting followed by a subsequent decline in 
availability of habitat for the ovenbird. These 
results are in general agreement with the 
structure of vegetation chosen as breeding habitat 
by the ovenbird on the watershed. Optimal habitat 
for the ovenbird on the Walker Branch Watershed 
(as determined by the relationship between 
vegetational structure and prey abundance) is a 
deciduous stand with a sparse understory and brush 
and little ground cover. 5 

It should be noted that the model simulates 
availability of potential breeding habitat 
expressed as a percentage of the total area under 
consideration. The model does not simulate 
population dynamics of a given bird species per 
se. The ability of the ovenbird population to 
track changes in availability of habitat such as 
the initial increase in habitat following the 
first timber harvest, or to reinvade after the 
disappearance of potential breeding habitat in an 
area are not considered explicitly in the model. 
These considerations would depend on immigration 
into the area or the existence of a "floater" 
population ~f nonbreeding individuals unable to 
establish territories due to lack of suitable 
habitat. Likewise, the model does not consider 
quality of habitat provided by a given stand. 
Some marginal areas may become potential habitat 
depending on size of the ovenbird population. 
These points must be kept in mind when 
interpreting results of simulation from the model. 

The potential of predicting effects of 
proposed management schemes on habitat 
availability need not be limited to the breeding 
season during spring and summer months. For many 
resident bird species, availability of suitable 
habitat during fall and winter seasons may be the 
major limiting factor. Figure 6 shows seasonal 
variation in habitat selection for several species 
of birds on the watershed as expressed by the 
first two discriminant functions describing the 
vegetational structure of the forest stands 
(Shugart et al. 1975). It can be seen that in 
many cases the habitat needs of certain species 
change seasonally. By including information on 
seasonal habitat requirements into the 
classification procedure, FORHAB and models of its 
type could be used to determine habitat 
availability not only on a yearly basis, but 

5 T.M. Smith, unpubLished data on file at Oak 
Ridge National Laboratory. 
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Figure 6. Seasonal variation in habitat selection 
for several species of birds inhabiting the 
Walker Branch Watershed. 

seasonal variations in available habitat. 

Two-group discriminant function analysis (as 
described in subroutine DISCRM) can be used to 
construct habitat maps which reflect the potential 
of a site to provide habitat for a given species 
of bird. A map of potential habitat for five 
woodpecker species on the Haw Ridge Watershed on 
the D.O.E. reservation in east Tennessee is shown 
in figure 7 (Shugart et al. 1978) . The map was 
constructed using a classification scheme 
identical to that presented for subroutine DISCRM. 
By initializing the model for a given forested 
region such as the Haw Ridge Watershed (initial 
conditions based on sample plots from the Haw 
Ridge Watershed as was done for the Walker Branch 
Watershed) it would be possible to construct a 
series of maps representing changes in available 
habitat for the area through time. This would aid 
in more site specific, small scale management 
problems. 

The model FORHAB which has been presented as 
an example of the process and methodology of 
habitat simulation has dealt solely with the 
Appalachian deciduous forest of the Southeast. 
However, the general form of the forest simulation 
model underlying this method (FORET) has been 
adapted for a wide variety of forested areas, 
including mixed conifer-hardwood forests of the 
Northeast (Botkin et al. 1972), loblolly pine 
forests of Arkansas (Milke 1978) and rain forests 
of Puerto Rico (Doyle 1980). Another version of 
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Figure 7. Map of potential habitat for five species of woodpecker on Haw Ridge as defined by discriminant 
function classification procedure. 

the model FORMIS 6 simulates flood plain forests of 
the Mississippi River and could be modified to 
simulate riparian ·habitats in other areas. 

Potential applications of the model to 
predict effects of proposed and untried management 
schemes on specific forested areas for both 
individual species and the avian community as a 
whole, as well as its versatility and adaptability 
to a diverse array of forested regions, make 
models like FORHAB potentially important tools for 
forest and wildlife managers in the future. 
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Appendix I. Flow diagram for FORHAB. 
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Appendix II. Model equations in FORHAB. 

Process Equations 

Growth of each tree 
under optimal con-
ditionsl 

Height/diameter 
relation2 

Extinction of 1 i ght 
as a function of 
1 eaf area in forest 
canopies3 

Reduction of 
photosynthesis 
due to shading4 

Crowding effects 
related to 

· stand biomass 
( competition) 1 

Intrinsic tlee 
mortality 

Mortality of trees 
with suppressed 
growth 1 

lsotkin et al. 1972. 

2Ker and Smith 1955. 

2 
d[D H] = R LA (l __ DH __ ) 

dt Dmax~ax 

R = growth rate parameter, LA = leaf area of tree, 

D = diameter at breast height, H =height of tree, 

Dmax =maximum diameter for a particular species, 

~ax =maximum height for a particular species, 

o2H = index of tree vo 1 ume. 

H - 137 + b2D - b3D2, 

b2 = 2(Hmax - 137)/Dmax' 

b3 = (f>\nax -137ll%ax• 

b
2 

and b3 determined by setting 

H = ~ax and dH/dt = 0 when D = 1:\nax. 

Q(h) = Q exp(-k J LA(h')dh') 
0 h 

LA(h' l = distribution of leaf area as a function of height 

Q
0 

= incident radiation, 

Q(h) =radiation at height (h), 

K = constant3. 

Various empirical equations fitted to 1 ight-photosynthesis 
curves for shade-tolerant or shade-into 1 erant species found in 
each forest. These equations are used to reduce the magnitude 
of the growth equation (above) for shaded trees. 

S(BAR) = 1 - BAR/SOILQ, 
BAR = total biomass (basal areal of simulated stand, 
SOILQ = maximum biomass (basal area) recorded. 

p = 1 - (1 - e:)n, 
p =probability of mortality at yearn is chosen such that 

p = 0.99 when n = AGEmax (the maximum age for the species). 

If growth is less than a critical value for the species, 
p = 0.368. 

3Kasanaga and Monsi 1954, Loomis et a l. 1967, Perry et a l. 1969. 

4Kramer and Kozlowski 1960. 
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A WINDSHIELD AND MULTIVARIATE APPROACH TO THE 

CLASSIFICATION, INVENTORY, AND EVALUATION 

OF WILDLIFE HABITAT: AN EXPLORATORY STUDYt 

C.E. Grue2, R.R. Reid3, and N.J. Silvy4 

Abstract. --Techniques are described for evaluating the 
habitats of breeding mourning dove (Zenaida macroura), and 
bobwhite (Colinus virginianus) and scaled quail (Callipepla 
squamata) from within a vehicle. Audio counts of the three 
species and habitat surveys were conducted on 133 (24 km) 
transects in Texas in 1976. The linear distance of each 
habitat type intersecting a transect and the number of 
structural features within ca. 0.8 km were recorded. Habitat 
variables, including indices of habitat interspersion and 
diversity, were analyzed for correlations with audio counts 
of the three species using stepwise multiple regression. We 
used discriminant analysis to determine the accuracy of using 
habitat variables to identify transects supporting below or 
above average densities of the three species. 

Habitat variables accounted for 28 to 87% of the 
variation in mourning dove call counts, and 60 to 95% and 32 
to 93% of the variation in bobwhite and scaled quail whistle 
counts, respectively. Discriminant analyses correctly 
classified 78 to 89% of the mourning dove call-count surveys. 
Comparable values for whistle counts of bobwhite and scaled 
quail were 71 to 96% and 39 to 98%, respectively. Results 
suggest techniques developed may be applicable to analyzing 
the habitat of wildlife species for which transects are used 
to obtain population estimates. 

Key words: Bobwhite quail; discriminant analysis; 
habitat classification; habitat evaluation; habitat 
inventory; mourning aove; multiple regression; scaled quail; 
Texas; windshield approach. 
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INTRODUCTION 

The abundanc.~ '.of wildlife is usually 
determined by habi taf, conditions which alter the 
carrying capacity of the land. These conditions 
do not remain static. Our understanding of trends 
in habitat quality and quantity is limited, even 
for those wildlife species for which habitat needs 
are generally known. It is, therefore, essential 
to determine the habitat requirements of wildlife, 
develop the capability to assess the abundance of 
critical habitats, and monitor changes in their 
quantity and quality. 

The mourning dove is a species which has not 
received management commensurate with its 
popularity as a game bird (Amend 1969, Sandfort 
1977). This species has the widest range of any 
game bird in the United States and is the most 
important in North America in terms of numbers and 
hunter harvest (Keeler 1977). Management of 
mourning doves in the United States, however, has 
been almost entirely restricted to control of 
harvest based on fluctuations in breeding 
populations monitored nationwide by call-count 
surveys (Dol ton 1977). While some breeding 
populations have decreased (Dolton 1977), hunter 
harvest has increased to more than 49 million 
(Keeler 1977). If demand for utilization of the 
dove resource continues to increase, habitat 
management may become essential. First steps in 
initiating management plans will be habitat 
inventory, analysis, and· evaluation. The 
objective of our study was to develop techniques 
for evaluating the habitat of breeding mourning 
dove from a vehicle ("windshield approach") . 
Texas was well suited for such a study because of 
its size and habitat diversity (Gould 1975). In 
addition, we· concurrently evaluated habitats of 
breeding bobwhite and scaled quail using these 
same techniques to determine if they were 
applicable to other wildlife species. 

METHODS 

Our study of habitats of breeding mourning 
dove and 'bobwhite and scaled quai 1 in Texas 
consisted of four steps: classification, 
inventory, analysis, and evaluation. Classi
fication was defined as identification and 
placement of habitats into specific habitat types 
according to established criteria. Inventory was 
defined as the process by which abundance of a 
particular wildlife species or habitat parameter 
was determined along an audio-count transect. We 
defined analysis as examination of habitat, its 
types and structural features, and their 
relationships to audio counts and one another. 
Evaluation was defined as the process by which 
habitats were ranked according to estimated 
densities of the three species they supported. 
From these data, use of habitat variables to 
predict audio counts of the three species was 
examined. 

125 

Classification 

We developed a method of classifying habitats 
from within a vehicle. Habitat type was defined 
as a description of the vegetation of an area 
consisting of a unique combination of canopy 
composition and spatial distribution and ground 
cover height and composition. Our hierarchial 
habitat classification (fig. 1) was divided 
horizontally into three major strata. (Figures 
and tables follow literature cited). The first, 
"physiognomic class", was used to describe 
vertical and horizontal distribution of canopy 
vegetation within a given area (for detailed 
descriptions, see Grue 1977). The second level 
subdivided habitats containing trees on the basis 
of canopy composition (deciduous·, coniferous, or 
mixed) and presence or absence of understory. In 
the present study, we also separated mesquite 
( Prosopis spp.) from other deciduous species. In 
the third level, cropland, pasture, savannah, 
parkland, desert scrub, woodland, and forest were 
further divided based on height and/or composition 
of ground cover. Classification of canopy and 
ground cover composition and ground cover height 
was based on relative abundance within each 
composition and height category. If at least 75% 
of canopy or ground cover was similar in 
composition and height, it was considered 
homogeneous. Canopy or ground cover in which less 
than 75% was similar in composition was considered 
mixed. 

We also considered structural features within 
habitat types; structures or characteristics other 
than height and composition of ground cover, and 
composition and spatial distribution of canopy, 
which others (for review~ see Grue 1977, Reid 
1977) have suggested may be important to breeding 
dove and quail. Included within this category 
were the number of fences, shrubrows, windbreaks, 
powerlines, roads, and railroad rights-of-way, and 
whether or not these structures paralleled or 
intersected the call-count transects. The number 
of edges (an abrupt change in the physiognomy of 
the vegetation excluding ecotones), permanent 
water sources, buildings with associated 
vegetation, washes, livestock feeders and 
feedlots, gravel pits, irrigation and oil pumps, 
and presence of snags (dead, defoliated woody 
shrubs or trees) within 0. 8 km of each transect 
were included. Type of road surface on the survey 
route (asphalt, gravel, sand, or dirt) and the 
width of the road shoulder were recorded at each 
stop. 

Inventory 

Call-count and whistle-count data for 1976 
were obtained for the first 15 (3-min) listening 
points (stops) located at 1. 6 km intervals along 
each of the 133 Federal and State mourning dove 
call-count transects in Texas. Call counts were 
conducted on each transect four times between 20 
May and 10 June 1976 by personnel of the Texas 
Parks and Wildlife Department (Dunks 1976). Quail 
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whistle counts were conducted concurrently on the 
last three of the t:our- surveys of each transect. 
Audio-counts are ;be~ieved to be reliable indices 
of the relative abundance of breeding dove (Dolton 
1977) and quail (Bennitt 1951, Elder 1956, Rosene 
1957, Norton et al. 1961, Campbell et al. 1973, 
Brown et al. 1978) within relatively large areas. 

The habitat intersecting the transects was 
surveyed during this 20-day time period using two 
vehicles, each with a two-man team (Grue et al. 
1976). To reduce error due to differences in 
observers, trial surveys were conducted as a group 
along several transects throughout most of Texas; 
each team worked within different ecological areas 
(Gould 1975) and one member of each team was 
designated driver and odometer reader, while the 
other person classified habitat throughout the 
study. A team traveled and recorded habitat data 
on both sides of each transect starting 0. 8 km 
before and ending 0. 8 km a-fter each stop. Each of 
these 1.6 km units was defined as a transect 
interval. The linear distance of each observation 
of a habitat type intersecting the survey route, 
measured to the nearest 0.02 km, and the number of 
structural features present within 0.8 km (maximum 
radius of audibility of each species; Davey 1955, 
Baxter and Wolfe 1973) were also recorded within 
each transect interval. 

Analysis and Evaluation 

Habitat variables were analyzed for 
correlation with audio counts of the three species 
by transect, statewide, and within ecological 
areas, using stepwise multiple regression (Barr 
and Goodnight 1972). Ecological areas of Gould 
(1975) were selected because call counts were more 
homogeneous within their boundaries than those of 
other physiographic divisions of the State (Grue 
1977) and have been used by the Texas Parks and 
Wildlife Department to analyze annual call-count 
data (Dunks 1976). Call-count and whistle-count 
data for all surveys considered valid by the Texas 
Parks and Wildlife Department were included in 
analyses because variation in audio counts of the 
three species between surveys was significant 
(Grue 1977, Reid 1977). Independent variables 
(habitat variables) entered and remained in models 
if values for their partial F-statistics were 
significant (P<0.05). 

Habitat interspersion and diversity indices 
were included in all analyses. Interspersion was 
calculated by summing frequencies of occurrence 
for each habitat type within the 15 transect 
intervals. Habitat diversity was calculated for 
each transect using the Shannon-Weiner Index 
(Shannon 1948). Transect call counts and whistle 
counts were equal to the sum of the number of dove 
and quail heard calling on the 15 stops, 
respectively. 

To determine importance of spatial 
distribution of the canopy, canopy composition, 
and ground cover height and composition in 
predicting audio counts of the three species, we 
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evaluated seven simplifications of our habitat 
classification. Simplifications corresponded to 
horizontal strata within the hierarchy of the 
initial classification from the most complex 
(habitat type = physiognomic class + canopy 
composition + ground cover height and composition) 
to the least complex (habitat type = physiognomic 
class). Simplifications were evaluated for each 
of the three species by ec.ological area using 
transect audio counts and habitat variables. 
Structural features were excluded from stepwise 
multiple regression analyses so that multiple 
correlation coefficients represented differences 
between habitat classifications. Indices for 
habitat interspersion and diversity were also not 
included because of the number .of simplifications 
examined. The simplified habitat classification 
with the fewest habitat variables which also 
resulted in high multiple correlation coefficients 
statewide was judged the "best" classification 
system for each species. 

We developed an index to m1n1mum habitat 
interspersion applicable to the simplified habitat 
classifications selected. Habitat interspersion 
was more difficult to calculate than habitat 
diversity (we continued to use the Shannon-Wiener 
Index) because the number of times the habitat 
types actually changed on both sides of a 
call-count transect was not known. The new 
interspersion index was based on the number of 
habitat types present within a transect as well as 
the presence or absence of each habitat type 
within adjacent transect intervals. If a 
particular habitat type was present within a 
transect interval but was absent within an 
adjacent interval, the value of the interspersion 
index increased by 1. Conversely, if a particular 
habitat type was present or absent within two 
adjacent transect intervals, interspersion was 
equal to 0 and the value of the index remained 
unchanged. This process was continued until all 
habitat types were examined within the 15 transect 
intervals of each of the 133 call-count transects. 
The interspersion index on a particular transect 
was equal to this value plus the number of habitat 
types present within the transect. The latter was 
used as an indirect measure of m1n1mum 
interspersion within the transect intervals. 

We used discriminant analysis (Barr and 
Goodnight 1972) to determine the accuracy of 
predicting audio-count classes of the three 
species using the habitat variables within the 
simplified habitat classifications selected. 
Analyses were conducted by ecological area and 
only those habitat parameters within the multiple 
linear regression models for a given ecological 
area were included. A mean transect audio-count 
was determined for each species and ecological 
area using data from all call-count and 
whistle-count surveys conducted in 1976 (table 1). 
Transect audio counts for each species and survey 
were then classified into one of two classes: 
average or above, or below average. The use of 
habitat variables to predict audio-count classes 
was evaluated in terms of percent of call-count 
and whistle-count surveys correctly classified 



within each class by the discriminant functions. 
Multiple analysis of variance (Barr and Goodnight 
1972) was us~.d :.t·q .:·test for statistically 
significant (P<O~ 05) ''"differences in values for the 
habitat variables between the two audio-count 
classes. 

RESULTS 

Habitat variables within the initial habitat 
classification accounted for up to 87% of 
variation in mourning dove call counts, and up to 
94 and 93% of variation in bobwhite and scaled 
quail whistle counts, respectively (table 2). 
Analyses within ecological areas resulted in an 
increase in multiple correlation coefficients 
and/or a decrease in the number of independent 
variables in the models. Both habitat types and 
structural features accounted for a significant 
portion of variation in audio counts of the three 
species (table 3). 

Simplification of the initial habitat 
classification resulted in a significant reduction 
in the number of habitat types, but a relatively 
slight decrease in multiple correlation 
coefficients (table 4). The number of habitat 
types within the simplified habitat classification 
selected for each of the three species was reduced 
90 to 96%, while multiple correlation coefficients 
decreased by only 4 to 14%. Of seven simplified 
habitat classifications evaluated, physiognomic 
class with canopy composition and cropland 
divisions of grain, nongrain, forage, and plowed 
ground accounted for the most variation in 
mourning dove call counts. Physiognomic class 
with canopy composition with mesquite was the 
simplified habitat classification selected for 
both species of quail. 

Models for predicting audio counts of the 
three species incorporating both structural 
features and habitat types within the simplified 
habitat classifications selected are presented in 
table 5. Multiple correlation coefficients for 
these models were similar to those associated with 
the initial habitat classification (table 2). 
Models accounted for 28 to 88% of variation in 
mourning dove call counts, and 60 to 95% and 32 to 
93% of variation in bobwhite and scaled quail 
whistle counts, respectively, within the 10 
ecological areas. 

Discriminant functions incorporating the 
habitat variables within these models correctly 
classified 75 to 89% of mourning dove call-count 
surveys within each ecological area into the two 
audio-count classes (table 6). Comparable values 
for whistle-count surveys of bobwhite and scaled 
quail were 71 to 96% and 39 to 98%, respectively 
(table 6). Multiple analyses of variance 
indicated that there were significant (P<0.05) 
differences between values for the habitat 
parameters within the discriminant functions for 
the two audio-count classes for each species. 
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DISCUSSION 

Results suggested that the habitat 
classification ·and techniques we employed may 
identify habitat variables significantly 
correlated with audio counts of mourning dove and 
bobwhite and scaled quail. Both habitat types and 
structural features appeared to be important 
components of habitats selected by the three 
species during the breeding season. Analyses by 
transect within ecological areas usually resulted 
in an increase in multiple correlation 
coefficients or a decrease in the number of 
independent variables in models for the three 
species. These trends may be explained by 
increased homogeneity in audio counts (Foote et 
al. 1958) or habitat within ecological areas 
(Blankenship et al. 1971). Analysis within 
ecological areas may also more accurately describe 
the relationships between audio counts of the 
three species and habitat variables. Simple 
correlation analyses (Grue 1977; Reid et al. 1978, 
1979) suggested audio counts of the three species 
were correlated with habitat variables that may 
have provided requisites necessary for survival 
and reproduction. Habitat parameters which 
provided these requisites differed between 
ecological areas and appeared to depend on the 
abundance and distribution of the habitat types 
and structural features present. For example, 
mourning dove call counts were positively 
correlated with cropland within the Trans-Pecos, 
but were negatively correlated with this habitat 
type on the High Plains. In the Trans-Pecos, 
nesting substrate was abundant, whereas sources of 
food and water were generally restricted to 
cultivated areas. The opposite was true on the 
High Plains, where food and water were more 
abundant, but nest sites within woody vegetation 
were limited. Results suggest future analyses and 
evaluations should be conducted within physio
graphic divisions. 

With a few exceptions, the amount of 
variation in audio counts of the three species 
accounted for by habitat types within the initial 
and simplified habitat classifications selected 
was similar. Exclusion of mesquite as a separate 
canopy type from the simplified habitat 
classification selected for mourning dove may 
account for the low multiple correlation 
coefficient associated with models for the South 
Texas Plains and Rolling Plains. Selection of 
mesquite habitats by nesting doves on the Rolling 
Plains ha_s been reported (Jackson 1940). 
Inclusion of mesquite as a separate canopy type 
appears to be important in evaluating the habitat 
of nesting mourning doves within these ecological 
areas, as well as habitats of both species of 
quail throughout most of Texas during the breeding 
season. Similarly, absence of ground cover 
characteristics within the simplified habitat 
classification selected for bobwhite and scaled 
quail may have resulted in low multiple 
correlation coefficients associated with models 
for the Edwards Plateau, Rolling Plains, and High 
Plains, ecological areas in which overgrazing or 
cultivation was extensive. Ground cover height 



and composition, however, appear not to be as 
important as the~ ~patial distribution and 
composition of the' 4a~opy in evaluating habitats 
of the three species during the breeding season in 
Texas. 

Results of multiple regression and 
discriminant analyses suggest that habitat 
variables might be used to predict audio counts of 
the three species and identify areas supporting 
above or below average densities within most of 
the ecological areas of Texas. Reasons for the 
low multiple correlation coefficients associated 
with models for mourning dove call counts within 
the Gulf Prairies and Marshes and scaled quail 
whistle counts within the Trans-Pecos are not 
known. High habitat heterogeneity in conjunction 
with low and uniform mourning dove call counts 
within the Gulf Prairies and Marshes (Grue 1977) 
may account for the low multiple correlation 
coefficient for this model. Conversely, habitat 
on transects within the Trans-Pecos was relatively 
homogeneous while whistle counts of scaled quail 
varied (Reid 1977), suggesting our habitat 
classification may not have included an important 
component of the habitat which this species 
selected for nesting. 

Several improvements may be useful in testing 
and applying the techniques presented. Two 
improvements could be made in methods used to 
inventory habitat parameters. Habitat data could 
be collected using "mark-sense" computer data 
forms which would eliminate manual transfer of 
data to computer cards. Collection of habitat 
data in the sequence observed would permit direct 
calculation of habitat interspersion at any level 
within the h.abi tat classification. In addition, 
aerial photographs and satelite imagery may 
facilitate inventory of habitat data, particularly 
within remote areas. 

Data analysis could be improved by increasing 
the number of transects within physiographic units 
so that the number of observations exceeds the 
number of habitat types within the habitat 
classification selected. In the present study, we 
included audio-count data for all surveys 
conducted on the 133 call-count transects because 
differences in audio counts between surveys were 
significant. By including variation in call 
counts between surveys, high multiple correlation 
coefficients were more difficult to obtain (Grue 
1977). However, inclusion of multiple surveys of 
individual transects artificially increased sample 
sizes within ecological areas, as surveys of the 
same transect were not statistically independent. 

Limitations of stepwise multiple regression 
analyses should also be considered. Habitat 
parameters within models may not be the only ones 
significantly correlated with density. In 
addition, individual regression coefficients may 
depend on other variables within a model. 
Examination of correlation matrices may, 
therefore, prove useful in 1) identifying all 
habitat variables significantly correlated with 
density of the three species, 2) identifying 
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habitat variables which may be more easily 
inventoried than those within the models and 
substituted without a significant reduction in 
multiple correlation coefficients, and 3) 
establishing guidelines for improving habitat for 
nesting mourning dove and bobwhite and scaled 
quail. 

Use of the techniques presented to predict 
fluctuations in wildlife density and evaluate and 
manage wildlife habitat are outlined in figure 2. 
Procedures may be divided into three stages: 1) 
development of multiple ·linear regression models 
and discriminant functions which account for the 
greatest amount of variation in density indices 
and classes, respectively, and -identification of 
habitat parameters significantly correlated with 
density of the wildlife species of interest; 2) 
testing of multiple linear regression models and 
discriminant functions; and 3) use of models to 
predict fluctuations in wildlife density, or use 
of discriminant functions and simple correlation 
analyses to evaluate and manage wildlife habitat. 
Procedures within the first stage have already 
been discussed here and elsewhere (Grue 1977, Reid 
1977, Reid et al. 1978, 1979). 

Multiple linear regression models may be 
tested by inventorying habitat parameters and the 
wildlife species of interest simultaneously on 
transects within the physiographic unit the models 
represent and comparing predicted densities and 
their confidence limits with observed values 
through time. If predicted and observed densities 
remain similar over time (i.e., habitat condition 
is the major factor governing fluctuations in 
density), the model(s) may be used to predict 
fluctuations in density. However, if predicted 
and observed densities differ significantly over 
time, other environmental factors (e.g., weather, 
disease, hunting) may be governing fluctuations in 
the density of species. 

Discriminant functions should be tested by 
inventorying both habitat parameters and wildlife 
species of interest on additional transects within 
the physiographic unit for which each function was 
developed. If the percentage of the test 
transects correctly classified into each density 
class is high, the functions may be used to 
evaluate the habitat intersecting other transects 
within the physiographic unit for which they were 
developed. In areas for which the predicted 
density class of the wildlife species of interest 
is low, management recommendations could be made 
to increase those habitat parameters positively 
correlated with density of the species. 

CONCLUSIONS 

We believe the habitat classification and 
techniques described may be applicable to 
evaluating habitats of breeding mourning dove and 
bobwhite and scaled quail throughout their ranges, 
and habitats of other wildlife species for which 
line transects are used to collect population 
data. Methods presented may prove useful in 



predicting annual fluctuations in wildlife 
density, in deter~~nlng effects of habitat 
modification on 'wfldli fe density, and in 
evaluating and managing wildlife habitat. Further 
research into development and testing of a 
windshield approach to the evaluation of wildlife 
habitat is needed and appears justified. 
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Figure 1. Schematic diagram of habitat classification (after Grue et al. 1976). Habitats were keyed to 
habitat types from top to bottom. Names were assigned habitat types from bottom to top using words in 
bold capital letters describing the height and compostion of the ground cover, composition of the canopy, 
and the physiognomic class, in that order (e.g., tall grass deciduous savannah). Words in brackets 
specifying the presence or absence of ground cover or understory comprised the last portion of the name 
for habitat types where appropriate (e.g., mixed woodland with understory). 
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Table 1. Mean transect audio counts for mourning dove (MD), bobwhite quail (BW), 
.anl~c~ied quail (SQ) within the 10 ecological areas of Texas in 1977. Means are 
rol:md:ed to nearest whole bird. N represents the number of valid surveys 
conducted. 

MD BW SQ 

Ecolosical area N x SD N X SD N x SD 

Pineywoods 32 10 7.4 23 13 12.8 23 0 

Gulf Prairies and Marshes 18 7 3.8 13 43 16.4 13 0 

Post Oak Savannah 33 17 13.2 24 30 19.5 24 0 ~ 

Blackland Prairies 40 17 9.5 28 29 13.2 28 0 

Cross Timbers and Prairies 62 27 21.3 44 46 27.7 44 0 

South Texas Plains 70 28 17.6 52 27 18.9 52 2 3.8 

Edwards Plateau 72 18 12.7 54 12 15.6 54 5 8.3 

Rolling Plains 88 45 26.3 64 38 20.4 64 4 7. 1 

High Plains 52 7 7.9 38 6 8.2 38 3 4.7 

Trans-Pecos 35 16 18.9 26 0 26 10 5.0 

Table 2. Correlations between audio counts of mourning dove (MD), bobwhite quail 
(BW), and scaled quail (SQ) and habitat variables including habitat types within 
the initial habitat classification and structural features. Multiple correlation 
coefficients are expressed as a percent. The number of variables remaining in 
the models is given in parentheses. 

Ecological area 

Pineywoods 

Gulf Prairies and Marshes 

Post Oak Savannah 

Blackland Prairies 

Cross Timbers and Prairies 

South Texas Plains 

Edwards Plateau 

Rolling Plains 

High Plains 

Trans-Pecos 

Texas 

No. habitat 
variables 
present 

98 

96 

126 

105 

145 

117 

66 

92 

52 

36 

194 
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MD 

83.3 (3) 

28.3 ( 1) 

85.9 (3) 

68. 1 (3) 

79.3 (6) 

78.2 (4) 

64.1 (6) 

73.5 (10) 

62.9 (2) 

86.5 (3) 

79.8 (54) 

BW 

91.1 (3) 

82.2 (2) 

94.3 (4) 

58.9 (3) 

83.6 (5) 

93.9 (8) 

85.7 (6) 

89.2 (10) 

93.8 (5) 

89.5 (51) 

SQ 

92.6 (4) 

92.9 (5) 

78.1 (4) 

81.7 (4) 

31.9 (1) 

65.8 (16) 
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Table 3. Correlations between transect audio counts of mourning dove (MD), bobwhite (BW), and scaled quail 
and habitat~~ariables (SQ) considering structural features and habitat types within the initial habitat 

classification~ seP-arately. Multiple correlation coefficients are expressed as percents. The number of 
variables remaining in the models is given in parentheses. 

Structural features Habitat types 

Number Number 
Ecological area present MD BW SQ present MD BW SQ 

Pineywoods 19 80.2(3) 91.1(5) 75 83.2(3) 91.1(3) 

Gulf Prairies 
and Marshes 19 28.3(1) 80.0(2) 73 22. 8( 1) 82. 2(2) 

Post Oak Savannah 20 87.0(4) 80.7(2) 102 85.9(3) 94.9(5) 

Blackland Prairies 20 47. 5 ( 1) 46.2(2) 81 70.8(4) 58.9(3) 

Cross Timbers 
and Prairies 20 78.4(10) 65.5(5) 121 79.3(6) 83.5(6) 

South Texas Plains 22 70.2(8) 76.1(6) 92.6(3) 91 78.2(4) 94.3(9) 92.7(5) 

Edwards Plateau 16 32.7(4) 54.7(6) 44.8(3) 47 64.3(6) 83.6(5) 93. 2 ( 10) 

Rolling Plains 19 47.7(5) 40.9(5) 44.8(3) 70 72.1(10) 86.5(10) 78.0(4) 

High Plains 17 51.3(4) 75.2(4) 74.7(3) 32 62.9(2) 93.5(5) 81. 7(4) 

Trans-Pecos 16 84.1(3) 31.9(1) 17 81.5(2) 30.0(1) 

Mean 19 60.7(4) 67. 8( 4) 57.8(3) 71 70.1(4) 85.4(5) 75.1(5) 

Table 4. Correlations between transect audio counts of mourning dove, bobwhite quail, and scaled quail and 
habitat types within simplified habitat classifications. Multiple correlation coefficients are expressed 
as percents; those underlined represent the habitat classification scheme selected as 'best.' The number 
of potential habitat types within each classification scheme is given in parentheses. 

Physiognomic class 
w/canopy composition 

w/understory 
Initial w/mesquite w/crops w/mesquite w/crops 

Species Ecological 
area (501) (19) (33) (29) (34) (43) (44) (49) 

Mourning Pineywoods 83.2 83.3 83.3 82.9 82.9 82.9 82.2 82.2 
Dove 

Gulf 
Prairies & 
Marshes 22.8 o.o o.o 0.0 22.8 0.0 0.0 22.8 

Post Oak 
Savannah 85.9 86.7 85.8 87.6 85.9 84.5 85.5 85.9 

Blackland 
Prairies 70.8 70.0 71.0 70.2 70.2 65.2 69.3 56.2 

(continued) 
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(table 4 continued) 

Cross· 
Timbers & 
Prairies 79.3 61.9 68.9 71.7 78.4 79. 1 73.1 79.0 

South Texas 
Plains 78.2 35.0 74.3 28.2 60.5 75.6 29.3 60.4 

Edwards 
Plateau 64.3 42.6 42.6 55. 1 55. 1 57.8 55.1 55. 1 

Rolling 
Plains 72. 1 35.8 40. 1 36.4 36.4 50.2 36.4 36.4 

High Plains 62.9 64.0 64.0 64.0 63.9 64.0 64.0 64.0 

Trans-Pecos 81.5 80.7 24.3 80.7 81.5 24.3 80.7 81.5 

Mean 70.1 56.0 55.4 57.6 63.8 58.4 57.6 62.3 

Bobwhite Pineywoods 91. 1 90.6 90.6 88.7 88.7 88.7 90.2 90.2 1' 

Quail 
Gulf 

1-·· 

Prairies & 
Marshes 82.2 79.3 81.9 80.5 69.3 81.9 80.4 69.3 

Post Oak 
Savannah 94.9 92.2 87.9 94.2 94.4 89.0 94.2 88.4 

Blackland 
Prairies 58.9 0.0 63.7 59.4 16.6 64.7 52.9 38.5 

Cross 
Timbers & 
Prairies 83.5 o.o 58.7 o.o 60.2 79. 1 0.0 60.2 ·-

South Texas 
Plains 94.4 68.8 69.4 68.1 79.8 94.7 68.1 79.8 

Edwards 
Plateau 83.6 75.3 79.7 75.6 75.6 81.5 75.6 75.6 

Rolling 
Plains 86.5 46.4 72.5 50.2 57. 1 70.3 52.8 52.8 

High Plains 93.5 75.5 75.4 75.5 80.0 72.4 88.6 88.6 

Mean 85.4 58.7 75.5 65.8 69. 1 80.3 67.0 71.5 

Scaled South Texas 
Quail Plains 92.7 19.5 70. 1 19.5 19.5 85.3 19.5 19.5 

Edwards 
Plateau 93.2 44.6 36.9 44.6 44.6 42.0 44.6 44.6 

Rolling 
Plains 78.0 58.7 67.3 58.7 58.7 67.3 58.7 58.7 

High 
Plains 81.7 66.2 81.7 66.2 74.6 81.7 70.3 74.4 

Trans-Pecos 30.0 0.0 30.0 0.0 15.5 30.0 o.o 15.5 

Mean 75. 1 37.8 57.2 37.8 42.5 61.3 38.6 42.5 

. . .~ ·. 
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Table 5. Multiple linear regression models for transect audio counts of mourning dove (MD), bobwhite quail 
( BW), and scaled qua;i:l (SQ) and habitat variables including habitat types within the simplified habitat 
classifications $e1ected and structural features. Multiple correlation coefficients are expressed as 
percents. 

Ecological Area 

Pineywoods 

Gulf Prairies & Marshes 

Post Oak Savannah 

Blackland Prairies 

Cross Timbers & Prairies 

South Texas Plains 

Edwards Plateau 

Model 

MD = -0.4 + 0.8[PARALLEL SHRUBROWS] - 4.0[DECIDUOUS FOREST] 
+ 0.4[PARALLEL POWERLINES] 

BW = -15.7 + 12.4[DECIDUOUS SAVANNAH] + 9.5[DECIDUOUS FOREST] 
+0.3[PARALLEL FENCES] 

MD = 1.3 + 0.1[INTERSECTING FENCES] 

BW = 22.5 + 41.5[SAND ROAD SURFACE] + 18.2[SHRUB SAVANNAH] 

MD = 28.0 + 18.8[HAY] - 7.0[GRAVEL PITS] + 10.3[SHRUB PARKLAND] 
- 1.4[PASTURE OR FIELDS] 

BW = 11.6 + 54.5[MESQUITE WOODLAND] + 33.9[MIXED MESQUITE SHRUB 
PARKLAND] + 101.6[CONIFER PARKLAND] + 307.4[0RCHARDS] 

MD= 55.6- 1.1[INTERSECTING ROADS]+ 86.7[0RCHARDS] -0.1[BUILDINGS 
AND ASSOCIATED VEGETATION] 

BW = 19.6- 99.1[MESQUITE SHRUB SAVANNAH]+ 0.5[BUILDINGS AND 
ASSOCIATED VEGETATION]+ 1.1[PARALLEL POWERLINES] 

MD= 98.8 + 6.1[GRAVEL PITS]- 0.3[INTERSECTING FENCES] 
+ 6.8[DECIDUOUS WOODLAND] - 5.0[WASHES] + 108.4[CONIFER PARKLAND] 

81.3 

90.9 

28.3 

82.0 

87.5 

93.8 

68. 1 

60.1 

- 37.0[HABITAT DIVERSITY] + 3.4[PLOWED LAND] 71.5 

BW = 611.8 + 22.5[PARALLEL FENCES] : 181.7[BARREN LAND] 
- 59.3[SHRUB PARKLAND] + 0.8[ROAD SHOULDER WIDTH] + 5.8 
[GRAVEL PITS] - 259.2[MIXED MESQUITE SHRUBLAND] + 34.3[MIXED 
MESQUITE SHRUB SAVANNAH] 77.9 

MD = 7.6 + 19.5[HAY] - 4.9[PASTURE OR FIELDS] + 2.2[SNAGS] -
0.6[INTERSECTING SHRUBROWS] + 14.8[HABITAT DIVERSITY] 
- 2.1[DECIDUOUS PARKLAND] 

BW = 12.0 + 5.1[MESQUITE PARKLAND]+ 12.0[HABITAT DIVERSITY] 
- 2.0[GRAVEL ROAD SURFACE] + 3.0[LIVESTOCK FEEDERS] 

SQ 

MD 

BW 

SQ 

+ 5.0[BRUSHLAND] + 5.9[INTERSECTING RAILROADS] + 0.4[BRUSH 
W/MESQUITE] + 5.7[DECIDUOUS WOODLAND] + 1.0[MIXED MESQUITE 
SHRUBLAND] + 0.4[PARALLEL POWERLINES] 

= 8.9- 0.2[INTERSECTING POWERLINES] + 0.3[PARALLEL WINDBREAKS] 
+ 4.1[URBAN DEVELOPMENT]- 1.8[INTERSECTING RAILROADS] 
- 2.9[IRRIGATION PUMPS] + 2.6 [BRUSHLAND] - 0.2[ROAD SHOULDER 
WIDTH] - 1.5[DECIDUOUS SAVANNAH] - 0.3 [MESQUITE PARKLAND] 
+ 0.2[ASPHALT ROAD SURFACE] + 0.3[SHRUBLAND] 

= 2.9 + 14.5[URBAN DEVELOPMENT] + 4.3[BRUSHLAND] + 4.9[MIXED 
PARKLAND] + 2.9 [PASTURE OR FIELDS] + 0.3[INTERSECTING FENCES] 
- 1.1[MIXED WOODLAND]+ 5.2 [INTERSECTING RAILROADS] 

= 1.9 + 7.6[BRUSHLAND] + 3.8[DECIDUOUS SAVANNAH] + 2.2[MESQUITE 
WOODLAND] - 1.9[MESQUITE SHRUBLAND] 

= 7.2 - 3.9[HABITAT DIVERSITY] + 6.5[SHRUB SAVANNAH] 
+ 17.3[INTERSECTING RAILROADS] + 0.4[SHRUBLAND] - 1.0[WASHES] 
- 0.7[INTERSECTING ROADS] + 0.4 [DECIDUOUS SAVANNAH] 
+ 0.1[PARALLEL POWERLINES] 

(continued) 
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(table 5 continued) 

Rolling Plains MD = 2.1 + 3.4[DECIDUOUS PARKLAND] + 2.0[SNAGS] + 26.0[HABITAT 
DIVERSITY] - 3.3 [PARALLEL WINDBREAKS] 55.7 

BW = - 18.6 + 66. 8[HABITAT DIVERSITY]. + 33. 1[MESQUITE SHRUB 
PARKLAND] + 4. 1 [INTERSECTING WINDBREAKS] - 1.7[INTERSECTING 
ROADS] - 2.3[MESQUITE SAVANNAH] + 98.3[CONIFER SAVANNAH] 
+ 3.4[BUILDINGS AND ASSOCIATED VEGETATION] - 2.7 [INTERSECTING 
POWERLINES] - 371. 1[0RCHARDS] + 198.4[CONIFER PARKLAND] 
+3.1[MESQUITE PARKLAND]- 5.9[MIXED MESQUITE PARKLAND] 
+ 56.2[DECIDUOUS WOODLAND] - 1.3[HABITAT INTERSPERSION] 87.4 

SQ = - 4.5 + 2.1[WASHES] + 4.2[SHRUB PARKLAND]- 11.3[MESQUITE 
SHRUBLAND] + 0.4 [PARALLEL POWERLINES] + 3.8[MESQUITE SHRUB 
PARKLAND] + 1.7[INTERSECTING RAILROADS] 75.4 

High Plains MD 0.3 + 71.9[DECIDUOUS SAVANNAH] + 0.7[PASTURE OR FIELDS] 63.9 

BW = 3.0 + 62.8[SHRUBLAND] + 0.9[GRAVEL ROAD SURFACE] - 32.0[SHRUB 
PARKLAND] + 0.3[BUILDINGS AND ASSOCIATED VEGETATION] 
- 0.6[ROAD SHOULDER WIDTH] - 3.3 [MESQUITE SHRUB SAVANNAH] 92.6 

SQ = 0.7 + 25.7[MESQUITE SHRUBLAND] + 74.8[SHRUB SAVANNAH] 
+ 33.2[SHRUB PARKLAND] + 4.7[URBAN DEVELOPMENT] 81.7 

Trans-Pecos MD = 16.1 + 23.5[PLOWED LAND]- 4.7[BUILDINGS AND ASSOCIATED 
VEGETATION] - 0.5 [HABITAT INTERSPERSION] 86.6 

SQ = 8.9 + 0.6[IRRIGATION AND OIL PUMPS] 31.9 

Table 6. Percent audio-count surveys of mourning dove (MD), bobwhite quail (BW) and scaled quail (SQ) 
correctly classified as below average or average and above by discriminant analyses. Discriminant 
functions incorporated the habitat variables within multiple linear regression models for each ecological 
area (see table 5); differences in habitat variables between audio-count classes were significant (MANOVA: 
P<0.05). N represents the number of audio count surveys. 

MD 
Ecological area N % 

Pineywoods 32 81.3 

Gulf Prairies and Marshes 18 77.8 

Post Oak Savannah 33 84.8 

Blackland Prairies 40 82.5 

Cross Timbers and Prairies 62 85.5 

South Texas Plains 70 84.3 

Edwards Plateau 72 77.8 

Rolling Plains 88 79.5 

High Plains 52 75.0 

Trans-Pecos 35 88.6 

Mean 81.7 
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N 

23 

13 

24 

28 

44 

52 

54 

64 

38 

26 

BW 
% 

95.7 

84.6 

70.8 

82. 1 

90.9 

94.2 

74.1 

95.3 

89.5 

86.4 

SQ 

96.2 

98. 1 

93.8 

89.5 

38.5 

83.2 



Figure 2. Flow diagram for the development, testing, and use of a windshield approach to the evaluation of 
wildlife habitat. , 
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(figure 2 continued) 
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DISCUSSION 

PAUL GEISSLER: · L. have two comments. First, you 
have an average ·or~ about eight. times as many 
variables as transects in your initial analysis. 
Even counting the artificially increased sample 
sizes which resulted from using multiple surveys 
of transects as independent observations, you have 
an average of over twice as many variables as 
observations. In addition to the variables 
examined in your initial analysis, you also 
examined additional variables that were 
combinations of the original variables in the 
process of evaluating seven simplifications of 
habitat classifications. It does not matter that 
simplified habitat classifications were evaluated 
in separate computer runs, because these 
additional variables were still included in the 
search for a simple model with high predictive 
power. 

Very high R2 's can be obtained from random 
numbers which have no predictive power Whatsoever 
(figure 1D). This is due essentially to the 
repeated analyses on the same set of data by the 
stepwise procedure. When there are few 
observations relative to the number of variables, 
there is a tendency for the procedure to fit the· 
random variations in the data as well as the 
underlying biological process. This results in 
prediction bias, the over-estimation of the 

R2 
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Figure 1D. Effect of sample size on R2 in 
stepwise regression. One hundred sets of data 
were generated for each of the sample sizes of 
3, 5, · 10, 20, 30, 40, 50, 75, and 100 
observations. Each observation consisted. of a 
dependent variable and 10 independent variables 
generated as normally distributed random 
numbers. Each set of data was analyzed using 
the SAS Stepwise Procedure with default options 
(Barr et al., op. cit.) and the mean R2 and the 
95% confidence limits for the mean R2 plotted as 
a function of sample size. 
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model's predictive ability (R 2 ) based on the data 
used to construct the model as compared to the 
model's true predictive ability on other data 
( Neter, J. , and W. Wasserman. 197 4. Applied 
linear statistical models. Richard D. Irwin, 
Inc. , Homewood, Ill. p. 388) • In other words, a 
very high R2 indicating good predictive power may 
be obtained from the original set of data, but 
poor predictions and low R2 .result when the model 
is applied to another set of data. 

Using the Pineywoods as an example, you 
obtained a R 2 of 83.3% using a model with three 
variables selected from 98 variables present. 
There were nine transects in this area. Using 
independent normally distributed (0,1) random 
numbers in place in these 98 prediction variables 
and the response variable for nine independent 
transects, I calculated an R2 of 100% 24 out of 25 
times using the SAS Stepwise Procedure with 
default options (Barr, A. J. et al. 1979. SAS 
User's Guide. SAS Institute, Cary, N. C.). There 
are similar problems with the discriminant 
analysis unless there are substantially more 
independent observations than there are variables. 

My second comment concerns the correlation 
among your call-count surveys. You indicate that 
audio count data for all of the surveys conducted 
on the 133 call-count transects were included 
instead of using transect means. This was done 
because differences in audio counts between 
surveys were significant. However, you note that 
" ••• inclusion of multiple surveys of individual 
transects artificially increased sample sizes 
within ecological areas, as surveys of the same 
transect were not statistically independent." A 
basic assumption in any regression analysis is 
that the error terms are uncorrelated (Neter and 
Wasserman, op. cit., p. 31). The test for a 
difference among surveys is not relevant to the 
determinations of the unit that constitutes an 
independent observation. That decision must be 
based on the lack of correlation among units. It 
is possible for there to be a perfect correlation 
(r=1) between the call-counts on multiple surveys 
of individual transects, and at the same time be 
significant differences among the surveys. What 
you need to demonstrate is that the survey results 
are uncorrelated, not that there is a significant 
difference among surveys. Analyzing the mean of 
the multiple surveys of a transect will result in 
uncorrelated observations and meet the assumptions 
required for regression analysis. 

CHRIS GRUE: We were aware of the possibility of 
prediction bias throughout our study. The number 
of potential habitat types within our habitat 
classification was, unfortunately, nearly four 
times the number of call-count transects within 
Texas. We, however, considered the habitat 
classification to be suitable for classifying 
habitats from within a vehicle and an unbiased 
method of selecting the habitat variables to be 
included in the regression analyses; the 
classification scheme was developed prior to the 
collection of any field data. We believed the 
elimination of levels within the classification 



hierarchy was an objective means of simplifying 
the habitat classification and reducing the number 
of habitat variables.therein. We also realized 
that, depending'· 'on' ~he level within the habitat 
classification, only a fraction of the potential 
habitat variables might actually be observed along 
the call-count transects. With respect to the 
discriminant analyses, we decided to include only 
those habitat variables which entered the 
regression models. 

Because the number of call-count transects 
was lower than the potential number of habitat 
variables, the decision of whether to conduct the 
regression analyses statewide or within ecological 
areas was difficult. Both approaches had apparent 
problems, statistical or biological. By 
conducting regression analyses statewide, the 
potential for prediction bias would be reduced. 
However, this approach appeared to suffer 
biologically. Habitat variables important to 
doves may not be expected to be the same within 
any two ecological areas due to differences in the 
abundance and distribution of habitat types. 
Analyses within ecological areas, though probably 
more valid biologically, increased the potential 
for prediction bias; we were restricted to 
sampling the existing call-count transects due to 
budget constraints. Since the two approaches 
appeared to have merit, we decided, apriori, to 

utilize both in the study. 

To counter the possible effects of prediction 
bias in the regression analyses conducted within 
ecological areas, we included call-counts for all 
surveya as the dependent variable instead of 
transect means. Variability in call-counts 
between surveys was great and we believed its 
inclusion in the regression analyses would make it 
more difficult to obtain high multiple correlation 
coefficients. Because surveys of the same 
transect were not independent observations and 
their indlusion artificially increased sample 
size, we increased the significance level for 
entry of habitat variables into the models from 
the default value of P<0.10 (Barr et al., op. 
cit.) to P<0.05. 

Multiple correlation coefficients for models 
from statewide and within-ecological-area analyses 
using call-counts for all surveys and transect 
means are presented in table 1D. Inclusion of 
call-counts for all surveys did make it more 
difficult to obtain high multiple correlation 
coefficients. Some prediction bias is undoubtedly 
present in the data, particularly models for 
ecological areas based on transect means. The 
amount.of prediction bias present, however, cannot 
be assessed until the models are tested. We 
believe the amount of prediction bias present is 

Table 1D. Correlations between mourning dove call-counts (all surveys 
conducted and transect means) and habitat variables (structural features 
and habitat types within the simplified habitat classification selected). 
Multiple correlation coefficients are expressed as percents. The number 
of habitat variables remaining in the models is given in parentheses. 

No. habitat All surveys Mean of 
variables surveys 

Ecological area present N R2 N R2 

Pineywoods 54 32 81.3 (3) 9 100.0 (6) 

Gulf Prairies and Marshes 40 18 28.3 ( 1 ) 6 100.0 (3) 

Post Oak Savannah 49 33 87.5 (4) 9 100.0 (6) 

Blackland Prairies 44 40 68.1 (3) 10 93.6 (3) 

Cross Timbers and Prairies 46 62 71.5 (7) 17 27.0 (1) 

South Texas Plains 43 70 74.7 (6) 18 86.1 (4) 

Edwards Plateau 35 72 63.9 (7) 18 81.7 (4) 

Rolling Plains 37 88 55.7 (4) 23 56.6 (2) 

High Plains 34 52 63.9 (2) 14 89.5 (2) 

Trans-Pecos 31 35 86.6 (3) 9 99.7 (4) 

Texas 54 502 44.6(16) 133 38.2 (4) 
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substantially less than that suggested by your 
example. One would ,not- expect to account for only 
27% of the vari~tlon in call-counts given 17 
transects and 46 habitat variables if prediction 
bias was severe. If one is willing to accept the 
results of our regression analyses in which the 
number of independent observations substantially 
exceeded the number of independent variables 
(e.g., 3X), then habit~t variables still accounted 
for a significant portion of the variation in 
mourning dove call counts (ca. 40%) throughout 
Texas (table 10). That regression models for 
ecological areas accounted for a greater 
proportion of the variation in call counts than 
the model for the State, however, appears to be 
reasonable biologically. Prediction bias in our 
discriminant analyses should not be great; the 
number of transects was two to seven times the 
number of habitat variables included. 
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BERNARD MORZUCH: What are the implications of 
using stepwise regression on the properties of the 
resulting parameter estimates in the regression 
analyses? 

CHRIS GRUE: Compared to "all possible regression" 
procedures, predictive models generated by 
stepwise may not provide the best fit to a data 
set because a limited amount of stepping back is 
done. Models generated by either procedure may 
not include all independent variables 
significantly correlated with a dependent variable 
and individual regressi~n coefficients may depend 
on the other parameters wi 1;.hin a model. Models 
generated by either procedure are primarily 
restricted to predictive uses.. Examination of 
correlation matrices may, therefore, prove useful 
in identifying all habitat parameters 
significantly correlated with wildlife density and 
in establishing guidelines for improving wildlife 
habitat. 
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INTERSPECIFIC DIFFERENCES IN NESTING HABITAT OF 

SYMPATRIC WOODPECKERS AND NUTHATCHES1 

Martin G. Raphael2 

Abstract.--To test for nest site differences among nine 
sympatric species of woodpeckers and nuthatches (hole 
excavators) in a Sierra Nevada mixed conifer forest, I 
located 306 active nests, measured forest stand 
characteristics on a 0.04 ha plot centered at each nest, 
measured characteristics of the nest tree, and used 
discriminant analysis to compare these nest site 
characteristics among bird species. 

Three discriminant functions were considered. The first 
was associated most strongly with live tree basal area and 
canopy height. The second function was associated with nest 
tree species and nest tree height; the third was identified 
by nest tree diameter and top condition. Mean discriminant 
scores differed significantly among all but 3 of 36 possible 
pairs of species along at least one of these discriminant 
axes, indicating that nearly all bird species chose distinct 
nest sites. The distributions of discriminant scores along 
each axis, however, showed considerable overlap with nest 
sites of two sapsucker species being the most similar. 
Euclidian distance between mean scores was the most useful 
measure to characterize the similarity of species' nest 
sites. 

Nest stand and nest tree variables contributed nearly 
equally to the discrimination between bird species. This 
analysis suggested that both of these sets of variables 
should be included in management prescriptions to provide 
habitat for cavity nesting birds. 

Key words: Cavity nesting birds; cluster analysis; 
discriminant analysis; Euclidian distance; nuthatches; Sierra 
Nevada; woodpeckers. 

1 Paper presented at The use of multivariate 
statistics in the studies of wildlife habitat: a 
workshop, April 23-25 1980, Burlington, Vt. 

2 Staff Research Associate, Department of 
Forestry and Resource Management, University of 
California, Berkeley, CA 94720. 
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INTRODUCTION 

Cavity nesting birds comprise about 30% of 
the breeding bird species in western forests. 
Habitat management for these species requires, 
among other factors, the provision of adequate 
numbers of sui table nest sites, usually standing 
dead trees (Raphael and White 1978, Thomas et al. 
1979). The question arises whether each species 
selects distinct nest sites or whether groups of 



species nest in trees with similar character
istics. Habitat management is simplified in the 
latter case since. S:P~s::i'es with similar nest sites 
can be grouped into a reduced set of functional 
management units. 

The purpose of this study was to determine 
whether the nest sites of each species in a group 
of sympatric primary cavity nesters were distinct 
or whether one can identify subsets of species 
using nest sites with similar characteristics. To 
do so, I performed a one-way multivariate analysis 
of variance using discriminant analysis, .followed 
by an examination of the relative separation of 
all possible species-pairs. The basic advantages 
of using discriminant analysis instead of a series 
of single-variable comparisons among all species 
ar.e that it: a) accounts for correlations among 
the variables used inrthe analysis, and b) allows 
more rigorous control over the experiment-wise 
(type I) error rate. 

Primary cavity nesters excavate their own 
cavities and to do so they must choose the 
appropriate substrate for the nest. Secondary 
cavity nesters, on the other hand, choose 
appropriate cavities, usually abandoned woodpecker 
holes (Raphael 1980). I limited the analysis to 
primary cavity nesters because these species 
select trees; the secondary cavity nesters choose 
cavities and this confounds an analysis of tree 
characteristics. 

METHODS 

Study Area 

Field studies were conducted at the 
University of California Sagehen Creek Field 
Station, located on the east side of the Sierra 
Nevada, 13 km north and 6 km west of Truckee, 
California. Elevations in the 39 km 2 Sagehen 
Creek drainage vary from 1800 m to 2300 m. The 
drainage is dominated by a mix of Jeffrey pine 
(Pinus jeffreyi) and white fir (Abies concolor) 
and by brushfields or conifer plantations on the 
site of the 1960 Donner Ridge fire which burned 
the eastern quarter of the basin. Meadows, 
lodgepole pine (Pinus murryana), and aspen 
(Populus tremuloides) occur in mesic sites, and 
red fir (Abies magnifica) and mountain hemlock 
(Tsuga mertensiana) dominate at higher elevations. 

Searches for active nests were conducted 
throughout the Sagehen Creek basin from 1976 to 
1979. Active nests were confirmed by observing 
adults entering a cavity to incubate eggs or feed 
young and by the sounds of young calling from a 
nest. 

Measurement of Nest Site Characteristics 

I measured seven variables describing the 
characteristics of the stand within a 0. 04 ha 
circular plot centered at each nest. These were 
1) habitat (classified as burned or unburned); 2) 
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canopy height (maximum height, measured using a 
relaskop); 3) basal area of live trees (computed 
from diameters of all live trees > 8 em DBH 
excluding nest tree); 4) shrubcover (estimated 
percent canopy cover of all woody perennials 
including trees < 8 em DBH); and 5-7) density of 
small (< 23 em DBH), medium (23-38 em), and large 
(> 38 em) snags. 

Characteristics recorded for each nest tree 
included: 1) tree condition (live or dead); 2) 
diameter (DBH, measured with a diameter tape); 3) 
height (measured with a relaskop); 4) bark cover 
(estimated percent of stem covered by bark); 5) 
top condition (broken or intact); 6) twig 
condition (most foliage-bearing twigs present or 
most broken); 7) tree species (Jeffrey pine, 
lodgepole pine, red fir, white fir, or other). 

All binary variables were coded as 0 or 1 for 
subsequent analyses. Tree species was converted 
to four dummy binary variables. If the tree was a 
given species it was assigned a value of 1; 
otherwise, it was assigned a 0. The fifth group, 
other, was left out of the analysis to avoid 
redundancy. In total, then, 17 variables were 
included in the analysis. 

Statistical Analyses 

A linear discriminant analysis was performed 
on all 17 variables (percentages analyzed using an 
ar.csine transformation) using the SPSS (version 
8.0) package (Nie et al. 1975). The null 
hypothesis was that nest sites of all species are 
equal, that is, the mean discriminant scores do 
not differ between members of any possible pair of 
species. 

The maximum number of functions derived in a 
multi-group discriminant analysis is either one 
less than the number of groups (in this case, bird 
species) or equal to the number of variables 
entered into the analysis, whichever is smaller. 
The first function derived explains the greatest 
proportion of the total variance, and each 
additional function explains successively less. 
There are two approaches in deciding how many of 
the possible functions to consider. First, one 
can test the statistical significance of each 
function by comparing the additional variance 
explained by that function to an expected value 
(Klecka 1975, Morrison 1976). Alternatively, one 
can arbitrarily define a minimum proportion of 
explained variance and accept only those functions 
that explain more than that minimum. In this 
study, I chose the latter approach and considered 
only those functions explaining 5% or more of the 
total variance. This alternative allows more 
powerful planned comparisons of mean discriminant 
scores among the groups as opposed to post-hoc 
comparisons which would have been necessary had I 
used the former approach. 

To. interpret the biological meaning of each 
discriminant function, I computed the correlation 
of each variable with the discriminant score 



derived for each fun~tion (structure matrix). 
Variables with the'; highest correlations were used 
to interpret fUiicti(;ns. Some researchers (e.g., 
Klecka 1975:443) prefer to use the standardized 
discriminant function coefficients (pattern 
matrix) to interpret functions, but these 
coefficients can be highly unstable. 3 

I used a t-test to compare mean discriminant 
scores of each pair of species along each of the 
discriminant axes accepted for analysis. Given S 
species, there are [S(S-1)]/2 possible pairwise 
comparisons on each axis. To control the total 
type I error rate at < 0.05 for all comparisons on 
each axis, I used Dunn's (1961) procedure for 
multiple planned comparisons. Assuming equal 
variance in discriminant scores, the formula used 
for each pairwise test comparing species i and j 
on the kth discriminant axis is simply: 

- - 1/2 -
tk = (dik - djk) I (1/ni + 1/nj) where d is the 

mean discriminant score and n is the sample size 
for each Species. Values of t were compared to 
values tabled by Dunn ( 1961) to accept or reject 
the null hypothesis of no difference between mean 
scores at the 0.05 significance level. 

The value of t is dependent on sample size as 
well as the magnitude of the difference between 
the discriminant scores. Given the same value of 
(dik - djk), a comparison involving two species 

with large sample sizes may be statistically 
significant while a comparison of species with 
smaller sample sizes may not be. Values of t may 
also be affected by unequal variance in scores 
among species. To reduce this dependency on 
sample size and to account for the possibility of 
unequal variance, I divided each discriminant axis 
into equal segments, computed the frequency of 
discriminant scores for each species in each 
segment, and then computed the similarity of these 
frequency distributions along each axis using a 
measure of niche overlap given by Colwell and 
Futuyma ( 1971:573, equation 23). Since each 
discriminant axis is independent, I multiplied the 
overlap values for each species-pair on each axis 
to derive an index of total overlap on all axes 
(May ,1975). Cluster analysis (UPGMA, Sneath and 
Sokal 1973) was used to reveal possible groups of 
species using nests with similar characteristics 
based on these total overlap values. 

For comparison, I also computed the Euclidian 
distance (Dij) between each pair of species i and 

j in discriminant space, using the formula: 

- - 2 1/2 
Dij = [~ (dik - djk) ] , where dik is the value 

of the mean discriminant score on the kth axis for 

3 Personal communication with L.A. Marascuilo, 
statistics Professor, Department of Education, 
University of California, Berkeley. 
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the ith species, and djk is the value for the jth 

species on the same axis (Dij is equivalent to the 

square root of the Mahalanobis distance 
statistic). Like the overlap values described 
above, these Euclidian distances are less affected 
by sample size than the t-test. 

To compare the relative importance of the 
nest tree and nest stand variables as 
discriminators between nest sites of the species, 
I performed three additional discriminant 
analyses. For the first analysis, I included only 
the seven nest stand variables and computed the 
proportion of the total variance explained by all 
functions (sum of squares between groups divided 
by the total sum of squares). Second, I used a 
stepwise analysis to determine the best seven of 
the ten nest tree variables and calculated the 
proportion of the total variance explained by 
these seven variables. Third, I used a stepwise 
analysis including both the nest tree and nest 
stand variables and calculated the proportion of 
the total variance explained by the first seven 
variables entered of either type. I then compared 
these values of explained variance from each 
analysis to assess the relative importance of the 
tree and stand variables. 

RESULTS AND DISCUSSION 

Interpretation of Functions 

I located a total of 306 nests of 9 excavator 
species (table 1). These species formed nine 
groups resulting in eight discriminant functions 
which explained 83% of the total variance in nest 
site characteristics (fig. 1). Each of functions 
4 through 8 explained less than 5% of the variance 
not accounted for by previous functions and was 
not considered in subsequent analyses. The first 
three functions explained 55%, 11%, and 7%, 
respectively, totaling 75% of the variance. 

The first function was correlated most highly 
with canopy height, live tree basal area, and 
burned vs. unburned habitat (table 2). This 
function clearly was associated with nest stand 
variables and separates species nesting in 
unburned forest stands (red-breasted nuthatch and 
sapsuckers) from those nesting in burned stands 
(pygmy nuthatch, and Lewis and white-headed 
woodpeckers) (fig. 2A). The three remaining 
species nest in both burned and unburned habitats 
and their mean discriminant scores were located at 
intermediate locations on the first discriminant 
axis (fig. 2A). 

The second discriminant function was most 
correlated with nest tree variables, particularly 
species (the two fir categories) and tree size 
(height and diameter) (table 2). Species nesting 
in red fir and smaller size trees had the lowest 
discriminant scores (black-backed and white-headed 
woodpeckers) and species nesting in larger size, 
white fir trees had the highest scores (Lewis 



Table 1. Bird species .(hole excavators) nesting 
in the Sagehen "Creek· study area. 

. (· . ;,·~. 

Bird species 

Common flicker 
(Colaptes auratus) 

Lewis woodpecker 
(Asyndesmus lewis) 

Code 

CF 

LW 

Red-breasted sapsucker RS 
(Sphyrapicus ruber daggetti) 

Williamson sapsucker WS 
(Sphyrapicus thyroideus) 

Hairy woodpecker 
(Dendrocopos villosus) 

HW 

White-headed woodpecker WW 
(Dendrocopos albolarvatus) 

Black-backed
three-toed woodpecker 

(Picoides arcticus) 

Red-breasted nuthatch 
(Sitta canadensis) 

Pygmy nuthatch 
(Sitta pygmaea) 

TOTAL 

BW 

RN 

PN 

Sample size 

68 

37 

50 

50 

23 

12 

8 

30 

28 

306 

woodpecker and red-breasted-sapsucker) (fig. 2B). 
The mean scores of the other five species differed 
very little on this axis. 

The third discriminant function was also 
associated with variables describing the nest tree 
(table 2) and it separated the white-headed, 
hairy, and black-backed woodpeckers from the 
remaining species (fig. 2C). The white-headed 
woodpecker nests in large diameter, broken-topped 
trees while the black-backed and hairy woodpeckers 
nest in smaller diameter, intact-topped trees. As 
with the second function, the remaining species 
have very similar mean scores on this axis. 

Pairwise Comparisons 

Results of the 36 t-tests comparing mean 
discriminant scores among all possible pairs of 
species on each discriminant axis are summarized 
in figure 3. The null hypothesis of no difference 
between mean scores was rejected on at least one 
axis for all but three comparisons (RN vs. WS, BW 
vs. HW, WS vs. RS). These results might be used 
to suggest that the black-backed and hairy 
woodpeckers could be grouped for management 
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Figure 1. Cumulative explained variance ( S of 
total variance) in relation to the number of 
discriminant functions considered. 

purposes because their nest site characteristics 
were statistically indistinguishable. Similarly, 
the two sapsuckers could also be grouped. The 
pygmy nuthatch is more problematic since its nest 
sites are similar to those of the Williamson 
sapsucker but not to those of the red-breasted 
sapsucker; it might be better, therefore, not to 
group pygmy nutnatches with either species. 

Because all discriminant axes are orthogonal 
(independent), a significant difference between 
two species' centroids on any one axis is 
sufficient to conclude that the two species use 
statistically distinct nest sites. Given that the 
null hypothesis is true and that the probability 
of at least one significant difference on each 
axis is 0.05, the probability of no difference on 

any axis is (1.00 - 0.05) 3 = 0.86. Thus, for 36 
comparisons one could expect approximately 
36(0.86) = 31 to be nonsignificant. Clearly, 
since only three comparisons were actually 
nonsignificant, the null hypothesis is not true. 
It is unclear, however, whether the lack of a 
significant difference among these three pairs 
reflects their inherent ecological similarity or a 
chance event. 

Interpretation of these pairwise comparisons 
is further complicated by the fact that the 
comparisons along any one axis are not 
independent. When significant differences .do 
occur among comparisons of this type, they tend to 
occur in "bunches" (Lindman 1974: 82). Therefore, 



Table 2. Poole:d 'within-groups correlations 
between discri•iKant functions and discrim
inating variables. 

Variable 

Nest Stand Variables 

Canopy height 

Live tree basal area 

Burned or unburned 

Shrub cover 

Snags < 23 em DBH 

Snags 23-38 em DBH 

Snags > 38 em DBH 

Nest Tree Variables 

Height 

Diameter 

Foliage-bearing twigs 

Bark cover 

Top condition 

Jeffrey pine 

Lodgepole pine 

White fir 

Red fir 

Tree condition 

Correlation with 
Discriminant Function: 

1 2 3 

0.83 0.12 -0.03 

0.70 0.07 -0.16 

-0.59 0.10 -0.03 

-0.26 -0.19 0.12 

0.02 -0.18 0.05 

-0.14 •0.06 0.05 

-0. 15 0.01 -0.07 

0.51 0.43 0.20 

0.31 0.32 -0.53 

0.52 0.19 0.14 

0.29 0.17 -0.27 

0.23 -0.17 0.38 

-0.26 0.04 -0.21 

0.21 -0.06 o. 31 

-0.08 0.28 0.00 

0.08 -0.47 -0.15 

-0.44 -0.10 0.01 

one cannot predict, a priori, the expected number 
of significant differences on one, two, or three 
discriminant axes. For these reasons, pairwise 
comparisons of species' mean discriminant scores 
appear to have limited utility in assessing 
habitat similarity among the species. Two other 
measures, involving overlap of score distributions 
and distance between mean scores, seem better 
suited for such a purpose. 

OVerlap of Discriminant Scores 

The range and standard deviation of 
discriminant scores on the discriminant axes show 
considerable overlap among species (fig. 2). Two 
species may have statistically different mean 
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scores but their score distributions could overlap 
to such an extent that they might justifiably be 
grouped for management purposes. To examine such 
a possibility I computed overlaps between all 
pairs of species on each of the three discriminant 
axes and multiplied the three overlap values for 
each species-pair to derive an index of nest site 
similarity (table 3). The greatest overlap values 
are found between the ·two sapsuckers (0.42) and 
between the common . flicker and pygmy nuthatch 
( 0. 40). 

I used a cluster analysis based on this 
similarity matrix (overlap values) to produce a 
dendrogram (fig. 4) revealing patterns of nest 
site similarity among the bird· species. At the 
0.4 level, two groups are recognized, one composed 
of the two sapsuckers and another containing the 
pygmy nuthatch and common flicker. At the 0.2 
level, the Lewis woodpecker links with the 
flicker-pygmy group and the red-breasted nuthatch 
joins the sapsucker group. At this level of 
similarity, these groups can be indentified as 
burn and unburned specialists, respectively. The 
remaining species link at successively lower 
overlap values. These results suggest that nest 
sites of the two sapsuckers may be similar enough 
to permit their management in common and, 
likewise, those of the pygmy nuthatch and common 
flicker. The pairwise t-test also identified the 
sapsucker group, but the t-tests indicated the 
hairy and black-backed woodpeckers as a second 
possible group rather than the nuthatch and 
flicker. 

Euclidian Distance 

Another measure of overall nest site 
similarity is the Euclid ian distance between 
species' mean discriminant scores. These values 
(table 3) measure the separation of the species in 
discriminant space, and may be less affected by 
sample size than the overlap values. For example, 
the overlap of the black-backed woodpecker with 
the other species ranges from 0.01 to 0.02 (table 
3). These values are lower than the average of 
any other species, probably reflecting the small 
sample size of black-backed nests (n = 8). In 
contrast, the Euclidian distances between 
black-backed nests and those of the other species 
range from 1.30 to 3.24 and these values are 
spread throughout the range exhibited by the other 
species-pairs. 

Euclidian distances, however, do not directly 
convey any information about the dispersion of 
each species about its centroid. The overlap 
values do convey such information, since it is 
precisely the relative patterns of dispersion of 
any two species that define their overlap. But, a 
linear regression of discriminant score overlap 
with Euclidian distance between mean scores in 
three-dimensional discriminant space showed that 
the two measures were highly correlated (r 
-0.89, P < 0.001, excluding the black-backed 
woodpecker). Thus, overlap can be predicted from 
Euclidian distance. Given this relationship, and 
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Figure 2. Mean (vertical lines), standard deviation (heavy bars), and range (horizontal lines) of 
discriminant scores of each bird species on the first (A), second (B), and third (C) discriminant 
functions. Arrows indicate direction of increased values of variables most highly correlated with the 
discriminant scores on each function. 
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the observation that Euclidian distances are 
apparently less dependent on sample size than the 
t-tests or overlap values, I recommend using 
Euclidian distance as a measure of similarity when 
sample sizes of some groups are small. When 
sample sizes are large, the overlap value is 
preferred since it is directly interpretable as a 
measure of shared discriminant score distribution. 

Relative Importance of Stand and Tree Variables 

Figure 3. Results of t-tests comparing mean 
discriminant scores among all possible pairs of 
species on each function. Symbols denote 
significant differences (see text). Species 
codes are given in table 1. 

Figure 3 shows that eight pairs of species 
differ only on the basis of stand characteristics 
(significant differences occur only on the first 
discriminant axis). These species nest in similar 
trees located within otherwise different stands. 
In contrast, 13 species-pairs nest in trees with 
significantly different characteristics 
(significant differences occur only on functions 2 
and/ or 3). They nest in differing trees located 
in otherwise similar stands. The remaining 12 
pairs of species nest in both different trees and 
stands. 

Three additional discriminant analyses, each 
using seven variables, were used to assess the 
relative discriminating power of the tree and 

Table 3. Relative similarity of excavator nest sites. Values to right of 
diagonals are the overlaps of species' discrimi!lant score distributions 
(larger values indicate more similar nest sites) • Values to left of 
diagonals are Euclidean distances between species' mean discriminant 
scores in three-dimensional discriminant space (larger values indicate 
less similar nest sites). 

Bird 
species 1 

PN 

RN 

BW 

HW 

CF 

LW 

ww 

ws 

RS 

PN RN 

0.02 

2.72 

2.21 1. 90 

1. 30 

0.91 1.93 

1.15 3.24 

2.23 2.91 

2.47 0.69 

2.59 1. 25 

BW 

0.03 

0.02 

1. 33 

1.a5 

3.24 

HW 

0.19 

0.06 

0.02 

1.08 

2.20 

CF 

0.40 

0.17 

0.02 

0.22 

1.48 

2.75 2.93 2.48 

2 • 09 2 • 15 1. 59 

2.40 2.21 1.68 

1 See table 1 for bird species codes. 
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DISTRIBUTIONS AMONG SPECIES 

~ 

I 
, 1--- PYGMY NUTHATCH 

l ~ 

I 1---- COMMON FLICKER 

1 

r--- . 1--- LEWIS WOOD~ECKER 

.. 1 , 1--- HAIRY WOODPECKER 

, I--- RED-BREASTED NUTHATCH 

- , 1--- WILLIAMSON SAPSUCKER 

~ , 1--- RED-BREASTED SAPSUCKER 

-
I , 1--- WHITE-HEADED WOODPECKER 

1 
I 
1--- BLACK-BACKED 

THREE-TOED WOODPECKER 

~----~------~------~----~-------L~~ 
0 0.1 0.2 0.3 0.4 0.5 1.0 

OVERLAP INDEX 

Figure 4. Dendrogram showing similarity of nest sites of bird species based on cluster analysis using 
overlap of discriminant score distributions along three discriminant axes. Larger index values indicate 
more similar nest sites. 

stand variables (see methods). When only the 
seven stand variables were included in the 
analysis, the variance explained by the set of 
discriminant functions was 60% of the total 
variance in the system. The variance explained 
using only the best seven nest tree variables 
(lodgepole pine, white fir, and foliage bearing 
twigs were excluded) is slightly higher, 63%. 
Finally, the optimum set of both nest and stand 
variables (canopy height, tree height, tree 
diameter, red fir, live tree basal area, top 
condition, and tree condition listed in order of 
entry in stepwise analysis) explained 74%. While 
the nest tree variables are slightly better than 
the stand variables as discriminators between 
species' nest sites, it is apparent that both 
types of variables should be included to 
adequately characterize nest sites. Consideration 
of both types resulted in a substantially greater 
separation of species' nest sites. 
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CONCLUSION 

Discriminant analysis is a useful method for 
quantifying the similarity of habitat 
characteristics among wildlife species. It offers 
several options including planned or post-hoc 
comparisons of mean scores, analysis of score 
distributions in discriminant space, and measures 
of the separation of species such as Euclidian 
distance. Of these options, Euclidian distance 
appears to have the greatest generality since it 
is affected less by variation in sample size among 
the species analyzed. 

Using discriminant analysis to compare the 
characteristics of the nest sites of nine 
sympatric primary cavity nesting bird species, I 
demonstrated that both nest tree and nest stand 
characteristics should be included in the suite of 
variables used by managers to prescribe management 



practices to provide the habitat requirements of 
these species. . Five .. ·species used distinct nest 
sites and requite·urt"ique management prescriptions, 
but the four other species can be combined for 
management purposes into two groups, each 
containing pairs of species using very similar 
nest sites. 

As a final note, researchers (and managers) 
must recognize that interspecific comparisons of 
habitat characteristics are not sufficient to 
define the most important variables involved in 
habitat selection. For example, nests of all 
species considered in this study were surrounded 
by a relatively large number of snags greater than 
23 em DBH. But because the magnitude of this 
variable does not vary significantly among 
species, snag density is not a good discriminator 
between species' nest sites. When snag density is 
compared between a species' nest sites and a set 
of random plots, however, it becomes one of the 
best discriminators (Raphael 1980). Thus, 
variables important in habitat selection should be 
identified through a series of single species 
analyses comparing use and availability of habitat 
components rather than by comparing habitat 
characteristics among all species of interest. 
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DISCUSSION 

DONALD McCRIMMON: Please reiterate the method 
used to interpret discriminant axes. 

MARTIN RAPHAEL: I calculated the correlations 
between each original variable and the 
discriminant score for each function (structure 
matrix) and interpreted the functions by 
considering the most highly correlated variables. 

PAUL GEISSLER: I think it would be more 
appropriate to use a multivariate analysis of 
variance (MANOVA) to test for differences among 
species, possibly with orthorgonal contrasts based 
on taxonomic relationships. The criteria in 
MANOVA are functions of the eigenvalues associated 
with the eigenvectors which define the 
discriminant functions. It has been suggested 
that plots of the treatment means in the space of 
the discrimination functions be used to interpret 
MANOVA results. 

MARTIN RAPHAEL: I believe that a one-way MANOVA 
and the multi-group discriminant analysis are the 
same procedure. I would not want to limit the 
contrasts to taxonomic relations. For example, I 
found that the common flicker and pygmy nuthatch-
two very distantly related species--were highly 
similar in nest site selection. 

KEN WILLIAMS: Did you check for covariance 
hetergeneity? Without this characteristic it is 
difficult to test your stated hypothesis. Also, 
it assures some degree of overlap distortion as 
displayed by the discriminant functions. 

MARTIN RAPHAEL: I did test for variance/ 
covariance heterogeneity, and the variance/ 
covariance matrices were not equal. I could find 
no method to assess the consequences of the 
failure to meet this assumption, and decided to 
proceed with the analysis since some authors state 
that the procedure is robust against such a 
failure. My understanding is that this failure 
has more severe implications on the interpretation 
of discriminant coefficients. It is quite 
possible that distortions occurred in the pattern 
of overlaps among the species; I would ask how 
severe such distortion might be: are they so 



severe that the results are wrong? No one, as 
yet, can answer the latter question. 

LESLIE MARCUS: I suggest that you plot points or 
bivariate ellipse projections in to canonical 
variate space, to see how covariance-structure 
looked in bivariate space. You could use the term 
"Mahalanobis distance" rather than "Euclidean 
distance in discriminant space"--as one always 
knows what it means. 
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MARTIN RAPHAEL: To answer the first point, I 
cannot visualize the advantage of plotting such 
projections since any distortions caused by the 
covariance structure would still affect the 
bivariate axes. I would like to know more about 
such a technique if it really would allow an 
evaluation of distortions. On the second point, I 
suppose it is a matter of personal taste since the 
two measures are so closely related. It would be 
useful to agree on the use of either measure to 
facilitate communications. 



ROBUST CANONICAL CORRELATION OF SAGE GROUSE 

HABITAT1 

MarkS. Boyce2 

Abstract.--The distribution patterns of sage grouse 
( Centrocercus urophasianus Bonaparte) were studied on 
Atlantic Richfield Company's Coal Creek coal surface mine 
site in northeastern Wyoming. Fecal droppings were 
periodically removed from randomly located belt transects 
within a 36 km 2 study area. Using multiple regression and 
canonical correlation the seasonal distribution of droppings 
was related to several habitat variables which were 
hypothesi zed to be important to sage grouse. By canonical 
correlation, approximately 90% of the variance in a fecal 
count variate can be attributed to a habitat variate. The 
correlations between each variate and the original variables 
were found to be very stable when habitat variables were 
rotated. Similarly, the robustness of the loadings was 
confirmed by systematically eliminating cases (transects) 
from the analysis. Although canonical correlation provides 
little insight here over that obtained from multiple 
regression analysis, it does provide a succinct summary of a 
large and complex set of interrelationships among variables. 

Key words: Canonical correlation; habitat; mine 
reclamation; multiple regression; patchiness; sage grouse; 
Wyoming. 

INTRODUCTION 

Applications of canonical correlation in 
ecology are relatively uncommon (Smith 1980). 
This may be due in part to unstable results or 
difficult interpretation (Gauch and Wentworth 
1976, Johnston 3 ). These problems are often 
attributable to assumption violations in the data, 
e.g., variables which are not normally distributed 
(Harris 1975), multicollinearity among variables 
(Cohen et al. 1979), or nonlinearity (Gauch and 

1 Paper presented at The use of multivariate 
statistics in studies of wildlife habitat: a 
workshop, April 23-25, 1980, Burlington, Vt. 

2 Assistant Professor, Department of Zoology 
and Physiology, University of Wyoming, Laramie, WY 
82071. 

3 Personal communication with R. F. Johnston, 
Professor, University of Kansas. 

152 

Wentworth 1976). However, if these assumptions 
can be approximated, the potential is great for 
application of canonical correlation in habitat 
studies. Canonical correlation searches for the 
maximum correlation between linear combinations of 
two sets of variables; for example, one set of 
variables may consist of measures of organism 
distribution and/or abundance, and another set may 
consist of variables characterizing habitat. 

In this paper I describe an application of 
canonical correlation to an analysis of sage 
grouse habitat. One set of variables consists of 
the number of sage grouse fecal droppings 
deposited in different seasons, whereas the second 
set of variables consists of selected habitat 
variables which were hypothesized to be important 
factors influencing sage grouse distribution. 
Correlations between the original variables and 
the derived distribution and habitat variates were 
found to be robust (contra Cohen et al. 1979) , 
even though the sample size was relatively small 



(n = 20). I attribute the robustness of this 
application of canonic~! correlation to thorough 
screening for nonline-~ri ty and normality followed 
by transformation or elimination of variables 
before conducting the analysis. 

METHODS AND MATERIALS 

The study area was a 36 km 2 coal lease (T46N, 
R70W) in Campbell County, Wyoming which is 
scheduled for development as a surface mine. An 
objective of this research was to characterize the 
habitat components which are most important to 
sage grouse and to develop guidelines for 
reclamation of mined lands for sage grouse. 

Sage grouse fecal droppings are easily 
identified and may last for up to 3 years before 
deteriorating. A sampling scheme was designed to 
assess seasonal distribution of sage grouse by 
periodically checking permanent belt transects for 
fresh droppings, and removing all droppings 
deposited since transects were last searched. 
Twenty 2 m x 1000 m belt transects were randomly 
located on the study area, and checked at 
irregular intervals. 

An independent consulting team was employed 
to map and characterize all vegetation types on 
the study area (Keammerer and Keammerer 1975). In 
addition, detailed data were collected on the 
composition of sagebrush density, height and cover 
along each transect by employing systematic 
point-quarter procedures (Seber 1973). 

The total number of fecal pellets found 
during a part,icular season was summed over the 
three years of our study, yielding three seasonal 
distribution variables, i.e., number of droppings 
found in 1) winter, 2) spring, and 3) summer 
through early fall. Habitat use patterns are 
known to be very similar in summer and early fall 
in non-migratory sage grouse populations 
(Patterson 1952). Habitat and distribution 
variables employed in this analysis are listed in 
table 1. 

RESULTS 

An average of 360 droppings was found on each 
transect. All variables were screened for 
skewness and kurtosis, and transformations 
conducted where appropriate. Seven variables were 
either eliminated or combined with other variables 
because their distribution contained an excessive 
proportion of zeros. Next, because of the 
sensitivity of canonical correlation to 
non-linearity (Gauch and Wentworth 1976), 
bivariate plots were constructed between the 
distribution variables and each habitat variable. 
When nonlinear patterns appeared, the respective 
habitat variable was eliminated from the analysis. 
For example, the total droppings vs. the area 
within each belt transect in the big sagebrush 
habitat type appears nonlinear (fig. 1). The 
availability of at least some big sagebrush is 
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Table 1. Reduced set of variables and appropriate 
transformations for variables used in this 
analysis. 

Distribution variables 

TOTAL 

SUMMER
FALL 

WINTER 

= log 10 (total droppings found on each 
transect over 3 years, plus 1.0). 

= log 10 (sum.over 3 years of all 
droppings which accumulated between 
June and October, plus 1.0). 

= log10 (droppings accumulated during 
winter months, plus 1.0). 

SPRING = log10 (sum over 2 years of droppings 
accumulated during spring months 
through mid-May, plus 1.0). 

DIST = fecal droppings canonical variate. 

Habitat variables 

LEK = distance between the nearest sage 

FORBS 

grouse strutting ground (lek) and the 
closest point on each belt transect 
in km. 

= summed area within each belt transect 
within forb-producing habitats, 
including riparian areas, in m2 • 

DIV = habitat diversity = -Ep.logp. where 
pi is the proportion 1of tbe ith 
habitat type within each belt 
transect. 

PATCH = patchiness index equal to the number 
of times the belt transect crosses 
from one habitat type to another, 
plus 1. 0. 

SPRAY = log 1 0 (area within belt transect of 
big sagebrush habitat which had been 
sprayed with 2,4-D, plus 1.0). 

COVER = average sagebrush cover along 
transect estimated with 21 
point-quarter measurements (Seber 
1973). 

VACOV = standard deviation of COVER. 

DENS = average density of sagebrush plants 
per m2 estimated from 21 point
quarter measurements (Seber 1973). 

VADEN = standard deviation of DENS. 

SAGE = area within belt transect of big 
sagebrush habitat type in m2 • 

HABITAT = canonical variate comprised of 
habitat variables. 



essential, and transects with no big sagebrush 
have no sage grQUS~ ~t{lization. However, large 
homogeneous stands ~or. sagebrush tend to have low 
forb availability and are not preferred habitat. 
Therefore, SAGE was eliminated from further 
analysis. 

A multiple regression analysis was conducted 
using each distribution variable as a dependent 
variable. This permitted explicit hypothesis 
testing regarding the importance of various 
habitat variables. Several interesting patterns 
emerge; for example, habitat patchiness and the 
proportion of forb-producing habitats were both 
positively correlated with the number of droppings 
found on each belt transect (fig. 2). Different 
habitat variables are important at different times 
of the year due to the seasonal changes in food 
habita and behavior of the grouse. A few of the 
more interesting multipl~ regression models are 
summarized in table 2. 

In an attempt to summarize the complex 
interrelationships between the seasonal 
distribution patterns and habitat, I conducted a 
canonical correlation analysis of the 
"distribution" set of variables and a selected set 
of habitat variables. Due to the small sample 
size (n = 20), I began with a small number of 
variables: three distribution variables, and 
three of the most important habitat variables. As 
presented in figure 3A, a habitat variate accounts 
for almost 90% of the variance in a distribution 
variate and the relationship is highly significant 
(P « 0. 001). Furthermore the correlations 
between the first pair of canonical variates and 
the original variables are all intuitively 
satisfying ahd parallel the results of multiple 
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Figure 1. Total droppings over three years plotted 
as a function of the area within each belt 
transect in the big sagebrush habitat type. 
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Figure 2. Total droppings over there years as a 
function of the area within each belt transect 
in forb-producing habitat types. 

regression. The second canonical correlation was 
not statistically significant (P < 0.05), and 
loadings of the second pair of variates were not 
readily interpretable. 

S,ince the 3 x 3 analysis worked so well, the 
number of habitat variables in the model was 
increased to assess whether a better synopsis of 
the interrelationships between habitat and 
distribution could be achieved. The analysis was 
attempted with five habitat variables (fig. 3B) 
and then with nine habitat variables (fig. 3C). 
The high stability of the loadings was impressive, 
i.e., the correlations between the first pair of 
canonical variates and the original variables 
remained relatively constant as additional habitat 
variables were added to the analysis. Even more 
exciting, however, the loadings were intuitively 
reasonable, and provided an exceptionally good 
representation of the interrelationships between 
var.iables which I had discovered through a tedious 
and detailed multiple regression analysis. All 
distribution variables loaded positively into a 
distribution variate, thus clearly the 
distribution variate reflected intensity of use by 
sage grouse. Correlations between original 
variables and the habitat variate all reflected 
quality of sage grouse habitat, i.e., variables 
which were positively correlated tend to be 
preferred habitat components and variables which 
were inversely correlated with the habitat variate 
were usually inversely correlated with the number 
of droppings found on transects at various times 
of year. 

To test the robustness of the canonical 
correlations and variable loadings, the 3 x 9 
analysis was rerun 20 times, each time leaving out 
one case (transect) from the analysis (similar to 



Table 2. A sample of multiple regression models with droppings counts as dependent 
variables and habitat attributes as independent variables. All models listed account for 
a signifi?a~t;~roportion of the variance in dependent variables (P < 0.05). 

\; . ~·~ 

SPRING = 2.674 - 0.452(LEK) - 0.056(SPRAY) R 0.780 

SPRING = 1. 603 0.359(LEK) + 0.002(FORBS) R = 0.841 

SPRING 0.002(FORBS) + 10.6(COVER) - 0.413 R 0.818 

SPRING = 3.367(DIV) + 13.0(COVER) - 0.686 R = 0.745 

SPRING 0.936 0.251(LEK) + 0.002(FORBS) + 5.8(COVER) R 0.864 

SPRING = 2.706 0. 481(LEK) R = 0.119 

SPRING 0. 003(FORBS) - 0. 163 R 0.680 

SPRING 0.313 + 14.56(COVER) R 0.671 

SUMMER-FALL 0.826 + 0.002(FORBS) - 0.414(SPRAY) R 0.896 

SUMMER-FALL= 0.467 + 0.116(PATCH) + 0.002(FORBS)- 0.416(SPRAY) R = 0.912 

SUMMER-FALL= 0.664 + 2.3(DIV) - 0.265(LEK) + 0.002(FORBS) R 0.879 

SUMMER-FALL= 0.812 + 2.28(DIV)- 0.133(LEK) + 0.001(FORBS)- 0.325(SPRAY) R 0.923 

SUMMER-FALL 0.994 + 3.54(DIV) 0. 165(LEK) 0. 371 (SPRAY) R 0.910 

SUMMER-FALL 0.623 +. 3.56(DIV) - 0.528(SPRAY) R = 0.887 

SUMMER-FALL = 0.995 - 0.241(LEK) + 0.002(FORBS) R 0.861 

SUMMER-FALL = 1.88 - 0.624(SPRAY) R = 0.810 

SUMMER-FALL = 0.003(FORBS) - 0.191 R 0.782 

WINTER 1.747- 2.5(DIV) + 0.002(FORBS) - 0.423(SPRAY) - 0.238(VADEN) R 0.680 

WINTER 1.234 + 0.001(FORBS) 0.42(SPRAY) - 0.216(VADEN) R = 0.649 

WINTER 1.935 - 0.555(SPRAY) - 0.207(VADEN) 

WINTER 1.184- 0.314(SPRAY) 

TOTAL 1.42 + 4.798(DIV) - 0.374(LEK) 

TOTAL 0.718 + 0.003(FORBS) - 0.26(SPRAY) 

TOTAL = 2.415 0.598(SPRAY) 

a jackknife procedure). Results for the first 
pair of canonical variates were impressively 
stable, with one exception. When transect number 
16 was eliminated from the analysis, the loadings 
for the first pair of'canonical variates were not 
interpretable (table 3). However, upon inspection 
I discovered that the second pair of canonical 
variates were loaded precisely in the same pattern 
as the first pair in all of the other rotations. 
Thus, the same patterns were present in all 
trials, but for some reason the second orthogonal 
pair of variates switched with the first when 
transect number 16 was deleted from the analysis. 
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R = 0.583 

R 0.437 

R 0.823 

R 0.881 

R 0.691 

The second canonical correlation was statistically 
significant (P < 0.05) in this case whereas it was 
not in any of the other analyses. 

The results of the robustness assessment are 
summarized in table 4 where the means and standard 
deviations of the canonical correlations and 
variable loadings are presented for 20 rotations. 
For the analysis where transect 16 was eliminated, 
the second pair of canonical variates was used, 
but for all other cases the results were averaged 
over the first pair of canonical variates. 
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Figure 3. Path diagram of the first pair of 
canonical variates with three distribution 
variables and three (A), five (B), and nine (C) 
habitat variables. The significance levels 
based upon Bartlett's test are P = 0.00003, 
0.00006 and 0.004 for the 3 x 3, 3 x 5, and 3 x 
9 analyses respectively. Definitions of 
variables are listed in table 1. 
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To further assess the robustness of the 3 x 9 
canonical correlation analysis, I systematically 
eliminated one of nine habitat variables from the 
analysis. The canonical correlations and variable 
loadings proved very stable for the first pair of 
canonical variates. In this experiment as well as 
during the rotation of cases, loadings into the 
second pair of canonical variates fluctuated 
dramatically. As can be seen in table 4, however, 
variation in canonical correlations and variable 
loadings for the first pair of canonical variates 
is impressively small. 

The importance of distance to a lek is not 
clear from these results. It seems plausible that 
leks are located in good habitats but this may 
obscure results since grouse social behavior may 
override habitat quality in determining their 
distribution. My first attempt to better 
understand the importance of leks entailed using 
regression analysis to remove variation 
attributable to LEK from each of three 
distribution variables. Then canonical 
correlation analysis was conducted between the 
residuals of the distribution variables and the 
eight original habitat variables with LEK (sensu 
Boyce 1978). However, the canonical correlation 
was. not statistically significant, and variable 
loadings were not interpretable. Further multiple 
regression analysis of the three distribution 
variables was conducted by studying residuals 
after removing variation attributable to the area 
in sprayed sagebrush habitat (SPRAY). The partial 
correlation between the fecal dropping variables 
and LEK was discovered to be significant only in 
the springtime (r = -0.639, P < 0.01). Since the 
leks are only actively used during March, April, 
and May, it seems plausible that only in spring 
should there be any unique contribution to 
distribution determined by the proximity to a lek. 

DISCUSSION 

Sample size guidelines are lacking for 
applications of many multivariate procedures. 
Although Bartlett's test for canonical correlation 
allows one to assess the overall significance of 
the relationship between two sets of variables, 
there is presently no means by which significance 
of individual variable loadings can be evaluated. 
Nevertheless, the most useful applications of 
procedures such as canonical correlation may be 
heuristic ones, thus inference procedures may not 
be necessary or even desirable. However, 
assessing the goodness of such descriptive tools 
does seem important, and robust procedures such as 
jackknifing provide such an assessment. If 
canonical correlations and variable loadings prove 
to be robust, as they were in this study, the 
extremely large sample sizes recommended by 
Thorndike ( 1978) should not be necessary. The 
impracticality of collecting extremely large data 
sets in wi ldi fe habitat studies should not 
persuade the investigator that applications of 
multivariate procedures, such as canonical 
correlation, are necessarily inappropriate. 



Table 3. Correlation between original variables and the first two pairs of derived 
canoni~al variates when transect number 16 was eliminated from the analysis. 
'N.ot·e ,,;the similarity between figure 3C and the loadings for the second pair of 
canonical variates. The probability levels are from Bartlett's test. 

Distribution variate 

First Canonical 
r = 0.973 
(P = O. 0002) 

Second Canonical 
r = 0.931 
(P = 0. 048) 

SUMMER-FAil.. 
WINTER 
SPRING 

SUMMER-FALL 
WINTER 
SPRING 

Cohen et al. (1979) claim that canonical 
weights (loadings) are necessarily unstable in 
canonical correlation because each variable 
accounts for a unique portion of the variability 
in the other .set of ~ariables. However, we have 
seen in this analysis that unstable loadings or 
"bouncing betas" need not occur and that removal 
or addition of variables need not influence the 
qualitative interpretation. It seems more likely 
that nonlinearity or multicollinearity are behind 
many applications where "bouncing betas" appear to 
be a serious problem (see Gauch and Wentworth 
1976). 

The results depicted in figure 3 confirm many 
of the subjective impressions which were developed 
based upon field obsevations of the major habitat 
components important to sage grouse. During 
winter, sage grouse feed exclusively on leaves of 
big sagebrush (Artemisia tridentata). However, 
between April and October, forbs such as dandelion 
(Taraxacum officianale), curly-cup gumweed 
(Grindelia squarrosa), sweet clover (Melilotus 
officianalis), false dandelion (Agoseris glauca) , 
alfalfa (Medicago sativa), and salsify (TragopQgon 
dubius) constitute a major portion of the diet for 
both young and adult birds (Patterson 1952). 
Although sagebrush provides important visual cover 
from aerial predators, sagebrush plants compete 
with forbs for nutrients and water. Thus optimal 
habitats are often patchy where forbs and 
sagebrush cover occur in close proximity. 

Each of the variables which we selected to 
measure habitat patchiness (DIV, PATCH, VACOV, 
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-0.542 
-0.548 
-0.040 

0.827 
0.424 
0.924 

Habitat variate 

LEK 
FORBS 
DIV 
PATCH 
SPRAY 
COVER 
VACOV 
DENS 
VADEN 

LEK 
FORBS 
DIV 
PATCH 
SPRAY 
COVER 
VACOV 
DENS 
VADEN 

0.090 
-0.566 
-0.229 
-0.052 

0.544 
0.053 

-0.041 
0.072 

-0.082 

-0.858 
0.647 
0.589 
0.573 

-0.655 
0.707 
0.567 
0.551 
0.425 

VADEN) is positively correlated with the number of 
droppings found on the transects. Similarly, 
these same variables are positively correlated 
with the "habitat quality" variate. SPRAY is 
clearly an important variable which is negatively 
loaded into the "habitat quality" variate. Since 
spraying with herbicides such as 2,4-D kills both 
forbs and sagebrush, it is easy to appreciate the 
devastating impact of herbicide spraying on the 
use of areas by sage grouse. 

It is important to caution against cavelier 
interpretations of canonical correlation analysis. 
As noted earlier, explicit hypothesis testing 
regarding any single variable is not possible with 
canonical correlation but may be accomplished with 
linear regression techniques. Some patterns can 
be masked by simple reliance upon the overall 
trends surrmari zed by canonical correlation as I 
demonstrated above for LEK. Also, to achieve a 
robust canonical model, variables must often be 
eliminated for statistical reasons even though 
some of these variables may be biologically 
important, e.g., SAGE. I strongly recommend that 
careful attention be given to any variables of 
postulated biological significance but which must 
be eliminated on statistical grounds. Various 
statistical procedures may provide insight into 
the behavior of these variables, e.g., nonlinear 
regression, ridge regression, discriminant 
analysis, or nonparametric techniques. 

In summary, my application of canonical 
correlation does not provide much insight into the 



Table 4. Robust estimates of canonical correlations and variable loadings. The 
top portion of the table lists means and standard deviations (in parentheses) 
(>f,~.· values where one case (transect) was systematically eliminated from the 
analysis (n = 20). The bottom portion lists means and standard deviations 
when one habitat variable was eliminated (n = 9). 

Distribution variate Habitat variate 

Rotation of Cases 

Canonical 
; = o.95o<o.o11) 
<P = o.o077Eo.oo5J) 

SUMMER-FALL 
WINTER 
SPRING 

Rotation of Habitat Variables 

Canonical 
; = o.94o<o.oo3> 
<P = o.oo7Eo.o14J> 

SUMHER-FALL 
WINTER 
SPRING 

interactions between sage grouse distribution and 
habitat that I could not glean from multiple 
regr~ssion analysis. This is not surprising since 
canonical correlation is somewhat of a 
generalization of multiple regression (Blackith 
and Reyment 1971). However, canonical correlation 
does provide a succinct and synoptic way to 
sumarize a bulky and unwieldly data set. This is 
certainly one of the most important functions of 
multivariate statistical analysis. 
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ECOLOGICAL RELATIONSHIPS OF GRASSLAND BIRDS 

TO HABITAT AND FOOD SUPPLY IN EAST AFRICA1 

L. Joseph Folse. Jr.2 

Abstract .--Canonical correlation analysis was used to 
evaluate relationships between 17 species of grassland birds, 
structural parameters of the grassland habitat, and biomasses 
of 25 age-taxonomic categories of arthropods in a study 'of 
ecological relationships of grassland birds in the Serengeti 
National Park, Tanzania, East Africa. The bird-habitat 
analysis resulted in correlations that wer-e interpretable 
both in terms of identifiable characteristics of the habitat 
and in terms of identifying specific groups of birds which 
exploited the habitat in similar ways. The bird-arthropod 
analysis produced correlations which were not easily 
interpretable relative to arthropod characteristics nor in 
terms of identifying groups of birds based on their 
association with the arthropod resource. A canonical 
correlation of birds with habitat plus arthropod variables 
had results similar to that of the bird-habitat analysis and 
dissimilar to the bird-arthropod analysis. These results 
suggest that mechanisms affecting the guild structure of 
grassland birds in the Serengeti are more likely associated 
with habitat structure than with food supply. 

Key words: Arthropods; canonical correlations; 
grassland birds; habitat selection; multivariate analysis; 
Serengeti; Tanzania. 

INTRODUCTION 

The use of multivariate statistics in 
evaluating ecological relationships of birds has 
expanded considerably in recent years. One 
problem of importance that is often approached 
with multivariate methods is that of evaluating 
the structure of bird communities relative to 
their exploitation of habitat and/or food 
resources. The multivariate technique which is 
most suited to exploring relationships between two 

1 Paper presented at The use of multi variate 
statistics in studies of wildlife habitat: a 
workshop, April 23-25, 1980, Burlington, Vt. 
05401. 

2 Assistant Professor, Department of Wildlife 
and Fisheries Sciences, Texas A&M University, 
College Station, TX 77843. 
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such groups of variables, e.g., community 
composition and niche parameters, is that of 
canonical correlation (Gittens 1979, Kshirsagar 
1978, Morrison 1976). However, this technique 
seems to have been used little in ornithology, 
perhaps due to lack of adequate data from field 
studies. 

This study illustrates an attempt to use 
canonical correlation analysis to identify and 
evaluate some relationships between grassland 
birds and their habitat and food supply on the 
Serengeti plains, Tanzania. At the outset of the 
study, little was known about the community 
composition or densities of the birds, nor about 
their habitat relations. Consequently, this 
analysis was designed to treat the following 
objectives: 1) to determine if there is a 
structural organization of the avifauna that is 
related to characteristics of the habitat and 



arthropod fauna, 2) to define recognizable groups 
of bird species whose members are similarly 
associated with habitat and arthropod 
characteri sties, and. ·3) to identify specific 
characteristics of:'the habitat and arthropod fauna 
which may potentially affect this avifauna! 
structure. Objective 1 can be met by determining 
if there are significant canonical correlations 
between the birds and the environmental 
parameters. If groups of bird species are 
recognizable based on their correlations with 
significant canonical variates, then these may be 
considered as guilds due to the similarity of 
these species in exploiting resources, and this 
would satisfy Objective 2. Objective 3 may be met 
if the canonical variates are interpretable in 
terms of their associations with the habitat and 
arthropod variables of the analysis. 

STUDY AREAS 

The field study took place from May 1975 to 
April 1976 in the Ser engeti National Park, 
Tanzania. Five 1-km 2 study sites were established 
to represent a range of grassland vegetation 
conditions in the plains portion of the park (fig. 
1). Detailed descriptions of each site are 
available in Folse ( 1978). Precipitation in the 
Serengeti was seasonal and highly variable, both 
in time and space; there was an increasing 
gradient in precipitation from the southeast to 
the northwest (with 500 nun to 700 rom per anum on 
the plains). This variation in precipitation, 
coupled with intensive seasonal grazing by 
wildebeests, zebra, gazelle, and others, and dry 
season fires, resulted in a great degree of 
variation in vegetation structure among the 
different sites. Within each of the sites, 
however, the structure of the vegetation was 
reasonably uniform with major variation taking 
place through time (seasonally). 

METHODS 

The data used in these analyses were based on 
concurrent samples of numbers of birds of each 
species in the community, structural parameters of 
the vegetation, and numbers of arthropods in 
several age-taxonomic classes. Details of the 
sampling procedures are described in Folse (1978). 
These samples were taken at monthly intervals at 
each of the study sites (two samples were missing 
resulting in 58 observations). Bird numbers were 
sampled at each site with nine systematic 
transects (in groups of three). Each transect was 
1 km long and 20 m wide; they were run in a 
vehicle and the number and identity of each bird 
species flushed from the transect was recorded. 
The sampling intensity was 18% of each study area. 
The bird data were converted to biomass estimates 
based on sampled weights and were then log
transformed prior to analysis; preliminary 
analyses indicated that mean values and variances 
of untransformed biomasses (of all biomass 
variables in the study) were proportional, 
suggesting the need for such a variance 
stabilizing transformation prior to analysis. 
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Figure 1. Location of the study sites (A through 
E) in the plains portion of the Serengeti 
National Park, Tanzania. 

Arthropod data were collected on four 
sweep-net transects placed systematically on each 
study site. Fifty sweeps were made on each 
transect. Size distributions of 25 age-taxonomic 
categories of arthropods were available for each 
transect, and these were converted to biomass 
estimates based on sampled length-weight 
relationships for each group. Arthropod biomass 
data were also log-transformed prior to analysis. 

Habitat data were collected from four 
transects associated with the arthropod samples. 
Six sample units at 20-pace intervals were used 
for each transect. At each sample unit, four 
sample points were placed in a square with 2 m 
diagonals. At each sample point, a thin wire was 
placed vertically, and the number of contacts of 
vegetation (both total and green) with the wire 
was recorded in 10 em intervals above the ground. 
In addition, maximum height of emergent vegetation 
within a 1 m radius of the center of the sample 
unit was recorded. From these samples, I 
calculated indices of total biomass, green 
biomass, percent cover, percent vegetation below 
10 em (an index of vertical vegetation structure), 



and vegetation height. Two additional variables 
were created by using values of total and green 
biomass lagged by a-pE! mOnth; these variables were 
included to evaluate '"possible delayed response of 
birds to changes in the vegetation biomass 
variables. Accumulated precipitation (monthly 
intervals) data were available from storage gauges 
near each site. All biomass data were log
transformed and all the percentage data were 
transformed with the arcsin square root 
transformation (Sokal and Rohlf 1969). 

Canonical correlations were run on 
appropriate subsarnples of the data set (with 
monthly mean values) with the CANCORR procedure of 
SAS (Barr et al. 1979). I shall refer to a linear 
compound of original variables produced by the 
procedure CANCORR as a canonical variate, and 
coefficients of the variates associated with each 
original variable as fac,tors. In two-group 
canonical analysis, pairs of canonical variates 
are produced. Each variate pair contains one 
variate of bird factors and one variate of 
environmental (habitat and/or arthropod) factors. 
The first pair has a maximum possible correlation. 
The second pair is maximally correlated, given 
that each is orthogonal to its corresponding 
variate in the first pair, and so on. Usually, 
only the "significant" correlations and their 
corresponding variate pairs are considered in 
evaluation of the relationships. In the usual 
approach to canonical analysis, the observations 
are plotted in variate space using either set of 
variates, and these observations are then 
clustered to look for relationships among the 
observations in the variate space. Thus variates 
are used to establish relationships among 
observations, and canonical correlations are used 
as a measure ·of how well the two sets of variates 
provide the same set of relationships among 
observations (site-time combinations in the 
present case). Interpretation of what each 
variate "means" is usually accomplished by 
considering simple correlations of each of the 
variables with the variate. 

In the present study, emphasis was on the 
bird community rather than on the observations 
(site-time combinations); thus I wished to use 
canonical correlation as a technique of 
classification or ordination based directly on 
relationships of the bird species to environmental 
variables rather than indirectly through 
"association" or "distance" relationships among 
the birds themselves. Consequently, rather than 
group observations based on variate factors (as is 
usually done), I sought to group species of birds 
based on their simple correlations with the 
variates, using the variates as a means of 
establishing structural relationships between 
birds and environmental variables (fig. 2). 

In addition to the analyses described above, 
I tested the hornoscedasticity of the variance
covariance matrices with Wilk' s generalized 
likelihood ratio test described by Morrison 
(1976:250, eq. 4). A canonical correlation also 
was run with all data with the variables 
standardized. 
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Figure 2. Relationships among bird species, 
environmental variables, and si te-tirne (sites) 
structure of the data set. Environmental 
variables potentially affect composition of the 
bird fauna via conditions at the sites. Numbers 
indicate number of variables for birds and 
environmental characteristics and number of 
observations for sites. 

RESULTS 

Seventeen species of grassland birds were 
considered as study species (table 1). These were 
fairly small birds which depended on the grassland 
habitat for most of their requi rernents and were 
not dependent on specialized microhabitats such as 
trees, water holes, etc. The energy requirements 
of these birds were satisfied mainly by arthropods 
(estimated 81%, Folse 1978), thus I considered 
arthropods as the primary food resource of the 
birds used in this analysis (although one species 
is almost wholly granivorous). 

The first canonical analysis involved 17 
species of birds versus all environmental 
variables (8 habitat and 25 arthropod). Six 
"significant" canonical correlations resulted with 
bird variates that explained 57% of the variance 
in the bird portion of the data set; 45% of that 
variance was explained by the first three 
correlations (table 2). Simple correlations of 
each bird variable with bird variates were used to 
determine the coordinates of each species in the 
correlation space associatied with the first three 
bird variates ( fig . 3 ) • This produced s i x 
recognizable groups of birds, each consisting of 
species which were associated with the 
environmental variables in similar ways (fig. 3). 

Interpretation of the environmental variates 
produced by the first canonical analysis may be 
accomplished by examining correlations of 
environmental variables with environmental 
variates (table 3). The first variate had 
negative associations with high vegetation 
biomass, high vegetation cover, tall vegetation, 
and with vertical vegetation structure (the latter 
indicated by the positive association with percent 
vegetation below 10 ern). It also had negative 
correlations with shorthorned grasshopppers( ACRA, 
ACRN), spiders (ARAU), crickets (GRYU), bugs 
(HEMA), and caterpillars (LEPN). This variate may 
be interpreted as a gradient between short grass, 
low vegetation biomass versus tall grass, high 
vegetation biomass with corresponding low versus 



Table 1. Common na~es. (scientific name) of bird 
species consider~d~iri this study. 

1 . Crowned lapwing Vanellus coronatus 

2. Caspian plover Charadrius asiaticus 

3. Two-banded courser Cusorius africanus 

4. Northern white-tailed 
bush-lark Mirafra albicauda 

5. Rufous-naped lark Mirafra africana 

6. Flappet lark Mirafra rufocinnamomea 

7. Fawn-colored lark Mirafra africanoides 

8. Red-capped lark Calandrella cinerea 

9. Fisher's sparrow-
lark Eremopterix leucopareia 

10. Short-tailed lark Pseudalaemon fremantlii 

11. Richard's pipit Anthus novaeseelandiae 

12. Sandy plain-backed pipit Anthus vaalensis 

13. Yellow-throated long claw Macronyx croceus 

14. Rosy-breasted longclaw Macronyx ameliae 

15. Capped wheatear Oenanthe pileata 

16. Rattlin.g cisticola Cisticola chiniana 

17. Wing-snapping cisticola Cisticola ayresii 
Zitting Cisticola Cisticola juncidis1 

1 These two species had broadly overlapping ranges 
and were indistinguishable in flight during the 
sample censuses. 

high biomass gradient of these arthropods. The 
second variate was associated with low cover, low 
vegetation biomass (lagged) versus high cover, 
high vegetation biomass which was independent of 
vegetation height. It had no strong associations 
with arthropods. The third variate had a weak 
positive association with grasshoppers (ACRA, 
ACRN, TTRU) but no strong association with any of 
the other environmental variables. Precipitation 
was unimportant relative to these variates and 
green vegetation biomass was weakly associated 
with the first variate. 

The second canonical analysis involved birds 
versus eight habitat variables. This resulted in 
three "significant" correlations in which the bird 
variates explained 39% of the variance in the bird 
portion of the data set (table 2). A plot of bird 
correlations with bird variates resulted in a 
group structure similar to that of the first 
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Figure 3. Bird species group structure resulting 
from simple correlations of bird species with 
the first three bird canonical variates from the 
complete canonical analysis (with all 
environmental variables included). Points below 
the horizontal plane of the three-dimensional 
plot have dashed lines and open circles. Groups 
indicated are potential guilds whose members are 
associated with environmental characteristics in 
similar ways. Numbers correspond to those in 
table 1. Group A is the "woodland" group; B the 
"tall-grass" group; C the "clumped-grass" group; 
D the "low-cover" group; E the "plains" group; 
and F the "short-grass-plains" group. 

analysis with all environmental variables (fig. 
4). Bird species 12, the sandy plain-backed 
pipit, was less strongly associated with the 
"woodland" group and the "short-grass-plains" 
group (species 2, the Caspian plover, and species 
15, the capped wheat ear) was less distinctly 
defined. Interpretation of environmental variates 
was similar to that of the complete analysis 
(without arthropods). 

The third canonical analysis involved birds 
versus arthropod variables (habitat variables 
excluded). This resulted in four "significant" 
correlations in which bird variates explained 37% 
of variance in the bird portion of the data set 
(31% for the first three variates, table 2). A 
plot of bird correlations with bird variates (fig. 
5) resulted in a completely different organization 
of bird species with a much less definite group 
structure. I can recognize 6 groups (fig. 5), 
only one of which occurred in the complete 
analysis (the "tall-grass" group--species 5, the 
rufous-naped lark, and species 17, the 
wing-snapping/zitting cistiocolas). 

Canonical correlation of the full model with 
standardized variables resulted in different 
canonical variates, but identical canonical 
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Table 2. 'Canonical correlations and percent variance 1 of bird biomasses accounted for by 
each bird canonical variate. 

Canonical 
variate 

2 

3 

4 

5 

6 

Birds vs. 
Habitat + Arthropods 

Canonical 
correlation 

0.999 

0.995 

0.989 

0.972 

0.963 

0.950 

Variance 
~ 

19.1 

14. 1 

11.9 

3.2 

4.6 

4.5 

57 .4~ 

Birds vs. 
Habitat 

Canonical 
correlation 

0.984 

0.904 

0.802 

Variance 
~ 

19.6 

13.4 

6.4 

39.4~ 

Birds vs. 
Arthropods 

Canonical 
correlation 

0.987 

0.969 

0.954 

0.939 

Variance 
~ 

17.9 

5.9 

7.3 

5.6 

36.7~ 

1 Percent variance= (1/k)(E r~J.), where r.j is the correlation of the jth species with 
j 1 1 

the ith bird canonical variate and k is the number of bird species (17 in this case). 

.• Ill 

c 

:: 
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6e 

Figure 4. Simple correlations of birds species 
with the first three bird canonical variates 
with habitat variates only. See figuie 3 for a 
detailed description. Note that group structure 
is similar to that of figure 3. 

Figure 5. Simple correlations of bird species 
with the first three bird canonical variates 
with anthropod variables only. See figure 3 for 
a detailed description. Note that group 
structure is much different from that of figures 
3 and 4. 
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Table 3. Simple correlations of environmental 
variables with the .first three environmental 
canonical vari~te~ .:.~ 

Habitat: 

Total vegetation 
Green vegetation 
Percent cover 
Percent veg.< 10cm 
Height 
Precipitation 
Tot. veg. (lagged) 
Gr. veg. (lagged) 

Anthropods 1 : 

ACRA 
ACRN 
ARAU 
BLAA 
BLAN 
COLA 
DIPA 
FORA 
GRYU 
HEMA 
HEMN 
HOMA 
HOMN 
HYMA 
ISOA 
LEPA 
LEPN 
MANA 
MANN 
NEUA 
OTHU 
PHSU 
TETA 
TETN 
TTRU 

-0.72 
-0.41 
-0.51 

0.89 
-0.89 
-0.15 
-0.69 
-0.41 

-0.53 
-0.52 
-0.63 
-0.22 
-0.29 
-0.37 
-0.47 
-0.17 
-0.67 
-0.52 
-0.32 
-0.56 
-0.34 
-0.28 
-0.14 
-0.11 
-0.55 
-0.08 
-0.47 
-0.08 
-0.05 
-0.36 
-0.27 
-0.34 
-0.33 

Canonical variate 
I II III 

-0.43 
0.17 

-0.58 
-0.04 
-0.21 

0.07 
-0.50 

0.10 

-0.38 
-0.32 
-0.31 

0.19 
0.15 

-0.15 
-0.17 

0.16 
-0.20 
-0.17 
-0.25 

0.21 
-0.09 

0.03 
0.17 
0.02 

-0.23 
0.22 

-0.22 
-0.32 

0.08 
-0.02 
-0.14 
-0.12 

0.04 

-0.09 
0.09 
0.00 
0.20 

-0.23 
0.23 

-0.18 
-0.12 

0.41 
0.46 

-0.08 
-0.16 
-0.03 

0.19 
0.13 

-0.15 
-0. 11 

0.08 
-0.06 
-0.03 
-0. 11 

0.03 
-0.17 

0.07 
0.09 

-0.10 
0.03 

-0.19 
-0.08 
-0.21 
-0.02 

0.03 
0.63 

1 First three letters. of each name symbol 
correspond to arthropod order or family name; 
last letter refers to age category: A = alate 
(winged adult), N = nonalate, and U = unknown 
(both A and N). Thus ACRA stands for Acrididae 
alate. OTHU is "other". 

correlations and identical simple correlations of 
the standardized variables (as the original 
variables) with their corresponding variates (as 
expected). Results of tests of homoscedasticity 
of variance-covariance matrices showed that all 
matrices were not homoscedastic. 

DISCUSSION 

The question of whether or not there is a 
structural organization to the avifauna related to 
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characteristics of habitat and arthropod fauna 
(Objective 1) can be answered affirmatively; 
results of all the canonical correlation analyses 
demonstrated it. The bird with habitat and the 
bird with habitat-arthropod analyses produced the 
same recognizable groups of bird species 
(Objective 2). The bird with arthropod analysis, 
however, produced a different organization of bird 
species with no clear group structure. In the 
complete analysis, the group structure was due 
primarily to the habitat characteristics rather 
than the arthropod characteristics, since removing 
arthropods from the analysis produced very little 
change while removing habitat characteristics led 
to great change in the resulting structure. 

The complete analysis led •to six groups of 
birds. The "woodland" group consisted of six 
species which occurred primarily at site E on the 
woodland-plains border. The "low-cover" group had 
four species which occurred throughout the 
Serengeti plains but were usualy in areas with 
extensive open ground and little ground-level 
obstruction. Tall grass could occur in these 
areas, but it was usually sparsely distributed. 
The "tall-grass" group (two species) occurred 
throughout the plains but always in association 
with tall grass (they were rare at site A). The 
greater the vertical vegetation structure and 
vegetation density, the greater the density of 
these species. The "clumped-grass" group (two 
species) occurred mostly at sites C and D, and 
were always associated with fairly dense clumps of 
vegetation. The "short-grass-plains" group (two 
species) occurred mainly at site A with little or 
no vertical vegetation structure, but with 
reasonably high percent cover. The "plains" group 
(two species) had a broad range throughout the 
Serengeti plains, but were usually associated with 
areas of short vegetation, low cover, and fairly 
reduced vegetation biomass. Three of these groups 
(woodland, clumped-grass, and short-grass-plains) 
were fairly restricted in the range of sites they 
used while the remaining groups (low-cover, 
tall-grass, and plains) each had quite broad 
ranges with respect to sites. However, each used 
specific types of microhabitat within sites and/or 
used a site at times of the year when habitat 
conditions were suitable. Each of these six 
groups is a good candidate for a guild (a group of 
species which exploit their environmental 
resources in similar ways). Objective 2 seems to 
be well satisfied. 

Objective 3 has been partially satisfied by 
the fact that habitat variables and not arthropod 
variables are most important in the organization 
of the avifaunal group structure. Consideration 
of simple correlations of habitat and arthropod 
variables with the corresponding canonical 
variates suggested that the variables of most 
importance were vegetaion biomass, percent cover, 
height, and vertical structure of the vegetation. 
Green vegetation biomass and lagged values of 
vegetation biomass were also of importance. The 
importance of the lagged values suggests that 
there is some degree of inertia in the response of 
the birds to changes in habitat conditions. 



Precipitation, per se, was unimportant. The most 
important arthropod variables, although minor, 
were grasshoppers, ·Sp~:ders, crickets, bugs and 
caterpillars. ' · · 

The canonical correlation analyses of these 
data seemed to be very satisfactory relative to 
the original objectives, but were they 
appropriate? I had a total of 50 variables (worst 
case) and only 58 observations. While the number 
of observations was sufficient to allow the 
analysis to be completed technically, it was 
"data-poor." Thus, as an estimation technique for 
population parameters, the analysis would be weak 
but to establish relationships within my data set, 
the sample size was adequate, provided that 
"significance" of the resulting canonical 
correlations is regarded with caution. Since this 
was an exploratory analysis to look for potential 
relationships among bird species for further 
analysis and study, the technique seemed useful. 

Williams (1981) pointed out that hetero
scedasticity of the variance-covariance matrix 
used in canonical correlation analysis can lead to 
biased estimates of factors (coefficients of the 
canonical variates) and to different relationships 
of observations when they are plotted in canonical 
space versus observation space. However, these 
problems are much less important when considering 
group structure of one variable set based on 
simple correlations with resulting variates. This 
is .evident from the fact that both unstandardized 
and standardized variables resulted in the same 
correlation structure whereas the corresponding 
canonical variates were different. However, 
standardizing normalized variables individually 
does not necessarily produce homoscedasticity 
since no consideration is taken of the covariance 
structure of the data. Although the variance
covariance matrices used in these analyses were 
heteroscedastic, the fact that most' variables were 
transformed with traditionally normalizing 
transformations, and the correlations rather than 
variate factors were used in establishing avian 
groups, should have led to a fairly stable 
analysis. Dropping out half of the variables for 
the habitat analysis (the arthropod variables) 
resulted in 11 ttle change in the avifauna! group 
structure, which suggests that heteroscedasticity 
characteri sties of the arthropod portion of the 
variance-covariance matrix had little effect in 
biasing the results. 
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DISCUSSION 

NOVA SILVY: Could arthropods be correlated with 
the vegetation structure in a manner such that 
they contributed nothing new to the analysis when 
they were added into the data sets? 

L. JOSEPH FOLSE, JR.: The arthropod distribution 
is very much determined by the vegetation 
distribution; however, the relationships do not 
seem to be concordant with the bird-habitat 
relationships. If they were, the bird-arthropod 
canonical correlation would not result in a 
completely different organizational structure. 



HABITAT ASSOCIATIONS OF BIRDS BREEDING IN CLEARCUT 

DECIDUOUS FORESTS IN WEST VIRGINIA1 

Brian A. Maurer2, Laurence B. McArthur a, and Robert C. Whitmore 4 

Abstract.--Associations between vegetation structure and 
34 bird species in four forested areas of various stages of 
clearcut regrowth were examined using principal components 
analysis. Relative frequencies for each bird species were 
determined during three breeding seasons and used to weight 
habitat variables. The resulting data matrix (34 species x 8 
habitat variables) was subjected to principal components 
analysis using a standardized covariance matrix. 

The first principal component was negatively correlated 
with percent and mean height of low vegetation, and 
positively correlated with percent litter and the number, 
height, and percent of canopy layers. The first principal 
component separated early successional species from late 
successional species. The second principal component was 
positively correlated with percent slash and the number of 
trees less than 12.7 em dbh. This component separated 
mid-successional species from earlier and later successional 
species. The first two components explained 90~ of the 
variation and thus seemed to be an adequate description of 
the habitat associ at ions of most species. The third 
component, however, was useful in separating a few of the 
mid-successional species, with species that foraged mainly on 
the ground having higher values than species that foraged on 
small trees and shrubs. The third component was positively 
correlated with percent litter and negatively correlated with 
the number of trees less than 12.7 em dbh. Field methods 
used in this study appear to be most applicable where it is 
impractical to use more conventional methods of collecting 
habitat association data, e.g., territory mapping, or use of 
male singing perches. 

Key words: Clearcut; deciduous forests; habitat 
associations; habitat ordination; nongame management; 
passerine birds; principal components analysis; West 
Virginia. 
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INTRODUCTION 

Current fiel;d ,., techniques for assessing 
habitat relationshi-ps are based on measuring 
habitat variables in activity centers of 
individual organisms. In the case of birds, male 
singing perches are often used to determine 
activity centers. This paper presents another 
method of obtaining habitat association data that 
can be used to compare overall habitat preferences 
of bird species breeding in several different 
habitats. The procedure analyzes variation 
between species by obtaining a mean value for each 
species for each of several habitat variables, and 
subjecting the resulting data matrix to a 
principal components analysis. 

STUDY AREAS 

Data on bird populations and habitat 
structure were collected on four watersheds in the 
Fer now Experimental Forest, 4. 8 km southeast of 
Parsons, Tucker Co., West Virginia. The 
watersheds have been used by the USDA Forest 
Service to assess impacts of various logging and 
herbicide treatments on forest hydrology. Logging 
and herbicide treatments have created several 
different habitats which attract different bird 
communities. 

Water shed 4 (WS4) , a 39-ha area used as a 
control in the hydrology experiments, was logged 
in 1911, and has remained relatively untouched 
since then. Trees killed by chestnut blight were 
salvaged . during the early 1940's. Tree species 
common in this area included sugar maple, red 
maple, red oak, chestnut oak, black birch, black 
cherry, American beech, and yellow poplar 
(scientific names of plants and birds are given in 
appendix I). 

Watershed 3 (WS3), 34 ha in size, was 
clearcut between July 1969 and May 1970, except 
for a strip of trees along the main drainage. 
Remaining trees were removed during the winter of 
1972-1973, and the area has revegetated naturally 
since then. Tree species common in this area 
included saplings of many mature forest species, 
as well as sassafras and pin cherry. 

Watershed 1 CHS1), a 24-ha watershed, was 
partially clearcut in 1964, and regrowth was 
suppressed with herbicide treatments until 1967, 
when the rest of the watershed was clearcut. The 
area was kept barren for another 2 years before 
allowing regrowth to resume. Saplings of several 
mature forest trees were common in this area. 
Sassafras and pin cherry were also present, 
however, staghorn sumac was common in the 
watershed. 

Watershed 6 (WS6), 22 ha, was treated with 
herbicides in a manner similar to WS 1. The 
watershed has been further treated with herbicides 
several times since 1971 to discourage natural 
hardwood and herbaceous revegetation, and to 
encourage establishment of Norway spruce. This 
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Table 1. Three-year means for vegetation 
structure variables in each watershed. 

Variable WS4 WS3 WS7 WS6 

Litter (%) 87.3 83.6 68.7 59.7 

Slash (%) 7.6 11.2 11.7 11.3 

Herbaceous 
vegetation (%) 42.2 24.7 78.9 85.7 

X height 
herb. veg. (em) 27.9 29.7 61.7 59.3 

Canopy layers (no.) 2. 1 1. 4 1.1 0.2 

Max. canopy 
height (m) 21.3 6.7 4.3 2.1 

Canopy cover (%) 96.8 90.9 77.8 4.9 

Trees <12.7 em (no.) 0.6 2.3 1 • 1 0.2 

area had a dominant ground cover of ferns, with 
several species of saplings and blackberry 
occurring sporadically throughout the watershed. 

METHODS 

Avian populations were censused during the 
breeding seasons of 1977, 1978, and 1979 using 
30-m belt transects established in each area. All 
areas were visited about the same number of times 
each year. Transects were walked between sunrise 
and 0730 EDT at a predetermined pace, and the 
number of singing males of each bird species was 
recorded. 

On 1m x 1m plots located randomly within the 
belt transects, 13 vegetation characteristics were 
measured in each watershed during July. In 
statistical analyses, only eight variables (table 
1) were actually used to minimize duplication of 
information. 

We assumed that vegetation characteristics 
prevalent in a watershed during a given year 
directly or indirectly influenced the relative 
abundance of bird species in that watershed. 
Making this assumption, we weighted the mean value 
of each habitat variable by relative frequency of 
a bird species in a watershed for each year. 
Years in which a species was more common in a 
watershed were weighted more than years in which a 
species was relatively less common. This was 
accomplished by dividing relative frequency of a 
species for a given watershed-year combination by 
the sum of all relative frequencies for that 
species over the 12 watershed-year combinations. 
This procedure is illustrated for the red-eyed 
vireo in table 2. 



Table 2. Relative frequency of red-eyed vireos 
(RF.) and mean % canopy cover (X.) for 3 years 
in tour watershedsr .The procedur~ of obtaining 
weighted mean· · v.'al.l.JeS (x ) used in principal 
components analysis is ~llustrated by these 
data. 

Year Watershed RF. x. 
1 1 

1977 4 0.32 92.7 
3 0.06 84.6 
1 0.02 66.0 
6 0 6.0 

1978 4 0.49 98.7 
3 0.23 94.2 
7 0.15 84.2 
6 0.02 2.5 

1979 4 0.23 99.4 
3 0.28 95.6 
7 0.19 88.0 
6 0.04 5.0 

1: RFi = 2.03 

12 
xw = 1: RFiXi = 91.3% 

i=1 
2.03 

Entries in the data matrix (34 species x 8 
habitat var~ables) to be used for a principal 
components analysis were weighted mean values for 
each habitat variable for each species. 
Calculations described above were done using the 
PROC MATRIX procedure of Statistical Analysis 
System (SAS, Helwig and Council 1979). A 
correlation matrix for the habitat variables was 
calculated and a principal components analysis 
( PCA) was done on PROC MATRIX using a program 
written by the second author. Output included 
eight eigenvalues and eigenvectors, correlations 
of original variables with each principal 
component, scores for each bird species on the 
principal components, and a plot of species scores 
on the components. Copies of the PCA program are 
available from the authors. 

RESULTS 

Means for all habitat variables are given in 
table 1. Inspection of these data were useful in 
obtaining an overall impression of the structural 
characteristics of each watershed. 

Results of the PCA (table 3) indicated that 
the first three principal components accounted for 
most variation between bird species in their 
associations with habitat variables. Correlations 
of original variables with the first three 
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Table 3. Results of principal components analysis 
using weight~d averages of 8 habitat variables 
for 34 bird species. 

Component 2 3 

Variation explained 67.46% 23.47% 5.50% 

Cumulative variation 67.46% 90.93% 96.43% 

Variable Correlations with original variables 

Litter 0.85** '0.23 0.42** 

Slash -0.38* 0.86** 0.32 

Herb. veg. -0 .93** -0.29 0.07 

X ht. herb. veg. -0 .96** -0.01 -0.04 

Canopy layers 0.98** -0.14 0.01 

Max. canopy ht. 0.90** -0.41* 0.08 

Canopy cover 0.95** o. 11 -0.20 

Trees < 12.7 em 0.27 0.90** -0. 33* 

* p < 0.05, ** p < 0.01 

components demonstrated that variables which 
tended to have high values in WS4 (mature forested 
watershed) were positively correlated with the 
first component, and variables with low values for 
WS4 were negatively correlated with the first 
component (table 3) • The second principal 
component was significantly correlated with 
variables that either had high values or low 
values for WS3, a mid-successional area. 

A plot of species scores on the first two 
principal axes indicated that species were 
separated into three distinct groups (fig. 1). 
The first group had low scores on the first two 
components and was representative of species which 
preferred early-successional or open habitats. 
Some of these species, such as song sparrows and 
prairie warblers, were exclusively limited to WS6 
and WS7 (McArthur 1980) • The second group had 
high scores for the first principal component, and 
low scores on the second principal component. The 
group was composed of species which were primarily 
mature forest species. The third group had high 
values for both components and included species 
typical of mid-successional habitats. 

The third principal component explained about 
6% of the variation. This component separated 
some of the early to mid-successional birds from 
each other. Species which forage primarily from 
trees and shrubs, such as Canada warblers (Bent 



1953) had negative scores on this axis, while 
ground foraging birds, .:·such as brown thrashers and 
rufous-sided towh~es (Bent 1968) , had positive 
scores. The third principal component was 
postively correlated with litter and negatively 
correlated with number of small trees. 

DISCUSSION 

Previous methods of collecting habitat 
association data for birds have been to locate an 
activity center of an individual and measure 
habitat variables at that spot. In several 
studies, habitat variables have been measured on 
small plots (0.05 ha) centered around perches 
where singing males were observed (James 1971; 
Whitmore 1975, 1977; Smith 1977). However, the 
physical structure of some habitats restricts the 
ability of observers to approach perches of 
singing males, and coula introduce a bias during 
data collection. For example, in eastern 
deciduous forests, early stages of regrowth 
produce dense stands of saplings laced with 
greenbriar and other deterrents to movement. WS3 
in the present study was such an area. Though we 
could easily hear singing males, the problems in. 
setting up even a small plot were formidable. 
Another method of obtaining habitat association 
data has been to locate territories (McArthur 
1980, Rice 1978) or nests (Wray and Whitmore 1979) 
and measure vegetation in these areas. Again, in 
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Figure 1. Ordination of 34 bird species on the 
first two principal components obtained from a 
PCA of 8 habitat variables. Species codes given 
in appendix. 
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some habitats the physical structure of vegetation 
may impede efforts to collect data. The method we 
have presented alleviates many logistical 
difficulties that might be encounterd while 
collecting habitat association data in areas such 
as WS3. 

Limitations of our analysis are as follows. 
First, the resolution obtained may not be as fine 
as might be desired in some situations. From a 
theoretical viewpoint, small differences in 
habitat preference between ecologically similar 
species may not be distinguishable. Also, though 
the method is suggestive, it is not strictly 
predictive. In addition, the problem of measuring 
the appropriate variables is always present. This 
problem can be partially alleviated by using 
literature to obtain ideas as to which habitat 
variables might be important. Finally, this 
method does not analyze within-species variation. 

This method of assessing habitat associations 
should be useful in habitat management. Specific 
information is summarized by such an analysis on 
types of habitat characteristics a given bird 
species is associated with. Though this does not 
necessarily imply a cause-effect relationship 
between habitat variables and bird species 
abundanace, information provided by the PCA can 
give at least a rough estimate of how species will 
respond to alterations of habitat due to land use 
practices. 
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Appendix I 

Scientific names of bird and plant species 
mentioned in the text. Codes for birds given in 
parentheses. 

Birds 

Great-crested flycatcher (gf) Myiarchus crinitus 

Acadian flycatcher (ac) Empidonax virescens 

Eastern wood pewee (ew) Contopus virens 

Black-capped .chickadee (be) Parus atricapillus 

White-breasted nuthatch (wn) Sitta carolinensis 

Gray catbird (cb) Dumetella carolinensis 

Brown thrasher (bt) Toxostoma rufrum 

Wood thrush (wt) Hylocichla mustelina 

Veery (ve) Catharus fuscescens 

Cedar waxwing (cw) Bombycilla cedrorum 

Solitary vireo (sv) Vireo solitarius 

White-eyed vireo (wv) !· griseus 

Red-eyed vireo (rv) V. olivaceus 

Black-and-white warbler (bw) Mniotilta varia 

Golden-winged warbler (gw) Vermivora chrysoptera 

Black-throated green 
warbler (bg) Dendroica virens 

Black-throated blue 
warbler (bb) 

Chestnut-sided warbler (cs) 

D. caerulescens 

D. pensylvanica 
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Prairie warbler (pw) 

Ovenbird (ob) 

Common yellowthroat (yt) 

Yellow-breasted chat (yc) 

Kentucky warbler (kw) 

Hooded warbler (hw) 

Canada warbler (ca) 

American redstart (ar) 

Scarlet tanager (st) 

Cardinal (cl) 

Rose-breasted 
grosbeak (rg) 

Indigo bunting (ib) 

American goldfinch (gf) 

Rufous-sided towhee (rt) 

Field sparrow (fs) 

Song sparrow (ss) 

Plants 

Red maple 

Sugar maple 

Black birch 

American beech 

Yellow poplar 

Norway spruce 

Pin cherry 

Black cherry 

Chestnut oak 

Red oak 

Staghorn sumac 

Blackberry 

Sassafras 

Greenbriar 

Q. discolor 

Seiurus aurocapillus 

Geothlypis trichas 

Icteria virens 

Oporonis formosus 

Wilsonia citrina 

W. canadensis 

Setophaga ruticilla 

Piranga oli vacea 

Cardinalis cardinalis 

Pheucticus ludovicianus 

Passerina cyanea 

Spinus tristus 

Pipilo erythropthalmus 

Spizella pusilla 

Melospiza melodia 

Acer rubrum -----
A. saccharum 

Betula lenta ------
Fagus grandifolia 

Liriodendron tulipfera 

Picea abies -----
Prunus pensylvanica 

P. serotina 

Rhus typhina 

Rubus spp. 

Sassafras albidum 

Smilax spp. 



DISCUSSION 

BARRY NOON: · Di:d ,;your principal components 
analysis give you any additional insights into the 
species-habitat associations that were not 
apparent from a simple list of species by habitat 
type? 

BRIAN MAURER: Yes, the PCA helped to identify 
specific relationships between bird species and 
habitat variables. For example, both chestnut
sided warblers and common yellowthroats were found 
on three areas. The PCA showed that yellowthroats 
were more strongly associated'· 'with variables 
dealing with the abundance and height of 
herbaceous vegetation, while chestnut-sided 
warblers were not. These types of relationships 
are not apparent by simply examining species 
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lists. In the example just given, since both 
species would appear on 1 ists for the same 
habitats there would be no way to further 
differentiate between their speci fie habitat 
requirements, other than drawing speculative 
conclusions from the life history literature. 

KEN MORRISON: Why did you use the matrix 
procedure of SAS rather than PROC FACTOR with 
METHOD=PRINT to obtain your principal components? 

BRIAN MAURER: It is easier to get the factor 
scores from PROC MATRIX, because you do not need 
to call an additional procedure. Also, the 
researcher can easily modify a PROC MATRIX program 
to fit the particular needs of the data. 



PRINCIPAL COMPONENTS ANALYSIS OF DEER HARVEST

-LAND USE RELATIONSHIPS IN MASSACHUSETTS1 

Philip J. Sczerzenie2 

Abstract. --Relationships of deer harvests with land use 
and forest cover types in Massachusetts' 351 townships in 
1951 and 1971 were investigated using principal components 
(PC) techniques. PC analysis and PC regression methods are 
described and their value in reducing the dimensionality of 
the land-use and forest-type data is emphasized. Components 
on softwood vs. urban land, stand-age and hardwoods + 
farmland accounted for over 40% of the X data variability. 
Increasing softwood composition, decreasing age, and 
increased association of hardwoods and farmlands were 
significant positive effects when related to deer harvest 
levels. PC regression, under well-defined criteria for 
compo.nent deletion, allowed estimation of effects in the 
original beta-space with reduced variances on those effects, . 
while maintaining the statistical integrity of the data sets. 

Key words: Forest types; land use; multiple regression; 
principal components; white-tailed deer. 

INTRODUCTION 

Massachusetts' legal deer harvests began in 
1910 under supervision of the state's Division of 
Fisheries and Wildlire. Harvest levels increased, 
except during depression and war years, to a 
record take of 4,887 deer in. 1958. Harvests 
declined precipitously after 1958, until in 1966 
mandatory deer checking; and in 1967 anterless 
deer permit systems, were instituted. 

Two concurrent factors appeared to have 
caused the decline ~n harvests. First, either-sex 
hunting from 1910 to 1966 resulted in an 
overharvest of does, so the reproductive portion 

1 Paper presented at The use of multi variate 
statistics in studies of wildlife habitat: a 
workshop, April 23-25, 1960, Buriington, Vt. 

2 Graduate Research Assistant, Dept. Forestry 
and Wildlife Man~gement, Holdsworth Hall, 
University of Massachusetts, Amherst, MA 01003. 
Present address: Ketron, Inc., 18th Floor Rosslyn 
Center, 1700 North· Moore Street, Arlington, VA 
22209. 
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of the herd was unable to repleni-sh itself. 
Second, farm abandonment and seconda-ry succession 
that led to buildup of the Massachusetts herds in 
the late 1800's no longer provided enough 
productive habitat. Instead, a decline in forage 
and cover was occurring due to urbanization and 
forest succession. The antlerless permit system 
was established to remedy the former problem, and 
while it was successful in li.mi tin.g doe take and 
increasing buck harvests (McDonE>ugh and Pottie 
1979), it had no effect on the seC'ond problem. 

The present study was undertaken to quantify 
effects of different land uses and forest types on 
deer harvests so that alternative approaches to 
habitat management could . al'locate management 
effort optimally. The 2~yea.·r period between 
samples would tend to strengthen ctonclusions drawn 
on the basis of effects that remai;·ned the .$arne. 

DATA DESCR!PTioN 

The dependent variable, ~r hal!ve:st, wa-s the 
mean 5-year kill in each of 3~1 townships in 
Massachusetts from 1949'..-5'3 a·n~- 1·969-73• As 



recommended by Labisky et al. ( 1964), kill was 

transformed us·inEJ;· ::tog 10 <1 + kill/mi
2

). Deer 

harvest averages centered on the years 1951 and 
1971 to coincide with land-use surveys of the 
state based on aerial photographs (MacConnell 
1975). Aerial photos were land-use typed to 
approximately 3.5 acres; this information was 
transferred to topographic sheets; and the area of 
each of 104 types computed and recorded for each 
township. 

I used 35 types as independent variables: 
abandoned fields (AF), pasture (PS), urban land 
(UL), and 32 forest types (table 1). Acreage of 
each type was transformed to arcsin square root 
percent (Steel and Torrie 1960: 158). Total 
acreage of the 35 types was 4,463,360 in 1951 and 
4,480,327 in 1971 representing 85.9% and 86.2% of 
the state's total surface area of 5.2 million 
acres in respective years. 

PRINCIPAL COMPONENT ANALYSIS 

Method 

Principal component analysis (PCA) has been 
used by ecologists as one of a number of 
multivariate techniques to describe habitat 
preferences of various species of North American 
breeding birds (James 1971, Smith 1977) and to 
describe site differences in relation to 
vegetation communities (Austin 1968, Page 1976). 

PCA is helpful because it reduces the 
dimensionality of a data set, such as an array of 
environmentai variables assumed to influence the 
species under consideration. A more parsimonious 
description of habitat influence is possible, 
therefore, assuming the principal components have 
some reasonable biological interpretation. 

The original data (X), expressed as a matrix 
of simple correlations (by standardizing X and 
premultiplying by X'), is transformed into a 
matrix of principal component scores, ~i' 

(regressors in PC regression). This procedure is 
accomplished by creating a set of eigenvectors, 
~i' and eigenvalues, Ai. 

Each ~i is a linear combination of loadings 

between -1 and +1 on each Xi' constructed so that, 

in sequence (i=1,2, ••• ,k), the maximum possible 
amount of variability in the X data is accounted 
for, with the stipulation that each eigenvector be 
orthogonal with every other a. (a.'· a.= 0). 

-1 -1 -J 

Each eigenvalue, Ai, represents the portion 

of variation explained by its corresponding 
eigenvector. The following equations apply: 

X a. = z. 
--1 -1 

~I i • ~i = Ai = ~I i ! I! ~i 

(1) 

(2) 

and the resultant matrix of orthogonal eigenvalues 
is 

When based on the correlation matrix (X' X), 
EAi = k, where k is the number of independent (X) 

variables. 

Table 1. Classification of 32 forest types used as independent 
variables (MacConnell 1973). 

Forest composition: 
H: hardwoods HS: 
S: softwoods SH: 

hardwood dominant mixed forest 
softwood dominant mixed forest 

Forest height classes: 
1: one to 20 feet 2: 
4: 61 to 80 feet 6: 

Crown closure classes: 1 

A: 81 to 100% crown closure 

21 to 40 feet 3: 41 to 60 feet 
uneven heights (3 or more classes 
present) 

B: 30 to 80% crown closure 

1 Height classes 1 and 6 have no crown closure associated. 

174 



Table 2. Eigenvalues and cumulative porportion of X variation of 1951 and 
1971 data on 35 land uses • 

1951 

Eigenvalues 

7.98896 4.16814 3.29646 2.63986 1. 66862 1. 41153 
1.35130 1.16983 1.06800 0.84554 0.82070 0.73461 
0.69440 0.65197 0.62429 0.59965 0.52160 0.49797 
0.45877 0.40060 0.36848 0.35173 0.34111 0.29181 
0.27749 0.25885 0.22551 0.21778 0.19392 0.17896 
0.16296 0.16006 o. 14834 0.11799 0.09221 

Cumulative proportion of total variance of independent variable 

0.22826 0.34735 0.44153 0.51695 0.56463 0.60496 
0.64357 0.67699 0.70751 0.73166 0.75511 0.77610 
0.79594 0.81457 0.83241 0.84954 0.86444 0.87867 
0.89178 0.90322 0.91375 0.92380 0.93355 0.94188 
0.94981 0.95721 0.96365 0.96987 0.95741 0.98053 
0.98518 0.98976 0.99399 0.99737 1. 00000 

----- - - - - - - - - - ----- - - - - - - - - - - - - - - -
1971 

Eigenvalues 

6.82717 4.99291 4.24402 
1.24683 1.07258 0.97177 
0.56755 0.51426 0.50080 
0.39114 0.36751 0.31664 
0.27362 0.23534 0.22413 
0.15844 o. 14815 o. 12635 

Cumulative portion of total variance 

0.19503 0.33679 0.45895 
0.68538 0.71602 0.74379 
0.82308 0.83777 0.85208 
0.90066 0.91116 0.92021 
0.93507 0.95980 0.96620 
0.98625 0.99049 0.99410 

The first few principal components normally 
account for the bulk of X variability while the 
last few explain a negligible portion and can, in 
theory, be disregarded. This reduces the 
dimensionality of! to ~i' less than k, and, if ~i 

can be given some interpretation (usually by 
inspection of eigenvector loadings), a theory 
about the underlying structure of X can be 
expounded. With respect to a dependent -variable, 
the relationship between .!. and each ~i may be 

examined, in many cases graphically, to determine 
how the underlying X structure affects the species 
of interest. For -a more complete treatment of 
principal component analysis the reader may 
consult Johnston (1972) or Nichols (1977). 

2.84598 2.43800 1. 39437 
0.79921 0.75289 0.65541 
0.46745 0.42616 0.41565 
0.30569 0.28716 0.28383 
0.20672 0.17137 0.16534 
o. 11795 0.08863 

of independent variable 
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0.54026 0.60992 0.64976 
0.76662 0.78813 0.80686 
0.86543 0.87761 0.88949 
0.92824 0.93715 0.94526 
0.97211 0.97700 0.98173 
0.99747 1.00000 

Results 

Table 2 lists eigenvalues of the 1951 and 
1971 X data (land uses and forest types) in order 
of importance and the cumulative proportion of 
total X variance explained by successive 
eigenvalues. In both cases, the first four 
eigenvalues account for more than half the 
variability, leaving the remaining 31 components 
to explain less than 50%. Figure 1 illustrates 
the striking similarities between eigenvectors ~1 
each year, eigenvectors ~2 each year, and ~3 in 

1951 and ~4 in 1971. Each pair of eigenvectors 

measures the same relationship in X in both years 
although figure 1A and 1C are mirror images due to 
pecularities in computation of ~i· 
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Figure 1. Eigenvectors of 35 Massachusetts land 
types: (A) eigenvectors ,!1• (B) eigenvectors 
.!2, (C) eigenvectors ~3 .,!4 • 

All forests with a softwood component have 
relatively heavy loadings in ~1 while urban land 

is weighted in the opposite direction. This can 
be termed the softwood vs. urban land (SUL) 
effect. It accounts for about 20% of X 
variability in each year. The second eigenvector 
is loaded positively for young forest of all 
types, less positively and eventually negatively 
for stands of intermediate age, and negatively for 
older age forest stands. This effect of stand age 
(STA) remains the same over the 20-year sampling 

176 

period. Eigenvectors .!
3 

of 1951 and ~4 of 1971 

can be described as the hardwood/farmland (HF) 
effect since they are loaded for hardwood forest 
types and AF and PS in both years. 

Three corresponding pairs of eigenvectors; 
,!1• ,!2• and .!3 of 1951 and a 1, .!2, and .!4 of 1971; 

account for 44 and 42 percent of X variability 
respectively, therefore, the dimensionality of 
land-use and forest type data has been reduced, to 
a great extent, to information on three 
independent axes of variability that have clear 
structures. 

Eigenvectors act on X to form principal 
component scores, z. , as follows. Each township 
has a given perceJtage composition of the 35 
land-use types that constitute, when transformed, 
the observations x1, x2 , ••• ,Xk for the township in 

that year. Each X. is multi plied by the 
corresponding eigenvect~r element and the products 
summed to form z. for the township according to 
equation ( 1). IT a township has, for example, 
large percentages of older hardwoods and urban 
land in 1971, it~ score for z 1 would be negative, 

for z2 negative and for z4 positive. 

Relationship with Deer Harvest 

Relationships between principal axes of 
land-use and forest-type variation and corres
ponding township deer kill levels are summarized 
in table 3. Component 1 in each year has the 
highest eigenvalue, explains the highest 
percentage of X variation, and has the highest 
simple correlation with deer harvest. Because the 
~,'s are mirror images their corresponding r's are 

of opposite sign. One can conclude townships with 
low amounts of urban land and higher acreage of 
softwoods are more productive of deer. Component 
2 in each year explains less X variability and has 
a lower, positive correlation with deer harvest, 
thus, stand-age is an important determinant of a 
township's productivity for deer. Those with 
older stands, in general, have fewer deer 
harvested. 

The third PC effect, hardwood/farmland, has a 
relatively low correlation with deer harvest and, 
therefore, although townships with more hardwoods 
generally have higher harvests, one would tend to 
manage for softwoods or mixed forests rather than 
hardwoods since the latter is a much stronger 
relationship and appears to contradict the former 
finding. The combination of hardwoods and 
farmland, on the other hand, may serve as an 
indication of the relative lack of urbanization in 
a township and, in this respect, would reasonably 
be associated with higher deer harvests. 



Table 3. Comparison of three important principal components of 1951 and 
1971 da1?,a on three land-use and 32 forest types. 

X Variation 
Year Component Eigenvalue explained (%) r bl 

1951 7.989 22.8 -0.570 -0.148 

1971 6.826 19.5 0.464 0.133 

1951 2 4.168 11.9 0.257 0.092 

1971 2 4.993 14.3 0.235 0.079 

1951 3 3.296 9.4 0.155 0.063 

1971 4 2.846 8. 1 -0.097 -0.043 

1 Prinicpal component beta coefficients, P < 0.01. 

PRINCIPAL COMPONENTS REGRESSION 

Method 

Least Squares Model 

The preceding PC analysis was done as an 
intermediate stage in what many researchers 
consider the primary purpose of multi variate 
analysis, estimation of coefficients on the 
original variable set. Thus, the value of 
principal components lies in their usefulness in 
solving the general linear model: 

Yj = B0 + B1X1j + B2x2j + ••• + BkXkj + uj (3) 

where Y j are observations on the dependent 

variable, (j:1,2, ••• ,n) B
0 

is the intercept, Bi is 

the effect of the i th independent variable on· Y, 
(i=1,2, ••• ,k), and uj is a randomly distributed 

error or disturbance term. In matrix notation (3) 
becomes 

y = !. ~ + ~ (4) 

where Y is an n x 1 vector of dependent variable 
observations, X is an n x k matrix of independent 
variable observations, B is a k x 1 vector of 
coefficients on X, and- e is a residual term 
(substituted for u) that is the difference between 
Y observed and Y predicted using our estimate of 
B. 

Using the matrix A of k eigenvectors derived 
from the matrix X'X or-correlations, we form the n 
X k matrix of Z scores ~ by the k X 1 vector ~ of 
coefficients on the scores as 

Y = XA'A B + e = XAd + e = Zd + e (5) -- -
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The vector d of PC coefficients is easily solved 
for 

(6) 

since 

1/Xk 

The second term on the right in (6) is zero. This 
leads to the ordinary least squares (OLS) solution 
when d is transformed back to the original 
beta-space using ~ = Ad. 

Component Deletion 

The PC regression (PCR) solution, therefore, 
calls for deletion of one or more components to 
rid the data structure of "noise" that provides 
1 i ttle in the form of information about X 
variation (recall cumulative proportion of 
variability from table 2) but adds considerably to 
variance about B. 

The data structure is partitioned as: 

Y = XA1 ~1 + ~~2 + ~ = ~1~1 + ~2~ + ~ <7> 

and deletion of the second portion is required. 
This is equivalent to the restriction XA2~2 = 0 

(Fomby and Hill 1978). If the restriction is 
true, the estimator remains unbiased. 

Test of the restriction is as follows: 



(SSR - SSR ols 
)/ J 

res (8) u = 
SSRols l n-k 

where SSR res and SSR ols are residual sums of 

squares on the restricted and unrestricted (OLS) 
models respectively, J is the number of 
restrictions (deleted components) and n and k are 
as defined above. Because this is a test of the 
truth of XA2.s!.2 = 0, i.e., ! 2 = 0, the test 

statistic u is compared with a centrally 
distributed F, a classical F-test. 

If one is willing to accept some bias for 
further reducing variances on B, a mean square 
error (MSE) criterion can be usedminimizing E(var 

'2 
+bias ). This uses the same test statistic u but 
now comparison is with a non-central F 
distribution (Goodnight and Wallace 1972}. Should 
further component deletion be desired, some 
eigenvalue size criterion might be employed, 
however, statistical properties of the resultant 
estimator, as in stepwise regression (Freund 1974) 
will be unknown. 

Table 4. Results of the 1951 analyses under OLS, 
classical F, and MSE criteria of deer kill 
versus 35 land-use types defined in table 1 . 

Land-use b OLS b Cl "F" b MSE 
type 

AF 1. 75 ** 1. 81 ** 1. 70 ** 

PS -.269 ** -2.56 ** -2.43 ** 

UL -.378 ** -3.60 ** -3.45 ** 

H2A -0.37 ns -0.08 ns 1. 14 ** 

H28 -3.96 ** -3.60 ** -3.59 ** 

H3A -1.95 ns -0.36 ns -1.63 ** 

H4A -3.80 ** -3.64 ** -3.05 * 

S4A 9. 31 * 9.27 * 9.12 * 

HS1 -2.68 ** -2.18 ** -1.94 ** 

HS2A -2.23 * -3.22 ** -2.97 ** 

HS3A -0.39 ns 0.91 ns 2.17 ** 

SH2A 1. 12 ns 2.18 ** 0.66 ns 

* p < 0.05, ** p < 0.01, ns = nonsignificant 
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Results 

The data sets for 1951 and 1971 were analyzed 
by principal component regression (tables 4 and 
5). In the analysis of 1951 data, one component 
was deleted under the classical F criterion and 
one additional component deleted under the MSE 
criterion. For the 1971 data all components were 
retained under the classical F criterion, so the 
OLS model is the only unbiased estimator of ~ in 
terms of the specified model assumptions. Under 
the MSE criterion a single component was deleted. 

Coefficients produced in the study are 
consistent from year to year and within 
year-period under OLS and both deletion criteria. 
Those effects found significant 1n both years, PS, 
UL, H2A, H3A, HS2A, and HS3A remained of the same 
sign and magnitude. The close agreement over the 
20-year period and under deletion criteria within 
each year iead me to conclude that real 
relationships have been estimated. 

Clearly, results show urban land as a 
signific~nt negative effect in 1951 and 1971; this 
was to be expected. Other significant negative 
effects for both years were pasture, cutover 
hardwoods (H28), older hardwoods (H3A), and a 
young mixed type (HS2A). 

Table 5. Results of the 1971 analyses under OLS 
and MSE criteria of deer kill versus 35 land-use 
tYPE;S defined in table 1 . 

Land-use type b OLS b MSE 

PS -2.04 ** -1.85 * 

UL -4.63 ** -4.26 ** 

H1 2.01 * 2.41 ** 

H2A 1. 72 * 2.27 ** 

H28 -3.87 ** -4.04 ** 

H3A -1.72 ** -1.83 ** 

S1 -4.09 * -4.03 * 

S2A 4.30 ** 4.84 ** 

S3A -2.64 * -2.18 * 

S3B 3.65 * 3. 87 * 

HS2A -1.62 ns -2.52 * 

HS3A -0.33 ns 0.88 ** 

SH3A -2.69 ns -2.49 ** 

* p < 0.05, ** p < 0.01, ns nonsignificant 



Significant positive effects in both periods 
were young, dense-canop~~ardwoods (H2A) an older, 
dense-canopy mixed fori:est (HS3A). Softwood types 
were found significantiy positive in both periods 
but specific types were also identified as 
negative effects in 1971. 

Age, canopy-closure and softwood mixture of 
hardwood and hardwood-dominant mixed forest types 
appear to be governing factors in terms of 
individual type effects on deer harvests. With 
softwood composition, this accounts for much of 
forest type effect on harvests. Young, dense 
hardwood stands are used by deer as a major source 
of browse while some of the more open softwood 
stands may function both as winter cover and 
feeding areas. 

Those types that were negative (H2B, H3A, 
H4A, HS1, HS2A) may provide neither enough food 
nor enough escape cover in limited areas to be 
acceptable to deer. The negative softwood types 
(S3A, SH3A) because of their year-round dense 
canopies, likely provide little food or cover at 
all. Old softwood types that were positive 
effects (S3B, S4A) may function primarily as 
wintering sites with enough light penetration 
through or underneath the canopy to support an 
understory. 

It is possible, therefore, to explain why the 
land-use types investigated had their calculated 
effects on deer harvests, although this may be 
viewed as a simplistic causal assumption. There 
are, of course, many effects of different land-use 
and forest types, both direct and indirect, that 
enter into the investigated relationships. 
Nevertheless, quantification of these general 
relationships. may eventually lead to better 
definition of specific hypotheses about impacts of 
land-uses and forest composition. 

CONCLUSIONS 

Principal component analysis has shown an 
underlying structure in land-use and forest type 
composition in Massachusetts that is consistent 
over a 20-year period. Relationships between 
these axes of variability and deer harvest are 
also consistent and are capable of reasonable 
biological interpretation. 

Principal component regression has allowed 
elucidation of individual type effects on deer 
harvest by reducing variances on 8 under criteria 
that produce known statistical properties. This 
is in direct contrast to data-dredging techniques, 
such as stepwise regression, that eliminate 
independent variables through mechanical 
manipulation and that leave B estimators that are 
unreliable, at best, because their statistical 
properties are not known. PCA and PCR are 
therefore seen as valuable multivariate analytical 
tools for the ecological investigator. 
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AN APPLICATION OF FACTOR ANALYSIS IN 

AN AQUATIC HABITAT STUDY• 

T.J. Harshbarger2, and H. Bhattacharyya3 

Abstract.--In five small, high-gradient trout streams in 
western North Carolina, 18 cover variables were related to 
standing crop biomass of wild brook trout (Salvelinus 
fontinalis), rainbow trout (Salmo gairdneri) and brown trout 
(Salmo trutta) in randomly selected stream sections. Factor 
analysis of the data set showed that only a small number of 
factors or variables was needed to explain relations between 
variables in the observed set. Key cover factors were area 
in debris; turbulent water; vegetation, both in and over 
stream; and overhanging banks. Resolutions obtained were 
used in stepwise regressions to explore relationships between 
standing crop of trout and age of fish. Regressions 
containing factors as independent variables explained less 
variation in fish standing crop than did regressions 
containing equal numbers of original habitat attributes as 
independent variables. 

Key words: Aquatic habitat; 
multivariate analysis; regression 
trout. 

cover; factor analysis; 
analysis; stream fish; 

INTRODUCTION 

The presence of a self-sustaining population 
of fish usually indicates compatibility between 
the aquatic envrionment and the ecological 
requirements of the fish. Wild trout are 
excellent indicators of current environmental 
conditions and their population density in streams 
reflects their level of compatibility with a 
highly integrated chemical, physical and 
biological situation. However, simply realizing 
that the trout population reflects its envrionment 
is not particularly informative to the resource 
manager. Explicit relationships between species 
and their environments are needed to assess the 

1 Paper presented at The use of multi variate 
statistics in studies of wildlife habitat: a 
workshop, April 23-25, 1980, Burlington, Vt. 

2 Aquatic Ecologist, Southeastern Forest 
Experiment Station, Asheville, NC 28806. 

3 Mathematical Statistician, Southeastern 
Forest Experiment Station, Research Triangle Park, 
NC 27709. 
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actual and potential capabilities of the habitat. 

Functional and correlative approaches have 
been used to study factors influencing the 
distribution and abundance of a species. The 
functional approach is used when factors are known 
to influence certain attributes of the species. 
Correlative procedures are best suited for 
exploratory studies, where the relationship 
between a species and its environment are unknown. 
This procedure provides little information about 
causality, but helps the researcher to make 
inference for rigorous testing. Many variables 
can potentially influence the distribution and 
density of wild trout in a stream. Often the 
choice of parameters to measure and analyze is 
difficult becau.se environmental variables in lotic 
waters are typically correlated and confounded 
with one another (Reid 1961). 

Attempts to correlate single and multiple 
variables to trout populations in streams have met 
with varying degrees of success. Boussu ( 1954), 
Saunders and Smith (1962), and Wickham (1967) 
investigated the relationship of a trout 



population to cover. In two studies (Schuck 1943, 
Hunt 1969), water depth strongly influenced trout 
densities in Str'earfl'S .~. and current velocity was 
similarly implicated· in another study (Lewis 
1969). Few investigators, notably Lewis (1969), 
Stewart ( 1970), Platts ( 197 4), and Binns and 
Eiserman (1979), have studied the simultaneous 
effect of several environmental variables on 
stream trout populations using multiple regression 
and correlation analysis. 

The present study was designed to look at the 
relationships between various habitat parameters 
and trout. Factor analysis was used to delineate 
and examine a group of environmental variables 
that seemed important to trout, those providing 
cover or shelter. Regression analysis was used to 
examine relationships between the environmental 
factors produced and trout. 

STUDY SITES AND METHODS 

We selected five small, high-gradient trout 
streams in western North Carolina. In each, we 
inventoried and measured 18 variables providing 
fish cover, in 20 randomly selected 30m stream 
sections. Each section was surveyed along line 
transects established every 3m across the stream, 
perpendicular to its center line. All physical 
structures providing shelter or concealment for 
trout were located and their cross-sectional areas 
parallel to the air-water interface recorded. 
Structures included rocks or ledges which afforded 
cover to fish, undercut banks, aquatic vegetation, 
and logs and brush in the stream. Other cover 
situations such as water with sufficient surface 
turbulance to_ prevent visibility of the stream 
bottom were also measured and recorded. 

Brush and loosely compacted debris in the 
stream and streamside vegetation overhanging the 
water surface were estimated ocularly. Cover 
afforded by brush and debris was recorded as the 
surface occupied by solid material and expressed 
as a percentage of the water surface it covered. 
Cover provided by overhanging bank vegetation was 
expressed in two variables: as the percentage of 
stream covered by vegetation between the water 
surface and 1.0m above, and the percentage between 
1.0m and 2.0m above the surface. 

Standing crop biomass of wild trout was 
estimated by depletion analysis electrofishing. 
All fish were weighed, measured, and returned to 
the midpoint of the section under study. 

Factor Analysis 

Starting with the observed correlation matrix 
on the 18 cover variables, we used SAS FACTOR 
programs for principal axis, maximum likelihood, 
and iterated principal axis factoring (SAS 1979). 
Using the principal axis method and keeping only 
those factors corresponding to eigenvalues greater 
than one, six factors were retained. To make the 
factors more conceptually meaningful, several 
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rotational methods were used, including varimax, 
quartimax, equimax and promax (oblique) procedures 
(SAS 1979). 

All factor and rotation procedures used on 
the 18 cover variables produced essentially the 
same information about underlying structure. 
However, the iterated principal axis and oblique 
rotational procedures are intuitively appealing. 
These procedures address communalities directly 
and recognize that some factors may very likely be 
correlated. As such only the interated principal 
axis solution using an oblique rotation of the 
cover related factors will be presented in this 
paper. 

Regression Analysis 

Relationships between standing crop of trout 
and the factors obtained from oblique rotation of 
the iterated principal axis solution were explored 
using SAS STEPWISE regression procedures and the 
maximum R2 improvement technique developed by 
Goodnight (SAS 1979). Relationships between the 
habitat variables themselves and standing crop of 
trout were similarly explored to determine if 
factors entered the stepwise model in about the 
same order as the variable they contained. 
Coefficients of determination were compared to 
assess performance of models containing factors 
and variables. 

RESULTS 

The six factors combined the 18 cover 
variables into groups which generally reflected 
meaningful patterns in relation to the stream 
environment. Factors were named after the 
variable or variables producing greatest 
correlation. Factor loadings for the variables 
are shown in table 1. Factors had zero or close 
to zero projections on most variables, very few 
immediate loadings, and two or three high 
associations. 

Factor 1 is a measure of debris with high 
loadings for number of logs and the surface areas, 
parallel to the stream, in logs and in brush. 
Factor 2 is a measure of side stream cover and is 
strongly negatively correlated with area in and 
percent cover of vegetation trailing in the water 
surface. The third factor expresses the 
percentages of cover provided by overstream 
vegetation 0-1m and 1-2m above the stream. Factor 
4 is highly correlated with area in turbulent 
water and to a lesser degree with the number of 
units of turbulent water. This factor is also 
correlated with total cover and can be considered 
a general cover factor. Rock area and number load 
heavily on factor 5, and the sixth factor is 
highly correlated with area in overstream 
vegetation in the 1- to 2-m zone. 

Factor values for each of the 100 stream 
section observations were obtained from the 
scoring coefficient matrix. Trout, regardless of 
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Table l.: Vllr'iables associated with cover factors. 

Variables 2 

Ledge area (1) 0.063 0.241 

Rock 
Number (2) -0.075 -0.047 
Area (3) 0.099 0.194 

Turbulent water 
Number (4) -0. 108 0.304 
Area (5) -0.244 -0.054 

Logs 
Number (6) 0.913 -0.049 
Area (7) 0.969 0.003 

Bank area (8) 0.080 -0.539 

Other area (9) 0.045 0.002 

Brush 
% Cover (10) 0.102 -0. 150 
Area ( 11) 0.824 0.076 

Side-stream 
vegetation 

%·Cover ( 12) -0.116 -0.772 
Area (13) 0.001 -0.712 

Ov,er-stream 
vegetation (0-1m) 

% Cover ( 14) -0.045 -0.042 
Area (15) o. 174 0.217 

Over-stream 
vegetation (1-2m) 
% Cover (16) -0.032 0.089 
Area ( 17) 0.048 -0.050 

Total cover area (18) 0.365 -0.105 

species, in each stream section were segregated 
into the four age classes represented in each of 
the five streams under study. The relationship 
between factor values and trout standing crop for 
each age group was examined using the stepwise 
maximum R2 regression technique. Likewise, the 
relationship between the original 18 cover 
attributes and trout standing crop was similarly 
examined. 

The coefficient of determination (R 2 ) 

corresponding to the six factors was lower than 
that corresponding to the original 18 variables 
for each age class of fish (table 2). Further, 
the best one-attribute, two-attribute, etc., 
models obtained by the stepwise procedure also 
produced higher R2 values when the original 
variables were used than when the deduced factors 

Factor loadings 
3 4 5 6 

0.030 0.400 -0.288 0.106 

-0.009 -0.096 0.850 0.214 
0.114 0.109 0.646 -0.191 

-0.075 0.491 0.007 0.156 
-0.059 0.936 -0.115 -0.014 

-0.007 -0.108 -0. 146 -0.003 
-0.060 -0.089 -0.019 0.020 

-0.039 -0. 125 -0.119 -0.080 

0.345 -0.051 o. 112 -0.090 

0.282 0.062 0.033 -0.012 
0.067 -0.006 0.084 0.076 

0.048 -0.087 0.082 0.198 
0.006' 0.012 0.011 0.015 

0.896 0.034 -0.109 -0.201 
o. 111 0.231 -0.333 0.363 

0.844 -0.110 0.039 0.293 
-0.062 0.046 0.094 0.999 
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0.062 0.775 0.225 -0.076 

were used. Six-factor models produced 
coefficients (R 2 ) which ranged from 0.09 for the 
standing crop of the young-of-the-year trout to 
O. 53 for trout in age group II. Regressions on 
the original variables produced coefficients 
between 0.31 and 0.71 for 18 variable models and 
0.26 and 0.66 for models containing six variables. 

For young-of-the-year trout a single 
variable, rock area, produced an R2 value (0.10) 
equivalent to that obtained from the model 
containing all six factors. In age group I, two 
habitat variables, numbers of rocks and total 
cover, produced a coefficient (0.18) as large as 
the six-factor model. A coefficient similar to 
that produced by the six-factor model was obtained 
for trout in age group II with · three variables 
(R 2 =0.56); number of rocks, percent cover provided 
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Table 2. Order in which the habitat attributes shown in table 1 entered stepwise regressions and the 
coefficient of determination they produced for each age group of trout. 

Age group 

Group 0 
Factors 

Variables 

Group I 
Factors 

Variables 

Group II 
Factors 

Variables 

Group III 
Factors 

Attributes 
( Rz) 

6 
(0.03) 

3 

(0.10) 

5 
(0.08) 

2 
( o. 14) 

6 
( o. 17) 

2 

(0.31 

6 
(0.16) 

Step 2 
Attributes 

(Rz) 

4,6 
(0.05) 

2,3 

(0. 16) 

4,5 
( o. 12) 

2, 18 
( o. 18) 

5,6 
(0.40) 

2,3 

(0.44) 

5,6 
(0.27) 

Step 3 
Attributes 

(Rz) 

3,4,6 
(0.07) 

2,3,12 

(0.23) 

1,4,5 
(0.14) 

1' 2, 10 
(0.21) 

4,5,6 
(0.46) 

2, 10, 17 

(0.55) 

2,5,6 
(0.31) 

Step 4 
Attributes 

(Rz) 

2,3,4,6 
(0.08) 

3, 12' 15' 27 

(0.29) 

1 '2, 4, 5 
(0. 15) 

1,2,3,10 
(0.23) 

2,4,5,6 
(0.49) 

2, 10, 15,17 

( o. 61) 

1,2, 5, 6 
(0.35) 

Step 5 
Attributes 

(Rz) 

1,2,3,4,6 
(0.09) 

2,3,12 
15, 17 
( o. 31) 

1,2,3,4,5 
( 0. 15) 

1,2,3,4,12 
(0.25) 

1,2,4,5,6 
(0.52) 

2, 10, 12, 15,17 

(0.64) 

1,2,4,5,6 
(0.36) 

Step 6 
Attributes 

(Rz) 

1,2,3,4,5,6 
(0.09) 

2,3,10,12, 
15, 17 

(0.32) 

1,2,3,4,5,6 
(0.15) 

1,2,3,4, 10,12 
(0.26) 

1,2,3,4,5,6 
(0.53) 

2, 10, 12, 15, 
17' 18 

(0.66) 

1,2,3,4,5,6 
(0.37) 

Variables 17 15, 17 12,15,17 4,12,15,17 2, 4, 12, 15,17 2, 4, 10, 12, 
15,17 

(0.42) (0.23) (0.29) (0.35) 

by instream brush, and area in over stream cover 
between 1 and 2 m; and for trout in age group III 
with four variables (R 2 :0.34); number of pockets 
of turbulent water, percent cover of side-stream 
vegetation, area in overstream cover to 1 m, and 
area in overstream cover to 2 m. 

Factor 5 (rocks) and factor 6 (area in 
overstream cover 2 m and above) and their 
equivalent habitat attributes were, in most 
instances, the first parameters to enter stepwise 
regressions containing factors or variables. 
Factor 2 (overstream cover) and factor 4 (general 
cover) entered models intermediately, and factor 1 
(debris) and 3 (percent overstream cover) entered 
models last. Area in and percent cover provided 
by side-stream vegetation consistently entered 
models intermediately. Other habitat attributes 
either entered models intermediately or late in 
the stepwise procedure. 

DISCUSSION 

Factor analysis was useful in defining the 
underlying structure of the cover portion of the 
habitat for trout. Although 18 variables were 
singled out and measured, cover consists 
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(0.38) (0.40) 

essentially of a six-dimensional space 
characterized by six factors: debris, side-stream 
cover, percent of overstream vegetation, turbulent 
water, rock area, and area of overstream 
vegetation in the 1- to 2-m zone. 

In exam1n1ng the relationships between 
standing crop of fish and the habitat attributes 
by stepwise regression methods, a higher 
coefficient of determination (R 2 ) was obtained by 
using the 18 original variables than by using the 
six derived factors. Moreover, it was found that 
the best one-attribute, two-attribute, etc., 
models also resulted in higher R2 values when 
original variables were used. This indicates that 
when the original variable measurements are 
available, there is no reason to form regression 
models based on derived factors. With the 
exception of 2-year-old trout, no R2 value between 
trout and the set of variables exceeded 0.5, 
indicating that there is a substantial portion of 
variability in fish biomass that is not explained 
by the measured variables and hence also not 
explained by the derived factors. Part of this 
variability may be accounted for by water or flow 
related variables. The results of a combined 
analysis of water and cover variables will be 
reported at a later date. 
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DISCUSSION 

TERRY LARSON: Most papers given here which 
involved multiple regression analysis used 
stepwise techniques. Why did you not use an all 
possible subsets technique like BMDP-9R? This 
program is not costly to run and will pick up 
subsets that stepwise techniques miss. 

HELEN BHATTACHARYYA: The SAS STEPWISE procedure 
with MAXR option was used. You are quite right 
that all possible regression (SAS RSQUARE 
procedure) may pick out combinations not covered 
by stepwise. However, STEPWISE/MXR is almost as 
good (see SAS writeup) and has the advantage of 
printing all other regression statistics, slope, 
intercept, mean squares, etc., besides just the R2 

value. 
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BIRD COMMUNITY USE OF RIPARIAN HABITATS: 

THEIMPORTANCEOFTEMPORALSCALEIN 

INTERPRETING DISCRIMINANT ANALYSIS1 

Jake Rice2, Robert D. Ohmart3, and Bertin Anderson4 

Abstract.--Discriminant functions analyses were used to 
differentiate habitats used from habitats not used by every 
bird species in the lower Colorado River riparian areas, 
during the breeding season. Most of these DFA 's produced 
statistically significant results, but the mean percent of 
transects correctly classified into the species-present or 
species-absent groups, across all species, was less than 75%. 
Patterns of errors of classification were examined and found 
to be random with regard to vegetation community, foliage 
structure or avian species. 

When we considered a second year's census data, for 18 
of 21 species a significant number of errors in predicted 
occurrences were "corrected" with the new avian distribu
tions. The habitat DFA' s were then repeated between the 
group of transects used both years and those not used both 
years. Across all species and all seasons, transects could 
be correctly classified with an accuracy of 89%. We also 
found biologically meaningful patterns of seasonal variation 
1) in habitat selectivity of the avian community, 2) in 
differences among vegetational communi ties and 3) of 
transects with irregular occurrences of the avian species. 

Key words: Birds; Colorado River; community ecology; 
discriminant function analysis; habitat use; riparian; 
species turnover. 

INTRODUCTION 

' 

1 Paper presented at The use of multivariate 
statistics in studies of wildlife habitat: a 
workshop. April 23-25, 1980, Burlington, Vt. 

2 Research Professor, Department of Zoology, 
Arizona State University, Tempe, AZ 85281 and 
Assistant Professor, Biology Department, Memorial 
University of Newfoundland, Canada, AlB 2X8. 

3 Associate Professor, Department of Zoology 
and the Center for Environmental Studies, Arizona 
State University, Tempe, AZ 85281. 

~Research Associate, Department of Zoology 
and the Center for Environmental Studies, Arizona 
State University, Tempe, AZ 85281. 

During the past decade there has been a major 
upswing in the use of multivariate statistics in 
the study of ecology. In avian studies the uses 
have been largely to quantitatively describe 
community structure through various types of 
ordinations (James 1971, Whitmore 1975, Conner and 
Adkisson 1977), or to document niche partitioning 
among groups of species (e.g., Cody 1968, 
Hespenheide 1971, Whitmore 1977). This 
predisposition toward each of these goals can be 
understood, given current areas of emphasis of 
theory in community organization and evolutionary 
ecology in general. The relationships among bird 
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species, and between bird species and character
istics of their habitats, have proven reconcilable 
with theory, and hav~ often even led to enlight
ening extensions ~f · our understanding of 
ecological processes. 

On the other hand, a large number of these 
studies can be, and often have been, criticized 
(if rarely in print, frequently in discussions) 
for taking a very casual attitude toward several 
aspects of the original data. There are a variety 
of potential sources of variation that can be 
reflected in ecological data, and valid, useful, 
management studies require research designs that 
take adequate account of these kinds of 
variability. Specifically, relatively little 
attention has been given to verifying that the 
basic data sets on which the multivariate 
techniques are used: 1) sample the true and 
complete range of habitats acceptable to species 
included in an area; 2) cover the within-species 
variability in habitat use across communities; and 
3) cover the season-to-season and year-to-year 
variation in bird-vegetation relationships, 
although a few papers considering some of these 
points can be found (e.g., Smith 1977, Rotenberry 
1978, Rotenberry et al. 1979). 

A comprehensive understanding of community 
ecology will require detailed investigation of 
each of those sources of variation. Additionally, 
when investigations move from the theoretical 
realm to the practical, all of these 
considerations become even more important. If 
habitat management plans are actually going to be 
developed and implemented based on the results of 
sophisticated quantitative studies, it is 
essential that the findings truly reflect the 
species-habitat relationships and are not just 
statistically 'significant or consistent with one 
of many diverse theoretical expectations. 

As specific examples, the questions of which 
spatial scale and which temporal scale to sample 
become of paramount importance. Furthermore, the 
errors that occur, for example, in the 
classification step of a discriminant function 
analysis, are no longer simply inconveniences or 
embarrassments, but they become real problems 
affecting the potential success of any habitat 
management plan. This paper presents discriminant 
functions investigations into the habitat use 
patterns of an entire avifauna; looking 
particularly at what the errors of classification 
truly represent, at least in our system, and what 
temporal scale is suitable for bird habitat 
studies. 

Riparian habitats in the desert Southwest are 
rich ecological oases for many species of birds 
and mammals. These areas are also subjected to 
intense competing land and water use demands for 
agricultural lands, municipal and industrial 
purposes, river channel and flood control, and 
recreational use, in addition to their value for 
wildlife. For several years the Colorado River 
Project · has been quantifying wildlife densities 
and use of all riparian habitats along the lower 
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Colorado River. We are currently using these data 
to develop a predictive model of bird-vegetation 
(and soon mammal-vegetation) relationships within 
the system. This model will be used by state, 
federal and private concerns in actual land use 
decision making and will be a major tool in 
assessing and planning habitat mitigation in these 
riparian areas. 

Because of the intended use of our findings 
we had to know not simply how species X and Y 
differed in habitat preferences in an area, or 
even what major gradients we could uncover in 
community structure. Rather, we had to know, out 
of the complete range of riparian habitats 
available, which habitat factors determined or 
allowed the occurrence of each av~an species. Our 
answers had to be valid over the entire year, 
because management decisions directed toward a 
single season will nonetheless have year-round 
ramifications. Correspondingly, our results had 
to be valid for several years, not for just 
whatever special conditions reigned for any single 
year. 

METHODS 

It required 72 transects of 1600 m or 900 m 
to census every community present in each stage of 
development and in the proportion in which each 
habitat type occurred along the lower Colorado 
River. Each transect was then censused three 
times each month using the familiar strip method 
(Emlen 1971, 1977). On the basis of climatic and 
demographic patterns, we divided the year into 
five seasons: Spring (March-April), Summer (May
June-July), Late Summer (August-September), Fall 
(October-November) and Winter (December-January
February). Censuses within each season were 
averaged when we calculated bird species 
occurrences and densities. 

Every tree by species within 16 m of each 
side of each transect was counted. Also foliage 
density measures at several heights were taken at 
50 m intervals along each transect. The 
vegetation density measures were combined to 
produce, for each transect, a 12 variable array 
describing the foliage density at each stratum, 
the relative species composition (transformed with 
the ARCSIN square root transformation), and the 
foliage height diversity of that transect. These 
variables were all habitat attributes which we 
believed were both potentially adequate to 
characterize habitat use by members of the avian 
community and were realistically manageable from 
both the standpoints of data analysis and habitat 
management. 

We used discriminant functions analyses to 
quantify habitat use attributes of each species. 
For each species, each season, we divided the pool 
of 72 transects into two groups: those where the 
species in question was recorded, "Present", and 
those where the species was not recorded, 
"Absent". The Present and the Absent groups of 
transects were then differentiated on the array of 



habitat measures, to quantify both how different 
the used and the unu~ed.~reas were vegetationally, 
and what attrib~t~s of the vegetation 
characterized the 'a;~as used by each species in 
the community. Actually, for many species (those 
with widespread distributions and widely differing 
abundances on different transects), we repeated 
the analyses using three or even four groups, 
based on increasing densities. The accuracy of 
those analyses were comparable to those of the two 
group discriminations. The multigroup analyses 
only introduce further complications because of 
the additional possible axes of discrimination, 
and they will not be discussed. 

RESULTS AND DISCUSSION 

Single-year Discriminations 

A synopsis of results of discriminant 
function analyses for the 39 species which were 
present during the summer is presented in figure 
1. The majority of individual species 
discriminations showed that habitats were 
significantly different between used and unused 
areas. However, quite a number were not different 
statistically; a matter for possible concern. 
Some of these cases may represent strictly 
statistical problems, of the sort discussed by 
Williams (1981), whereas others might represent 
species truly showing no vegetation differences 
between used and unused sites. 

Rather than go into all possible 
investigations of sources of statistical artifacts 
or errors, we had previously decided that results 
of the classification step of the discriminant 

.... 
0 .. 
cu .a 
E 
:I 
z 

<.01 <.os <.10 <.2o <.so <.90 <.99 
.f. Value From Discrimination 

Figure 1. The number of species for which the 
discriminant analyses of used versus unused 
habitats reached specific levels of 
significance. Distribution data were from a 
single summer. 
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Table 1. Types of transect classifications 
possible and their biological significance. 

Actual status PRESENT 

of species 

on transect ABSENT 

A = Correct prediction 
the transect 

D = Correct prediction 
the transect 

Status predicted from 
classification step of 

the discriminant analyses. 

PRESENT ABSENT 

A B 

c D 

of the species presence on 

of the species absence on 

B = Suitable habitat identified as unsuitable for 
the species 

c = Unsuitable habitat identified as suitable for 
the species 

function analyses would be most appropriate for 
our model, and to us it represented the most 
important measure of the success of the analyses. 
We knew, for example, that necessary assumptions 
of homogeneity of variances and covariances 
between the Present and Absent groups of transects 
would often be violated by species with either 
very widespread or restricted occurrences in the 
riparian vegetation. Such violations would affect 
the statistical significance of the analyses. 
However, regardless of the statistical 
significance of any given discrimination, if we 
were able to correctly identify areas that were 
commonly used by a particular species on the basis 
of vegetation attributes, we felt we would have a 
useful management tool . 

Statistically, the classification step of a 
discriminant function analysis could produce two 
different types of errors, illustrated in table 1. 
From a management standpoint, the two possible 
types of classification errors are quite different 
in their importance, and use determines which 
errors are most serious. To include some unused 
areas in the used group (C errors, table 1) would 
be a conservative error for habitat preservation 
activities. It would lead to preservation of some 
unsuitable habitats as well as all suitable ones • 
The other type of error (B errors, table 1) would 
be more serious; one would reject areas which 
were, in fact, good habitats for the species in 
question. Conversely, if one were engaged in 
management activities to create or modify 
habitats, the seriousness of the errors would be 
reversed. To make type B errors would be to 



develop only some of the range of habitats 
suitable for a species, whereas to make type C 
errors would be to spend time and resources 
developing habit~ts_ which would turn out to be 
unsuitable for the species. 

Analysis of Errors 

Figure 2 shows the distribution of the 
percent of correct classifications of transects 
for the single year discriminant analyses. 
Although we found few gross failures in the 
classification steps, there were also 
correspondingly few species for which we had great 
success at predicting transect suitability. 
Rather than continue to use this equivocal tool 
with data from other seasons, we decided to look 
in detail at what sorts of errors were occurring, 
in hope of isolating specific problems of the 
approach. Possible sources of errors in this 
study (and correspondingly, other similar studies) 
included: 1) uneven variability in either the 
suitability of habitats or the distribution of the 
species on a scale small enough to affect our 
findings; 2) inadequate habitat measures, i.e., we 
had not measured plant community traits important 
to avian habitat selection; and 3) low habitat 
selectivity by the bird species, i.e., the used 
and unused areas truly did not differ. To be 
tractable, we chose 21 of 39 avian species for 
detailed investigation, arbitrarily selecting the 
first 21 species from an alphabetical listing of 
all the species present. 

We looked first at the habitat variability 
problem; that is, were our discriminations poor 
because some specific habitats were particularly 
good or bad at supporting avian species? This is 
an aspect of the question posed by several 
ecologists, such Colwell and Futuyma (1971) and 

100 
Percent Correct Classification 

Figure 2. The number of species for which the 
classification functions of the discriminant 
analyses were able to correctly identify 
transects as used or not used at various 
accuracy rates. 
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Figure 3. Fit of number of errors of classifi
cation of species suitabilities per transect to 
a Poisson distribution. 

Willson ( 197 4); that is, are all equal mensural 
discontinuities along a resource continuum of 
equal biological importance? 

We investigated this problem in a simple way. 
Across the 72 transects there was a mean of 4.64 
species misclassified per transect. If these 
errors were random, we would expect the number of 
transects with no species misclassified, with one 
species misclassified, with two species 
misclassified, and so on, to be distributed as a 
Poisson (random pattern) with a mean of 4.64. If 
specific types of habitats were either better or 
worse than average in terms of their ability to 
support species, relative to other habitats nearby 
on the vegetation continua represented by the 
discriminant functions, the distribution of errors 
per transect would deviate from the expected 
values. There was an excellent fit to the 
predicted distribution (fig. 3). From this we 
concluded that our error rate was not tied, at 
least primarily, to differential habitat 
attractiveness, beyond those differences captured 
in our vegetation measurements on each transect. 

Initially we had intended to use data from 
subsequent years to test the effectiveness of the 
model. However, looking at the distributional 
data from the next year might shed light on the 
degree of consistency of habitat selection of the 
species in the avian community. From the 
classification step, we knew for each species: 1) 
the number of transects where the species was 
absent, yet were classified by the analysis as 
sui table habitat, and 2) the number of transects 
where the species was present, yet were classified 
by the analysis as unsuitable habitat. From the 
occurrence data for the next summer across the 
same 72 transects, we also determined: 3) the 
number of transects missing each species in the 
first year but supporting it in the second; and 4) 
the number of transects supporting each species in 
the first year but missing it in the second. All 
four of these counts can be converted into 
probabilities simply by dividing by 72 (the number 
of transects). If errors of classification were 
true errors with no biological relationship to 



species occurrences, the product of 1 and 3 and of 
2 and 4 would give the expected number of new 
species occurrences that were "corrections" of 
previous type 'C ;er}ors and the number of new 
species absences that were "corrections" of 
previous type B errors. 

We found a surprisingly high rate of species 
turnover. New appearances occurred on 18% of all 
possible species-transect combinations, and new 
absences occurred in 16% of the species-transect 
combinations. On a species-by-species basis, the 
predicted number of independent "corrections" due 
to these species turnovers was usually too low for 
statistical comparison (commonly one to three 
expected "correct" new transect appearances or 
absences per species). However for 18 of the 21 
species, the actual number of correct new 
appearances was greater than the predicted number, 
and for 16 of 21 species,- the observed number of 
correct new absences was also greater than the 
predicted number. Using a binomial test, we 
determined that both of these divisions were 
statistically significant. Therefore, a 
significant number of what appeared to be errors 
of classification based on one year's 
distributional data were actually valid 
predictions of future distributions of the 
species. 

Adding data from a second year resulted in a 
trade of one problem for another. In addition to 
some new occurrences being in areas previously 

Table 2. Rates of species turnover per transect, 
and changes which were "corrections" or new 
errors of status relative to discriminant 
analysis qlassification. 

Overall mean probability of status 'Change from: 

Year 1 to Year 2 

Absent Present 0.183 

Present Absent 0.164 

Number of observed cases > number of predicted 
cases from independence of species turnover rates 
and errors of classification: 

Correct new presences: 

Correct new absences: 

18 of 21 species 
Binomial "P" = 0.0012 

16 of 21 species 
Binomial "P" = 0.018 

Number of new correct presences 87 

Number of new errors of presence 108 

Number of correct new absences = 49 

Number of new errors of absence 87 
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Table 3. The mean percent of transects which 
were correctly classified as supporting or not 
supporting each species by season: 

GrouE 
Season Present Absent Total 

Summer 89.7 84.6 86.5 

Late Summer 94.8 89.1 91.3 

Fall 91. 1 87.1 88.5 

Winter 87.7 86.7 87. 1 

Spring 89.3 91:2 90.0 

Total 90.8 88.0 89.0 

identified as sui table, other new occurrences of 
each species were in transects previously 
classified correctly as unsuitable for that 
species. Absences in the second year were also 
noted in areas which previously had been 
classified correctly as suitable with data from 
only one year. Although these new errors were 
usually less frequent than expected by chance, 
they still outnumbered the "corrections" for both 
kinds of changes in the status of bird species 
between the two years (table 2). Clearly, the 
major problem affecting our ability to define 
quantitatively and precisely the range of 
acceptable habitats for each species was the high 
rate of species turnover from year to year on the 
same transects. 

Two-year Discriminations 

In light of the high rate of species turnover 
on the transects, for each species each season we 
regrouped the transects on a new criterion; 
consistency of species occurrence. Three groups 
were formed: 1) transects where species X was 
recorded both years, 2) transects where species X 
was absent both years, and 3) transects where 
species X was present in one of the years but 
absent in the other. Discriminant function 
analyses were then conducted between groups 1 and 
2 for each species each season. 

Results of these analyses showed a marked 
improvement in ability to predict correctly areas 
which would or would not be used by each species. 
Regardless of season, the mean percent of 
transects classified correctly was always high, 
and the important groups of transects used 
consistently were even more frequently identified 
correctly (table 3). This high rate of correct 
transect classification also eliminates the two 
other possible sources of error in the one-year 
discriminations. When investigated at an 
appropriate temporal scale, the bird species 
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Figure 4. The number of species each season for 
which the classification procedures were able to 
correctly identify transects as used or not used 
with various accuracy rates. Distributional 
data were from two years. 

generally did show habitat selectivity, and our 
habitat measures were adequate to detect this 
selectivity. The spread of the percent of species 
distribution predicted correctly by season (fig. 
4) supports the impressions from table 3 and 
additionally underscores several points of general 
ecological significance. 

One point apparent from figure 4 was the 
difference in the distribution of transect 
identifications by species between the summer and 
other seasons. The summer season had both the 
lowest mean transect identifiability and a 
distribution markedly more unimodal than the 
distribution of the transect identifications by 
species for the other seasons. This is, in 
itself, a noteworthy insight into the system we 
are studying. 

The growing bimodality of the distribution 
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(fig. 4) through late summer, fall, and winter is 
important for selecting a scale in which to 
undertake habitat management investigations. In 
summer nearly all species showed a fairly high 
degree of habitat selectivity, but almost none 
occupied areas perfectly or nearly perfectly 
discriminable from unoccupied areas. At other 
seasons the number of species with perfectly 
discriminable habitat-use patterns made up a 
substantial fraction of the community, whereas the 
habitat discriminability for other avian species 
in the community is markedly lower. The structure 
of the community changed from one of essentially 
all moderate habitat specialists in summer to a 
mixture of some extreme habitat specialists and 
other species showing quite weak habitat 
specificity through the fall, winter, and spring • 

Considerable variability was still observed 
in the degree of habitat selectivity reflected by 
individual species. For resident species there 
was more variability between seasons in the 
discriminability of habitats used by each species 
(as reflected in the mean range of percent correct 
classifications) than between the rest of the 
community and a randomly selected species each 
season (table 4). Furthermore, the criteria of 
habitat selection shown by resident species, as 
reflected by variables with high loadings on the 
discriminant functions each season, changed as 
much as did the degree of habitat selectivity. 
Only 4 of 20 year-round residents had any one 
variable significantly different between used and 
unused areas for all five seasons (table 5). 
Information of this type is obviously of great 
value to persons involved in applied ecological 
work, and there are even a few substantial 
theoretical implications of these findings. 

Remaining Errors 

What of the errors of classification which 
remain: that 10% of the classifications which are 
still in error; and what of the distribution of 
the irregular transects on the discriminant axes 
of each bird species? Space does not allow an 
in-depth examination of both of these points, but 
we can consider the biologically most important 
one: areas used consistently by a species but 
nonetheless classified unsuitable for occupancy. 
In a management context, making such errors would 
involve the loss of habitat of high quality to the 
species of concern. 

We again fitted the observed number of 
transects with no unpredicted species present, 
with one unpredicted species present, with two, 
three, and so on to the expected Poisson 
distribution for each season (fig. 5). In every 
season except winter the observed distribution 
deviated significantly from the predicted one, and 
in winter the fit was marginal. The preponderance 
of transects with no errors implied that the 
habitat suitability predictors, that is, the 
discriminant functions, were very accurate most of 
the time. Even more noteworthy, when we looked at 
those transects with three or four unpredicted 



Table 4. Measures of the amount o.f variability of transects correctly 
cl~ssified for resident species. 

Within SEecies: Between SEecies: 

Mean maximum Mean range around a randomly selected species 

range among each season 

seasons Summer Late Summer Fall Winter Spring 

x = 18.16% 11 . 58% 13.75% 8.89% 8.57% 8.81% 

s.d.= 7.25 7.22 5.62 4.30 6.39 3.89 

Table 5. Criteria of habitat selection as reflected by variables significant in stepwise discriminant 
analyses of present vs. absent transects for resident species all seasons. 

Species Summer Late Summer Fall Winter Spring 

Verdin None None None None None 
(AuriEarus flaviceEs) 

Cactus wren HM+,SC, HMt 1 FHD,SC SM+,SC HMt sc 
(CamE~lorh~nchus brunneicaEillus) 

House finch W, HM+HMt C,HMt,FHD, SC None C,SM+,SC None 
(CarEodacus mexicanus) 

Gila woodpecker FHD,W,C FHD,HM+,W FHD,O,HM+, FHD,HM+, FHD,HM+,C, 
(MelanerEes uroEygialis) HMt HMt, 0 HMt,SC,W, 

V5,TV 
Common flicker W,FHD,C FHD,HM+,O V5,SC W,HM+ TV 

(ColaEtes auratus) SM+ 

Gambel' s quail SC,HM+, W, FHD SC,FHD V15 V15,V5, 
(Lophortyx gambelii) V15,C,HMt FHD,C, 

SM+,SC 
Ladder-backed woodpecker FHD,V6,V15, None None None V5 

(Picoides scalaris) HM+ 

Roadrunner V5 FHD None None HMt 
(Geococc~x cali forni anus) 

Loggerhead shrike SC,HM+,HMt, C,FHD V15,V6,V5, FHD,W 0 
(Lanius ludovicianus) SMtV15 HMt,O 

Song sparrow C,FHD,W, FHD,HMt,W, FHD,C,SC,W, FHD,C,W, FHD 
(MelosEiZa melodia) V15 c HMt,SMt,O HMt 

Mockingbird HM+,HMt,SC HMt HMt HMt HMt 
(Mimus Eolyglottos) 

Ash-throated flycatcher FHD,SC, HM+, None HMt,FHD,V15, None V6,TV,C 
(M~iarchus cinerascens) O,HMt O,V5,V6,SM+ 

Phainopepla HMt ,HM+,SC HM+ HMt,SM+,V15 HMt,SM+ HMt 
(PhainoEeEla nitens) 
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Abert's towhee FHD None 
( Pipilo aberti) 

Black-tailed gnatcatahe-~ SC,HM+,C,W, FHD,SC,W 
(Polioptila melanura) HMt,V15,V6, 

TV 

Rough-winged swallow w,c None 
(Stelgidopteryx ruficollis) 

Crissal thrasher SC,HM+,HMt FHD 
(Toxostoma dorsale) 

Western kingbird w None 
(Tyrannus verticalis) 

Mourning dove FHD,HMt,HM+ None 
(Zenaida macroura) 

White-crowned sparrow HM+ None 
(Zonotrichia leucophrls) 

1variable symbols: 

V6 =Foliage volume 0.1 m- 0.6 m (0.5 ft- 2ft) 
V5 =Foliage volume 1.6 m- 3.1 m (5 ft- 10ft) 

V15 =Foliage volume 4.6 m and greater (15 ft) 
TV = Total foliage volume 

FHD = Foliage height diversity 

None None None 

FHD,W FHD TV,V6,C 

None None None 

FHD,W,V15, FHD V15,SC,C 
V5 FHD,V6 

0 w C,SM+,SMt 

None None V6,TV,V5, 
V15 

HMt FHD V15,TV,HMt, 
W,HM+,SC 

HMt = Total proport~on of honey mesquite (Prosopis glandulosa) 
HM+ = Total proportion of honey mesquite with mistletoe (Phoradendron californicum) 
SMt = Total proportion of screwbean mesquite (Prosopis pubescens) 
SM+ = Total proportion of screwbean mesquite with mistletoe 

SC = Total proportion of salt ceda·r (Tamarix chinensis) 
W = Total proportion of willow (Salix gooddingii) 
C = Total proportion of cottonwood (Populus fremontii) 
0 = Total proportion of mixed other species 

species present, we found that certain types of 
communities displayed greater than chance 
frequency (table 6). Specifically, honey mesquite 
and/or screwbean mesquite were often classed as 
not suitable for species which did occur; i.e., 
their value to wildife is underestimated, often by 
as many as four or more species. This knowledge 
can be incorporated readily into habitat 
management plans. 

CONCLUSION: TEMPORAL SCALE 

To return to one of the major questions we 
initially posed, the discriminant analyses from 
one year's occurrence data provided a frequently 
significant but nonetheless weak ability to 
predict habitat use by each species in the 
riparian summer community. Merely incorporating a 
second year's data on distribution improved the 
accuracy of the predictive system markedly. For 
ecologists interested in the habitat attributes of 
species or communities, we would strongly 
recommend that however the initial habitat 
suitability judgments are formed, be they from 
line transects, singing male perches, from spot 
mapping, or whatever, a single year's data are not 
adequate for the study. The habitat-use patterns 
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of avian species simply show too much year-to-year 
variability. Furthermore, the marked changes in 
community organization overall, and in habitat 
selectivity and selection criteria of individual 
species between seasons, indicate that a temporal 
scale smaller than an entire year is also 
inappropriate for a complete study of wildlife
habitat relationships. 

In terms of extending the use of multivariate 
analyses, a stated purpose of this conference, we 
emphasize that many of the points made here did 
not come from a consideration of statistical 
significance of the analyses, nor from a 
consideration of the relative contributions of 
various habitat measures to the discriminant 
functions (the two things commonly looked at 
first). Rather they came from a careful 
consideration of errors made in the classification 
steps and attention to the adequacy of data to 
truly represent the system under study. As with 
many other lines of scientific inquiry, it was 
through attention to failure of the initial 
approach that subsequent insights arose. 

. . . ' . . 
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Figure 5. Fit of numbers of errors of 
classification of species occurrences per 
transect over two years to a Poisson 
distribution by season. 

Table 6. Habitats where suitability for avian 
species is significantly often erroneously 
predicted by season. 

Season Suitability significantly often: 

Underestimated Overestimated 

Summer Scr~wbean mesquite None 

Late Honey mesquite and Salt cedar 
summer screwbean mesquite 

Fall Honey mesquite and None 
structure type IV 

Winter None None 

Spring Honey mesquite and None 
screwbean mesquite 
(p = 0.063) 
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DISCUSSION 

B.K. WILLIAMS: ,,I,!w~nt to compliment you on this 
focus of disc~i~inant analysis on its 
classification capabilities. I would suggest that 
we should generally shift our perspective on this 
methodology more toward classification and away 
from group mean separation. 

JAKE RICE: Thanks, and I agree with your feelings 
about a change in emphasis. 

MARTIN RAPHAEL: Did you use equal or prior 
probabilities in your analysis of classification 
success? 

JAKE RICE: Priors. 

BOB CLARK: Once you have determined that a 
species is present, can you use DFA to classify 
densities (low, moderate, high) or is the system 
too variable? How does your food availability 
data tie into presence/absence on "predicted" 
suitable habitat? 

JAKE RICE: We have had limited success with 
density classification; about comparable to that 
of the initial one-year discriminations. As you 
suggest, year-to-year variability in abundance is 
the major problem. We are including abundance 
predictions in the model being constructed with 
these DFA results, but as a step after predicting 
species composition for a locality. We are using 
a regression approach to abundance predictions, 
and not surprisingly, the confidence intervals are 
large, because of the great year-to-year 
variability'in abundance at the same sites. 

As for food availability, we have the 
necessary data but the analyses are not yet far 
enough to provide useful answers to the problem of 
bird distributions. Not surprisingly, insect and 
seed abundances are at least as variable, 
seasonally and yearly, as are bird distributions. 
Insects and seeds are also spatially highly 
variable, and the variation is asynchronous 
between sites. Tying together two such variable 
systems is going to be a long, slow process. 

MARK BOYCE: Since your characterization of 
habitat is based solely on vegetation 
characteristics, I am concerned that other 
components, especially insect abundance, may vary 
temporally, thus possibly invalidating your 
remarks regarding generalists vs. specialists. 

JAKE RICE: My comments on generalists and 
specialists were meant to apply solely in terms of 
habitat selection attributes. Empirically the 
figure shows that in late summer, fall and winter 
some species in the community have their used 
habitats clearly differentiated from areas not 
used, whereas other species show little habitat 
differentiation. It was the species showing 
little differentiation that I was calling 
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generalists. Much current ecological theory would 
predict that these habitat generalists would be 
specialists on some other criterion. ---"EVERY 
species could be (and probably is) a specialist on 
some ecological attribute, but such an approach to 
ecology (i.e., studying every species until one 
found SOMETHING on which it specialized) would 
provide only a limited insight into community 
organization, overlooking as it would all 
ecological attributes where a species was more 
generalized as being uninteresting or 
"in val ida ted" by the finding that it was a 
specialist on something. 

JAMES DUNN: Will you clarify your statement that 
stepwise variable selection dften resulted in 
entirely different variables from one season to 
another. Is this mainly because your habitat 
variables are sensitive to seasonal and/or yearly 
change? Or does habitat preference actually 
change seasonally? 

JAKE RICE: To a small extent, values of the 
habitat measures do change seasonally. That is 
the case only for foliage volume measures, of 
course, and not tree species composition measures. 
The changes in significant variables reflect, in 
very large part, changing distributions of the 
species by transect, and inferentially, changing 
criteria of habitat selection. 

JAMES DUNN: Your attack on the problem suggests 
that you believe that site suitability for a 
species is not a simple yes/no question, but 
rather has a range of probabilities. If so, then 
why not use a classification method which works by 
assigning a probability for each site, e.g., the 
multivariate model as proposed by S.H. Walker and 
D. B. Duncan ( 1967. Estimation of the probability 
of an event as a function of several independent 
variables. Biometrika 54:167-179). 

JAKE RICE: We have been moving in precisely that 
direction with our model; predicting which species 
will be found in a specified area with certainty, 
with high probability, often, etc. The classes 
are pretty rough, but adequate for our users. 
Thank you for the reference. 

PAUL GEISSLER: You have suggested sampling the 
same transect in several years. Resampling 
transects provided very valuable information for 
your study. However, for the different objective 
of determining bird habitat relationships, I think 
it would be advantageous to take a new sample of 
routes each year to provide protection against the 
effect of some unmeasured and possibly 
unmeasurable habitat effect being confounded with 
the effects of measured habitat variables. To put 
it another way, the measurements on the same route 
have correlated residuals. 

JAKE RICE: I do not really see how "determining 
bird habitat relationships" is a "different 
objective" from what we are attempting. The major 



point here is that, from our data (and we think 
our findings are prettY:· general; surprisingly few 
data are available:.~ the consistency of species 
occurrences and dens:lties over several years at 
same sites) a single year's censuses are not 
reliable indicators of bird distributions, and 
therefore also are not reliable indicators of a 
species "habitat preferences" (or "optimal 
situations," if you prefer). You need multiple 
year's data to even get a good idea of a species' 
distribution pattern. Statistical considerations 
like correlated residuals are important, but come 
secondary to getting a reliable measure of the 
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phenomenon one is trying to explain. Our point is 
that one year's data will not provide a reliable 
measure to predict, to discriminate or otherwise 
to statistically manipulate. 

E. JAMES HARNER: Just a comment. The 
probabilities of misclassification tend to be 
underestimated in discriminant analysis. Bias can 
be estimated by a leave-one-out strategy or the 
bootstrap method (Efron, B. 1979. Bootstrap 
methods: another look at the jackknife. Annuls 
of Statistics 7(1):1-26). 



A SYNTHETIC APPROACH TO PRINCIPAL COMPONENT 

ANALYSIS OF BIRD/HABITAT RELATIONSHIPS1 

John T. Rotenberry2 and John A. Wiensa 

Abstract.--The application of principal components 
analysis (PCA) to bird/habitat relationships has essentially 
followed two paths: 1) species are ordinated based on PCA of 
average habitat values for individuals; 2) plots ordinated 
based on their average habitat values, and species' 
abundances on those plots correlated with the resulting 
component axes (which presumably reflect underlying 
environmental gradients). 

Our proposed synthetic method is plot-based, but 
requires that sample points within plots be classified as 
lying within or outside of each individual species' area of 
use. As in (2), the total environmental variation, or 
multidemensional "habitat space", is defined by PCA of plot 
habitat values. However, rather than subjecting habitat 
values for each species to an independent PCA as in ( 1), a 
simple methodology may be used to map each species in the 
habitat space described by the plot PCA. 

Several advantages accrue to mapping species and plots 
in the same environmental space. By graphing contours of 
species densities in this multidimensional space, patterns of 
abundance/habitat relationships that are not apparent from 
simple correlational analysis may emerge. Comparisons of 
plot means with values for individual species within a plot 
may reveal active habitat selection, or even consistent 
patterns of within-plot habitat partitioning between two 
species. Com pari sons of density contours may suggest the 
presence of biological interactions, such as competition or 
ecological replacement, between two or more species. 

The use of this technique is illustrated by analysis of 
22 structural habitat variables collected at 26 North 
American grassland and shrubsteppe sites. 

Key words: Birds; density contours; gradient analysis; 
principal components analysis; shrubsteppe; vegetation 
structure. 
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INTRODUCTION 

The use of pr.irtcipal components analysis 
(PCA) in describing patterns of avian habitat 
occupancy has been most fruitful, both for 
consideration of the adaptations of individual 
species (e.g., James 1971) and analysis of 
community composition (Rotenberry and Wiens 1980). 
Indeed, PCA is now routinely performed as a matter 
of course on a wide variety of habitat parameters, 
not only for birds, but also for organisms 
spanning a large taxonomic range [e.g., Miracle 
1974 (plankton), Johnson 1977a, b (bog plants)]. 

The application of PCA to bird/habitat 
relationships has essentially followed two paths 
that differ, to a certain degree, in their 
c.onceptual orientations. We propose a different, 
somewhat synthetic approach to PCA of avian 
habitats that combines the virtues of both 
previous approaches, yet retains a relatively 
simple and straightforward methodology. Results 
from the methodology are compatible with the 
concept of gradient analysis (Whittaker 1967, 
Terborgh 1971), and can be further interpreted in 
such a context. 

RATIONALE AND METHODS 

Previous Approaches 

Bird Mean Habitat Vector 

The first approach to bird habitat analysis 
can be called the bird mean habitat vector method 
(James 1971, Anderson. and Shugart 1974, Whitmore 
1975). In thi·s method a sampling point is usually 
determined by the presence of a singing male bird. 
Once a point is located, a variety of habitat 
variables, generally assumed to be of ecological 
relevance, are measured in the immediate vicinity. 
Samples are taken for a number of different 
species at a number of different points, the 
average value of each variable is calculated for 
each species, and this set of averages then 
determines the mean habitat vector. These vectors 
are combined into !• the matrix of standardized 
variables for all species, and this matrix is 
analyzed using standard principal component 
techniques (e.g., Barr et al. 1976). Resulting 
orthogonal components are interpreted in light of 
their factor loadings (the correlation between new 
components and original variables). Habitat 
relationships among species are then reconstructed 
by plotting the location of each species in the 
newly defined component space, using their factor 
scores as coordinates. These scores for bird 
species are given by 

F S I R -1 y I 

-b = =-b .:..:..t) -=-t ' 
(1) 

where ! is the correlation matrix of the original 
variables, and S is the factor structure matrix 
containing factor loadings (notation based on that 
of Thorndike 1978). The subscript b denotes bird 
species data. 
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While such a technique clearly has 
considerable heuristic value (as, for example, in 
describing relative positions of species in 
multivariate habitat space), it also has two 
potential shortcomings: 1) by focusing mainly on 
the simple presence of a species, the advantages 
of a community approach are sacrificed, and 
observations concerning species diversity, 
resource partitioning, or relative widths of 
ecological habitat niches are not possible; and 2) 
because data are collected only on the basis of a 
species' presence, there is no informataion 
concerning variation in the species' numerical 
abundance as habitat changes. 

Site Mean Habitat Vector 

The usual alternative approach is in fact 
community· oriented, although not without drawbacks 
of its own (e.g., Cody 1975, Rotenberry and Wiens 
1980). The method begins with selection of a 
large series of plots or transects, generally 
chosen to be representative of variation in either 
some set of habitat variables or some set of bird 
species. Habitat variables of interest are 
measured at a number of randomly selected points 
on each plot and their average taken to yield what 
may now be called the mean habitat vector for the 
site. All plots are combined in !:_, the set of 
standardized variables for plots, and PCA is 
performed. The factor structure matrix again 
provides interpretation of the components and 
sites are ordered in this multidimensional space 
ey their factor scores, given by 

F = s ' R -
1 z I 

-s -s -s -s 
(2) 

where S and R are the factor structure matrix and 
correlation matrix for site habitat data (denoted 
by the s subscript). 

Because these are plot-based samples, each 
site also has associated with it species 
abundances, diversities, or any other attribute of 
the avian community one cares to calculate, and 
these can then be correlated with site factor 
scores. Significant individual correlations are 
generally interpreted as representing species' 
responses to the multidimensional habitat spectrum 
represented by the site ordination. If species 
diversity seems to vary in some meaningful manner 
after the sites have been ordered, then one can 
speculate about the nature of community 
organization along the gradient. These sorts of 
interpretations are not possible under the bird 
mean habitat vector method, but unfortunately 
their gain is offset by loss of some information 
about individual species. Because a species 
cannot be considered separately from a site, the 
point for that site represents all species 
s imul taneou sly. If there is any within-plot 
habitat selection or partitioning by species, for 
example, this will be completely obscured, and any 
generalizations that one might want to make about 
species' relationships could be compromised. 



Synthetic Approach 

The technique ,:we propose combines what we 
think are useful elemettts of both site and species 
ordinations. Although the methodology is largely 
based on site-oriented sampling, slight 
modifications of traditional methodology yields 
data that are compatible with the species-oriented 
approach as well. 

As in the site-oriented approach, a series of 
sites are selected that encompass some 
environmental range in which one is interested, 
and attributes of both habitat and bird 
populations on these sites are measured. In the 
course of estimating bird densities, it is 
generally possible to estimate microhabitat or 
within-plot use by the individuals of a species as 
well. If, for example, individuals are 
territorial, this becomes a simple exercise in 
mapping territorial boundaries. Superimposed upon 
this are locations of the random points at which 
habitat variables are measured. These points may 
be characterized as lying within or outside of the 
area used by a species (e.g., Wiens 1969), and 
those that lie within the use-area can be used to 
create a mean habitat vector for that species at 
that site. These vectors will likely differ for 
different species at the same site (depending on 
the degree of within-plot spatial or habitat 
overlap between them), or for the same species at 
different sites. To the ext·ent that a species is 
nonrandomly selecting habitat within the plot, its 
vector will differ from that of the plot as a 
whole. The plot or site mean vector, of course, 
is determined by all points. 

The multidimensional environmental space in 
which all samples have been taken is defined by a 
PCA of the matrix of standardized variables for 
the sites, Z, and as such does not differ from 
that presented above (equation 2). PCA is still 
picking out the major patterns of covariation in 
habitat variables that are latent within our 
overall selection of plots. One elects, of 
course, to concentrate on those components that 
are relatively strong (as evidenced by the 
relative magnitude of their eigenvalues) and 
meaningful, in that the patterns of their factor 
loadings appear to make some sort of ecological 
sense. Because habitat variables are in fact 
environmental measures, the components can be 
interpreted as representing real-world ecological 
gradients, and one can begin to apply concepts of 
gradient analysis to the sites, and now to the 
species as well. 

The next step is to plot species along the 
same gradients. To do this, new factor scores are 
calculated using the factor structure matrix and 
correlation matrix from the habitat variables at 
sites, and the matrix of standardized variables 
from birds. Thus, 

F = S' R - 1 Yh', ::....t -s -s -u 
(3) 

where all matrices are as in equations ( 1) and 
(2). Resulting factor scores thus map the habitat 
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selection of birds (~} onto the multidimensional 

environmental gradients defined by sites (~s and 

~). In other words, sites are used regardless of 

their species composition to determine the habitat 
patterns, then the distribution of the birds is 
plotted along these patterns, regardless of the 
sites on which they occur. 

There are several advantages to this 
methodology. First is that as data are collectd 
from relatively large plots or transects, the 
community-oriented attributes that are lacking in 
the species-specific approach are retained, as 
well as estimates of individual species 
abundances. At the same time, however, single 
species may be ordinated or otherwise related to 
one another on the basis of species-specific, not 
si te-speci fie, responses to the multi variate 
habitat gradient. The second major advantage is 
that although species at a site are analyzed in 
the same environmental space as the site, they 
need not be equated with that site's mean values. 
This means, for example, that within-plot habitat 
selection will not be obscured (fig. 1). Under 
normal site-based analysis, the point that 
represents the plot also represents, in this case, 
three species. By this synthetic method, however, 
if a species occupies a distinctly different 
subset of habitat than the average for a site on 
which it occurs, such will be readily apparent by 
the degree of departure of the species' position 
from the site's position in the PCA-space (fig. 
1). Because the point for the site represents all 
species, any sort of within-plot habitat 
partitioning between them that may be occurring 
will be obscured using the site mean habitat 
vector approach. Such partitioning may be 
detected under the synthetic methodology, however, 
if there are consistent patterns of displacement 
of two species that otherwise co-occur at a number 
of sites (e.g., species 1 and species 2 in fig. 
1). 

Perhaps one of the most interesting 
properties of site-oriented analyses arises from 
the fact that each site-specific point for a 
species can be associated with that species' 
density at the site as well. By plotting these 
densities on the derived component axes, one can 
begin to build a picture of the quantitative 
distribution of species with respect to 
environmental gradients represented by these axes. 
If there are a sufficient number of sample points, 
contours of a species' abundance patterns may be 
plotted as well. The contours shown in figure 2 
present a considerably stylized example, but they 
can be used to demonstrate some patterns that 
might arise from an analysis of this sort. This 
set of contours, for example, shows this species' 
numerical response to the derived habitat 
gradients, a response that is unlikely to be 
detected through any correlational analysis 
because of its intrinsic nonlinearity. Further, 
projection of contours onto each of the axes 
separately indicates that this species is rather 
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Figure 1. Hypothetical species and sites plotted 
in environmental space defined by the first two 
principal components (PCI and PCII) of 
site-based environmental variables. Lines 
connect species to sites on which they occurred. 
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Figure 2. Hypothetical contours of species 
abundance patterns plotted in environmental 
space defined by the first two principal 
components (PCI and PCII) of site-based 
environmental measures. Contours represent 
isopleths of density (individuals/km 2

). 
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Figure 3. Hypothetical contours of species abundance patterns. Axes and isopleths as in figure 2. Arrows 
denote change in site characteristics as a result of habitat alteration. Changes in site characteristics 
may effect the following changes in a species' abundance at the site: A-increase; B-decrease; C-local 
invasion; D-local extinction. 
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generalized with respect to its distribution along 
these gradients. Alth9ugh still maintaining the 
same basic confi.guf';ation of contours, a different 
species, on the ; o'bher hand, might occupy a 
relatively wide range on one axis but a much 
narrower range on the other--we can thus identify 
what may be called axes of specialization and 
generalization. 

Perhaps the most interesting aspect of these 
contours is their potential in habitat management 
predictions. Insofar as one has some idea of how 
an environmental alteration will affect a site's 
location along each of the gradients--that is to 
say, to the degree that one can predict how a site 
will "move" in multidimensional habitat space 
after some sort of treatment--then one should be 
able to estimate the effect of that treatment on a 
species' population. For example, any sort of 
alteration that caused a plot to move in habitat 
space as indicated in figure 3A would likely 
result in an increase in abundance of this 
hypothetical species, while a different change 
(fig. 3B) may be much more likely ~o result in a 
decrease. We might even be able to predict 
changes in habiat that would lead to invasion of a 
species into the area (fig. 3C), assuming, of 
course, that it were biogeographically feasible 
for it to do so. Perhaps most important from a 
management standpoint, one might be able to define 
a habitat alteration that would lead to a species' 
local extinction (fig. 3D). 

The sorts of contours depicted in figure 3 
are, of course, stylized, and more often than not 
those derived from sets of real data are likely to 
deviate markedly from such smooth patterns. 
Certainly one of the biggest contributors to an 
uneven species distribution will be uneven 
sampling intensity with respect to the derived 
gradients; unfortunately such omissions are 
apparent only after the fact and are thus 
difficult to control. Other reasons, however, are 
more biological in nature. For example, one may 
sample at the periphery of habitat that is 
sui table for a species and thus may map only a 
portion of its contours (fig. 4A). Alternatively, 
a species may be distributed in a non-Gaussian 
fashion along both habitat gradients (cf. Colwell 
and Futuyma 1971), which would yield a pattern 
similar to that of figure 4B. The most extreme 
expression of this type of response would be a 
species' recognition of an environmental 
discontinuity or ecotone on what are otherwise 
statistically continuous gradients. Such an 
ecotonal response would likely be evidenced by a 
very rapid change in a species' abundance over an 
apparently short environmental distance (fig. 4C). 
On the other hand, such a pattern might also 
correspond with sharp abutment of one species upon 
another (fig. 4D). Although such a pattern may 
still reflect an ecotonal response, some sort of 
biological interaction between the two species, 
such as competition, becomes more likely. This 
pattern also identifies habitat in which 
investigations of such interactions should be 
conducted. Experiments or other comparative 
analyses conducted in such areas identified by 
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Figure 4. Hypothetical dev"iation from the 
"normal" species contours of figures 2 and 3. 
Axes and isopleths as in figure 2. A-Species 
peripheral to habitat samples. B-Non-Gaussian 
distribution along both environmental gradients. 
C-Species perceives and responds to "ecotone" on 
otherwise statistically continuous gradient. 
D-Competitive interaction between species 
results in habitat displacement. 

this technique are likely to be more rewarding 
than those conducted in locales randomly chosen 
throughout the species' ranges. 

If one is inclined to treat the derived 
gradients as representing habitat niche axes of 
one sort or another [and ·there seems to be ample 
reason to do this for birds (Rotenberry, 1981)], 
then there arises yet another set of calculations 
that can be made. Niche width, for example, can 
be estimated from some measure of dispersion 
around the species' centroid in multivariate 
space. Niche overlap between species may also be 
calculated, incorporating both distances between 
two centroids and changes in the species' contours 
as well. While we offer no speculation on the 
specific form such breadth and overlap statistics 
might take, the distributions of species in this 
environmental space will likely, we think, provide 
a fertile field for the application of many 
traditional (and even nontraditional) niche metric 
manipulations. 

AN EXAMPLE: NORTH AMERICAN STEPPE AVIFAUNA 

We would now like to provide a brief demon
stration of the application of this methodology 
and some of its concepts to a real set of data, 
although unfortunately not one originally 
collected explicitly for this purpose. The data 
come from a collection of 26 grassland and 
shrubsteppe sites scattered throughout middle and 
western North America, representing a wide array 
of steppe vegetation types (fig. 5). Sampling 
methodology, site locations, species lists and 
abundances, descriptions of variables, etc. are 
fully detailed elsewhere (Rotenberry and Wiens 
1980). At each plot we set up a 10-ha grid, 
mapped the territories of all breeding birds, and 
measured habitat variables. In this particular 



Figure 5. Location of avian censuses used in this 
analysis. Numerals keyed to table 1 in 
Rotenberry and Wiens ( 1980). Steppe types 
generalized from KUchler (1964). 

study we were interested in the role of spatial 
heterogeneity, or patchiness in vegetaion 
structure, in determining distribution and 
abundance of grassland birds and the structure of 
their communi ties. The 22 variables that were 
measured fell into two basic categories: coverage 
variables (simply the percent coverage of various 
physiognomic classes, such as shrubs, grasses, 
forbs, or bare ground) and structural variables. 
Structural variables are also physiognomic in 
nature, but have the additional property of 
"dimension"; that is to say, variation in a 
structural ni"easure is generally associated with 
variation in either a horizontal or a vertical 
plane. Ultimately 10 horizontal heterogeneity 
indices, 5 vertical indices, and 7 coverage 
classes were considered. The results, given here 
in the most basic form (table 1), were somewhat 
surpr1s1ng in that a very distinct separation 
between the vertical and horizontal indices were 
observed; 9 of 10 horizontal indices loaded high 
on the first axis (41% of total variation), while 
all 5 vertical indices loaded high on the second 
(22% variation). Increasing horizontal 
heterogeneity was associated with increasing 
coverage of shrubs and bare ground, and decreasing 
coverage of grass and litter. Vertical 
heterogeneity varied slightly with changing forb 
coverage. Together, these two axes accounted for 
almost two-thirds of the total variation. We thus 
interpreted these components as representing two 
largely independent gradients in vegetation 
structural heterogeneity--a major axis of 
horizontal patchiness and a minor axis in vertical 
patchiness. 

The sites tended to sort themselves into 
broad classes along these axes in horizontal and 
vertical heterogeneity (fig. 6A). Tallgrass sites 
evidenced substantial vertical heterogeneity, but 
relatively little patchiness in a horizontal 
plane. Shrubsteppe sites generally showed as much 
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Table 1. Factor loadings of vegetation principal 
components. Only those loadings greater than 
0.40 (analogous to a correlation significant at 
the 0.05 probability level) are shown; only the 
first two of five factors with eigenvalues 
greater than 1 are shown. Complete details of 
the analysis, including ex planations of 
variables, are given by Rotenberry and Wiens 
( 1980). 

Vegetation 
variable 

Structural-
horizontal 

HIT-10 

LITDEP 

CVTOTHIT 

CVMAXHGT 

CVLITDEP 

CVTOTHGT 

CVHGTDIF 

HITS-HI 

LIT-HI 

DIST-HI 

Structural-
vertical 

TOTHITS 

MAXHGI' 

EFFHGT 

TOTHGI' 

HGT-HI 

Coverage 

Grass 

Forb 

Shrub 

Bare 

Litter 

Factor: I 

Eigenvalue: 9.02 

% o: 
E % o: 

41.0 
41.0 

0.46 

-0.71 

0.83 

0.84 

0.80 

0.50 

0.68 

0.93 

0.69 

0.56 

-0.87 

0.80 

0.92 

-0.82 

II 

4.94 

22.4 
63.4 

0.44 

0.52 

0.73 

0.56 

0.77 

0.86 

0.88 

0.70 

0.40 
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Figure 6. Distribution of steppe bird census sites (A) and bird species means (B) in environmental space 
defined by the first two principal components (PC! and PC!!) of 22 site-based habitat structure variables. 
PC! represents increasing horizontal heterogeneity; PCII represents increasing vertical heterogeneity. 

vertical heterogeneity as the tallgrass ones, but 
differed markedly in being much patchier 
horizontally. Shortgrass sites were intermediate 
in horizontal heterogeneity but, as one might 
expect, showed very 1i ttle vertical variability. 
Mixed-grass sites were the most varied in their 
structure, with some positioned intermediate to 
shortgrass and tallgrass plots, while another more 
closely resembled shrubsteppe sites in structure. 
Montane sites were intermediate as well. 

Figure 6B shows bird species plotted in the 
same space; each point represents the average of a 
species' factor scores for all of its occurrences 
combined without regard to its abundance. Not 
surprisingly, species that are identifiable as 
being largely tallgrass, shortgrass, or 
shrubsteppe -species are generally found in the 
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Figure 7. Distribution of tallgrass and 
shrubsteppe bird .census sites and individual 
bird species from those sites. Axes as in 
figure 6. EML = eastern meadowlark, DCK 
dickcissel, GRS = grasshopper sparrow, UPP = 
upland plover, WML = western meadowlark, HLK = 
horned lark, SGS = sage sparrow, MDV = mourning 
dove, RKW = rock wren, VSP = vesper sparrow, SGT 
= sage thrasher, BRS = Brewer's sparrow, LGS = 
loggerhead shrike. 
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same areas of PCA-space as their sites. Of more 
interest, of course, are some details that go into 
generating these means. For example, figure 7 
reprsents both sites and birds for four tallgrass 
and four shrubsteppe samples. (Scientific names 
of all species are given in appendix I.) It is 
apparent that a number of shrubsteppe species are 
not very close to their site means, and indeed 
some sites appear to have a great deal of 
dispersion around them. Although tallgrass 
species did not appear as dispersed, dickcissels 
and grasshopper sparrows did demonstrate a 
consistent pattern of within-plot partitioning, 
with the latter found in vegetation of less 
vertical heterogeneity but greater horizontal 
patchiness. The co-occurring eastern meadowlark, 
however, seemed to be positioned independently. 

Contour intervals for the species show a wide 
variety of patterns (figs. 8-15). Our collection 
of sites appears to have almost e.xactly centered 
on the habitat distribution of western meadowlarks 
(fig. 8), and this pattern, in retrospect, is 
perfectly consistent with most of what is known 
about the behavior, habitat selection, and 

WESTERN M£AOOW~RK 

Figure 8. Distributional pattern of western 
meadowlarks. Axes as in figure 6. Isopleths as 
individuals/km 2 • 
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Figure 9. Distributional pattern of dickcissels, 
sage sparrows, and McCown's longspurs. Axes and 
isopleths as in figure 8. 

geographical distribution of this species (Lanyon 
1956, and personal observation). 

It also appears that the range of habitats 
sample was only peripherally used by several 
species. For example, the dickcissel (a tallgrass 
prairie species), sage sparrow (a shrubsteppe 
bird), and McCown's longspur (abundant in 
shortgrass) all seem to have centers of 
distribution that lie at the edge or even outside 
of the limits of habitat gradients defined here 
(fig. 9). Presumably, then, if data were 
collected in more extreme shrubsteppe vegetation, 
we would be able to define the limits of sage 
sparrow distribution more accurately. The most 
extreme example of peripheral species are those 
that occurred on just one of the 26 plots we 
sampled (fig: 10). If a line is graphed that 
encloses all the site mean values for these 
gradients, it is apparent that these species all 
lie beyond that boundary, indicating that even at 
those sites on which they did occur they were 
occupying peripheral habitat. It likewise is 
assumed here that if sampling effort were 
increased away from this boundary, more sites at 
which these species occur would be encountered. 

HORNED LARK 

~ 
0 

PC I 

Figure 11. Distributional pattern of horned 
larks. Axes and isopleths as in figure 8. 
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SINGLE-SITE SPECIES e LGS 

:-------

PC I 
------~------------~-------------L---________ __ 

e MDV 

0 CCL---
OMTF 

Figure 10. Distributional pattern of species that 
occurred at only a single census site. Species 
associated with montaine meadows have been 
omitted. Axes as in figure 6. Dashed line 
encloses all site mean values (figure 6A) • HNS 
= Henslow's sparrow, BOB = bobolink, CGL = 
chestnut-collared long spur, MTP = mountain 
plover, NHK = common nighthawk, MDV = mourning 
dove, RKW = rock wren, LGS = loggerhead shrike. 

Horned larks, present in both shrubsteppe and 
shortgrass habitats, apparently increase in 
abundance as the habitat becomes more uniform in 
both dimensions (fig. 11). This is consistent 
with our own observations of the species, which 
suggest that the lark's ultimate idea of habitat 
nirvana is the uniform monotony of a paved parking 
lot. 

Some patterns of contours are more difficult 
to interpret. Brewer's sparrows, for example, 
evidenced a rather discontinuous distribution 
(fig. 12). While we have searched for another 
species that might fit in the gap, none of the 
species enounterd in our censuses througout the 
North American steppe vegetation showed a 
reciprocal distribution in this area. At this 
time we can only surmise that there may be some 
sort of biogeographical constraint to Brewer's 
sparrows filling in the vacancy, or that perhaps 

8REWER'5 SPARROW 

PC I 

Figure 12. Distributional pattern of Brewer's 
sparrows. Axes and isopleths as in figure 8. 



Figure 13. Distributional pattern of vesper 
sparrows, dickcissels, and lark buntings. Axes 
and isopleths as in figure 8. 

populations in the two rather disjunct habitat 
types represent different ecological races or even 
incipient subspecies. 

The precise habitat affinities of vesper 
sparrows have defied ready generalizations, and 
their distribution along these synthetic habitat 
gradients (fig. 13), when considered by itself, 
adds little to a more precise definition. It is 
interesting, however, to plot the vesper sparrow 
simultaneously with the dickcissel (a tallgrass 
species) and the lark bunting (a shortgrass 
species) (fig. 13). While one cannot conclude 
from this analysis what mechanism might ultimately 
be responsible for these observed distributional 
patterns, they certainly appear to be nonrandom. 

One may also examine situations where 
nonrandom patterns of distribution might be 
predicted ~ priori, such as might result from 
competitive interactions. Eastern and western 
meadowlarks, for example, are congeneric and are 
thought to express a number of competition-induced 

EASTERN MEADOWLARK 

Figure 14. Distributional pattern of eastern and 
western meadowlarks. Axes and isopleths as in 
figure 8. 
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relationships. Their contours, while largely 
exclusive, do show some overlap (fig. 14). 
Although no really clear pattern is present in 
terms of a sharp abutment or exclusivity, we could 
predict that sites that fall within the particular 
area where density overlap is greatest are where 
interspecific territoriality is likely to be most 
intense. Although dickcissels and grasshopper 
sparrows appeared to partition individual 
tallgrass plots (fig. 7), their pattern of 
contours (fig. 15) suggests little partitioning on 
a regional scale and instead seems indicative of 
independent differential habitat selection. 

Finally, one can examine the predicted effect 
of some major alteration in some part of the 
steppe environment; say, for example, a decision 
were made to mow a tallgrass prairie? One expects 
a tremendous drop in vertical heterogeneity as the 
grasses are all cut flat, with perhaps a slight 
increase in horizontal patchiness as new areas of 
bare ground open up following removal of forbs and 
small shrubs. By superimposing this change upon 
the species' contours, changes in species 
abundances can be predicted (fig. 16). Clearly 
the tallgrass species such as dickcissels (fig. 
16A) and eastern meadowlarks (fig. 16B) are likely 
to disappear altogether, while species abundant in 
habitat with low vertical heterogeneity, like 
horned larks (fig. 16C) or lark buntings (fig. 
16D), will probably increase considerably if there 
are no biogeographical constraints to their 
response to this habitat alteration. Grasshopper 
sparrow densities may change (fig. 16E), but it 
seems unlikely that the species would disappear 
altogether. In the case of the western 
meadowlark, however, predictions could be 
equivocal (fig. 16F); this will depend both upon 
accuracy in estimating how an altered site will 
"move" in habitat space and upon proximity of the 
new site position to contours representing an area 
of fairly rapid change in a species' abundance. 
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DICKCISSEL 

GRASSHOPPER SPARROW 

Figure 15. Distributional pattern of dickcissels 
and grasshopper sparrows. Axes and isopleths as 
in figure 8. 



A B c 

D E F 

Figure 16. Responses of affected species to hypothetical structural changes and associated multidimensional 
movement of a tallgrass site that is subjected to mowing. A-dickcissel, B-eastern meadowlark, C-horned 
lark, D-lark bunting, E-grasshopper sparrow, F-western meadowlark. 

CONCLUSIONS 

We hope to have made it clear that, even with 
a set of data that was not taken with the 
methodology in mind, our technique of combining 
the individual species approach with one that is 
plot-oriented is feasible; indeed, there may be 
sets of existing bird/habitat data to which it may 
be applied.· Analysis certainly need not be 
confined to physiognomic variables as we have done 
here, but can be extended to whatever environ
mental or habitat variation one thinks is 
important in affecting species distributions and 
relationships. Although certain biological 
objections can be raised regarding application of 
PCA to either species- or plot-oriented data 
(Johnson 1981), we believe this new technique, 
combined with judicious selection of variables, 
appropriate sample sizes, and other attention to 
statistical niceties, may ameliorate these 
objections substantially. One must bear in mind 
that the technique of PCA is descriptive rather 
than inferential and that it basicially provides 
us a sophisticated "multivariate natural history". 
We think that such descriptions will ultimately 
prove robust with respect to what is already known 
about the particular set of species described and 
that they will be capable of generating new 
insights for those that employ them. 
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Appendix I. Scientific names of all birds 
mentioned in text or figures. 

Mountain plover Eupoda montana 

Upland plover Bartramia longicauda 

Mourning dove Zenaida macroura 

Common nighthawk Chordelis minor 

Horned lark Eremophila alpestris 

Rock wren Salpinctes obsoletus 

Sage thrasher Oreoscoptes montanus 

Loggerhead shrike Lanius ludovicianus 

Bobolink Dolichonyx oryzivorus 

Eastern meadowlark Sturnella magna 
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Western meadowlark 

Dickcissel 

Grasshopper sparrow 

Henslow's sparrow 

Lark bunting 

Vesper sparrow 

Sage sparrow 

Brewer's sparrow 

McCown's longspur 

Chestnut-collared 
longs pur 

Sturnella neglecta 

Spiza americana 

Ammodramus savannarum 

Passerherbulus henslowii 

Calamospiza melanocorys 

Pooecetes gramineus 

Amphispiza belli 

Spizella breweri 

Calcarius mccowni 

Calcarius ornatus 

DISCUSSION 

BOB WHITMORE: How did you compute the density 
contours? The smooth curves that you presented 

would seem to indicate many (>108 ) data points. 
How many points per species did you have? 

JOHN ROTENBERRY: Not nearly as many as we would 
have liked, especially for species whose 
distributions take them off the edges of the 
habitat space. The curves were initially drawn 
using strict linear interpolation between points; 
I subsequently smoothed them by eye for this 
presentation. To a considerable extent it 
represents artistic license tempered by the 
interpolated realities and biological intuition. 

BOB WHITMORE: You had some species with 
"peripheral ranges" on your ordinations. How do 
you know that the observed distributions are not 
just an artifact of the variables being measured? 

JOHN ROTENBERRY: We cannot know for sure, but it 
seems likely due to biogeographical considerations 
and the distribution of our sites. 

E. JAMES HARNER: How did you scale the variables 
in your PCA analysis? Did you only use the 
correlation matrix? 

JOHN ROTENBERRY: The variables were all 
normalized using either log or arcsin square root 
transformation. I only used the correlation 
matrix for PCA, which is analogous to using the 
covariance matrix of standardized data. The 
component axes were also rotated using varimax. 

BOB WHITMORE: Given the overlap problems when 
using centroid distances, why not use a 
multivariate measure of niche overlap? 



JOHN ROTENBERRY: I think that would be the best 
approach. 

JAMES DUNN: How the species counts balance each 
other as a function of site properties is an 
interesting question. Does your analysis reflect 
this? Why not try the GSK model as implemented by 
PROC FUNCAT(SAS)? One nice feature of the model 
is that it would allow formal tests of the effects 
of habitat variation on relative frequencies of 
the species. In particular, the total bird count/ 
plot could be used as a predictor to see if site 
productivity affects the relative composition of 
the species. The only difficulty I see with the 
FUNCAT is zero counts which you may have. 
Potentially a maximum likelihood solution could 
handle that using "working values." 

JOHN ROTENBERRY: In the paper where the data were 
originally described, we did test correlations of 
species diversity, richness, and evenness with 
each of the component axes. Diversity did 
significantly increase with incoming vertical 
heterogeneity, but varied independently of 
horizontal heterogeneity. Richness and evenness 
were not significantly correlated with either 
axes. With respect to exam1n1ng relative 
frequencies, I think it might be worthwhile, but 
we are, in fact, plagued with zero counts 
throughout the bird data set. I'm not familiar 
with FUNCAT, so I don't know how the use of 
"working values" will affect the outcome. 
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CHARLES SMITH: When making measurements in the 
field, how does one differentiate between the 
extremes of the "niche-habitat continuum," that 
is, are habitat variables distinguished from niche 
variables when measurements are taken? 

JOHN ROTENBERRY: I suspect that in general we are 
not dealing with the extremes, but that instead 
most of the variables we chose to measure 
reflected both aspects. My feeling is that the 
synthetic component axes do represent habitat 
gradients, and that (for ~irds at least) habitat 
is a niche dimension, for the reasons I suggested 
earlier in this workshop. 

PAUL GEISSLER: Looking at your figures, I noted 
that many of the frequency ellipses were oriented 
at about 45° to the axis. Perhaps the 
interpretability of the axes for the birds might 
be improved if the axes were rotated parallel to 
the orientation of the ellipses. 

JOHN ROTENBERRY: There are two problems with 
doing that. First, if we rotate the axes with 
respect to the birds, we destroy the relationships 
among the variables and change the interpretation 
of the axes in some unknown way. This would not 
be the same thing as varimax or orthomax rotation. 
Second, the ellipses do represent the relations of 
the bird species to the derived axes. If a 
species shows a response to both horizontal and 
vertical heterogeneity, we expect frequency 
ellipses to be oriented just this way. 



ROBUST PRINCIPAL COMPONENT AND DISCRIMINANT 

ANALYSIS OF TWO GRASSLAND BIRD SPECIES' HABITATI 

E. James Harner2 and Robert C. Whitrnore3 

Abstract. --Outliers in multivariate data can have 
pronounced effects on the interpretations and conclusions of 
statistical analyses. However, data is rarely examined for 
outliers, due in part to the difficulty in discovering them 
if the dimensionality of the variable space is greater than 
two or three. We also do not believe that researchers are 
aware of the severity of the problem that outliers create. 

Techniques are currently being developed which are 
robust to small departures from the assumed model and, in 
particular, to outliers. The robust methods summarized in 
this paper are simple extensions of maximum likelihood 
estimators of the mean vector and covariance matrix assuming 
an underlying normal distribution. In essence. they are 
weighted versions of maximum likelihood techniques in which 
weights are determined iteratively based upon the size of 
Mahalanobis distances. Principal components can be 
determined from the robust covariance or correlation matrix. 
For the discriminant problem, robust estimates are determined 
for each group and these are substituted into Fisher's linear 
discriminant function. 

These techniques are applied to two sparrow species on 
which four habitat variables were measured. These data have 
some outliers but the data set would not be classified as 
being "bad." The principal component analyses for both 
species resulted in less emphasis being placed on the first 
component for the robust techniques as compared to the 
classical method. Fisher's linear discriminant model 
depended too heavily on several outlying values. In order to 
improve the stability of estimates and the accuracy of future 
classifications, Huber's robust discriminant analysis with a 
cutoff value of 1.97 was adjudged to be best. 

Key words: Discriminant analysis; grassland birds; 
maximum likelihood estimation; principal components analysis; 
robustness. 
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INTRODUCTION 

Multivariate '·analyses often start with mean 
vector and covariance matrix estimates. In 
principal components the eigenvectors and 
eigenvalues are computed from the covariance 
matrix or from scaled versions of it. The mean 
vector and covariance matrix are calculated from 
each sample in discriminant analysis. 
Unfortunately, classical maximum likelihood 
estimators based on multivariate normal theory and 
least squares estimators are extremely sensitive 
to outlying observations. 

During the past 20 years statisticians have 
been developing new estimators or modifying 
existing estimators to make them less sensitive to 
certain departures from the assumptions of a 
model. Three classes of estimators are being 
developed: 

1) M-estimators or maximum likelihood type 
estimators; 

2) R-estimators or rank type estimators; and 
3) L-estimators or estimators based on linear 

combinations of order statistics. 

Estimators of the above types are called robust 
estimators. By robustness we mean that the 
distribution of an estimator is insensitive 
against small deviations in the shape of the 
underlying distribution of the assumed model. 
This is essentially equivalent to an estimator 
being robust to outliers although other 
distributional variations are possible. In many 
biological sampling situations outliers frequently 
arise due to gross errors (bad data points) or 
from heavy~tailed distributions. Huber (1977a) 
states that "5-101 wrong values in a data set seem 
to be the rule rather than the exception." Since 
our experience with outliers in biological data is 
consistent with this statement, we feel robust 
methodologies are of great value to researchers. 

A general theory of R and L-estimators is 
currently being developed for the univariate 
linear model (Hettmansperger and McKean 1977, 
Bickel 1973). However it is not clear how to 
extend these to the multivariate case. The theory 
of M-estimators was begun by Huber (1964). Huber 
(1977a, 1977b) and Maronna (1976) developed 
M-estimation techniques for the mean vector and 
covariance matrix of a single population. They 
derived properties of these estimators and 
suggested algorithms to compute them. Randles et 
al. ( 1978) studied the performance of these and 
other estimators in the two group linear and 
quadratic discriminant analysis problem. Other 
than these papers, little else has been done. 

The intent of this paper is to apply the 
estimators developed by Huber and Maronna to bird 
habitat data. Both principal component and 
discriminant analyses are presented. First an 
introduction to M-estimators is given. 
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M-ESTIMATORS 

Univariate Problem 

For intuition the univariate location problem 
is considered first. Let f(x-~) represent a 
density and ~ the location parameter (mean) we 
want to estimate. x1 , x2 , ••• , Xn represents a 

random sample from this distribution. 
likelihood estimate is that value 
maximizes 

n 
L(~) = n f(x.-~), 

i =1 
1 

The maximum 
of ~ which 

the likelihood function. It is more convenient to 
max1m1ze lnL(~) which gives the same solution 
s i nee the natural logarithm is a monotonic 
transformation •. Thus we maximize 

n 
lnL(~) = E lnf(xi-~) 

i=1 

n 
- E p(x.-~) 
i: 1 

1 

with respect to ~ where p(x-ll) 
Differentiating and setting the 
expression to zero we get 

n 

-lnf(x-ll). 
resulting 

d[lnL(ll)]/dll =- E f'(x.-~)/f(x.-~) 
i= 1 1 1 

= E<j)(Xi-ll) = 0, 

where <j)(x-~) = d[-p(x-~)]/d~. 

The maximum likelihood estimate, G. solves the 
last equation. 

The normal case is given by: 

f(x-~) = (1/~)e[-(x-~) 2/2], 

p(x-~) = (x-~) 2 /2-c, and 

The solution then is found by solving 

the sample mean. 

Maximum likelihood estimators may or may not 
be robust depending on the form of f( x-~). How
ever, the commonly used normal case is decidedly 
non-robust. To illustrate this, consider a sample 
of four from a normal distribution together with 
one outlier. Suppose the values are 2, 4, 10, 
3.5, 3. The p functions of each x. are given in 
figure 1 with c arbitrarily set to zero. The 
maximum likelihood estimate, G=4.5, is being 
influenced greatly by x

3 
= 10. On the other hand, 



the median, a robust estimator, has a value of 
3. 5. The difficulty is that we are minimizing 
Ep(X.-Jl) which is qua.drp-tic in the normal case. 
For 

1
an outlier, ·l!:/sa.y, p(x

3
-\l) is quite large 

near the center of the distribution and thus the 
solution p is pulled to the right so that p(x

3
-p) 

is not so large. 

Clearly this p function does not result in a 
robust estimate. How can we robusti fy p? 
Intuitively, it appears that at some distance 
symmetric about each x. we should make p increase 
less rapidly, perhaps 

1 
even level off. Various 

functions have been suggested by researchers and 
two of these are sketched in figure 2 along with 
the maximum likelihood p. Huber's function 
increases quadratically along with the maximum 
likelihood p until I X-Jll = k 1• For I x-lll >k 1 

Huber's function increases linearly. Hampel's 
function follows Huber's until 1x-Jl1 = k2 at which 

time p(X-Jl) begins to level off, which it does at 
1x-il1 = k3• The values for k 1, k2, and k3 can be 

chosen by the researcher but reasonable values are 
k1 = 1.7, k2 = 3.4, and k

3 
= 8.5 (Hogg 1979). The 

analytic representations of the functions are also 
given in Hogg (1979). 

Robustness can be characterized more easily 
in terms of the ' functions (fig. 3). To be 
robust the ' function should at least be bounded. 

12 

:::::a. 

I 
>< -~ 

Figure 1. Normal density p plotted as a function 
of Jl for each fixed xi. 
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Figure 2. Normal density, Huber, and Hampel p 1s 
plotted as a function of x-\l with constants of 
k 1 = 1.7, k2 = 3.4, and k3 = 8.5. 
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Figure 3. Normal density, Huber, and Hampel ''s 
plotted as a function of X-\l with constants of 
k 1 = 1.7, k2 = 3.4, and k3 = 8.5. 



Note that Hampel's, function even redescends to 
zero. 

Why is the shape of the 4> function so 
important? First, the influence an observation 
has on the estimators is proportion to 4> for 
M-estimators (Hampel 1974). Thus if 4> is 
unbounded as is the 4> function in the normal case, 
a single "bad" value can have a great influence. 
Secondly, M-estimators of this type can be 
expressed as weighted means with the weights 
proportional to (j>. That is 

E(j>(Xi-~) = EWi(xi-~) 

where wi = (j>(xi-~)/(xi-~). 

In the normal case w. = 1 for all i but the Huber 
and Hample estimates

1
may have wi < 1. 

For simplicity we have been examining the 
case in which a= 1 (i.e., the scale parameter is 
unity). Actually we must solve 

by obtaining an ancillary estimate of a. 
Generally the equation is solved iteratively 
starting from initial estimates, U

0 
and o

0
• At 

stage j the estimate of scale is updated and the 
new estimate of location is then computed. The 
estimate of scale should be robust, such as the 
median absolute deviation (MAD) estimator 
(Mosteller and Tukey 1977). 

The procedure described above can easily b~ 

extended to'the regression case (e.g., Hogg 1979). 
Consider the model 

10 
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6 
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2 
• • 

0 2 

Normal 
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A Normal Mean 
x Huber Mean 
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Figure 4. Example illustrating the effect of a 
single outlier on the mean vector and 50 percent 
concentration ellipse. 
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Y i = .!i_!+ei' 

where yi is the ith "dependent" observation, .!i is 

the ith 1 x p known "independent" vector, a is a 
p x 1 vector of unknown parameters, and e. is the 
i th random error. We now want to solve tor a in 
the p equations -

EX .. (j>[(y.-x.a)/a] = 0, j = 1, 2, ••• , p, 1J 1 -1-

where x .. is the jth "-independent variable" on the 
1J 

ith observation. 
a are required. 
as before. 

Of course ancillary estimates of 
The system is solved iteratively 

Multivariate Problem 

The multivariate estimation problem is much 
more complicated than the univariate one. In 
particular, outliers in high demensional space are 
difficult to detect. OUtliers may be apparent 
only on new variables which are linear 
combinations of the original variables. Although 
difficult to detect, their effect may be large. 
Figure 4 illustrates the effect of a single 
outlier on the concentration ellipse and on the 
sample mean vector. Notice that the sample mean 
vector is pulled toward the outlier. More 
importantly the shape of the concentration 
ellipse, which is determined from the sample 
covariance matrix, is distorted. This is 
important since most multivariate analyses are 
based on estimates of covariance matrices. The 
robust correlation of 0. 904 more adequately 
expresses the relation between x and y than does 
the standard Pearson product-moment correlation of 
0.634. 

Clearly robust estimators are needed which 
m1n1mi ze the effect of outliers. This is 
particularly true in the multivariate case, since 
variances and covariances are extremely sensitive 
to outliers . 

Maronna (1976) and Huber (1977a, 1977b) have 
developed most of the theory for robustly 
estimating multi variate location and scale using 
M-estimators. Maronna characterizes M-estimators 
as being the solutions to the following matrix 
equations: 

where ~ is the p x 1 mean vector, E is the pxp 

covariance matrix, di = [(x.-~)'E- 1 (x.-~)] 112 is 
-1- - -1-

the Mahalanobis distance, and u1 and u2 are weight 



(unctions. In the multivariate normal case u1 = 

u2 = 1 for all i and the ordinary maximum 

likelihood estimatorS '~esult, that is Q = E_!i/n, 

and t = [ E ( x. -_Q) ( x. -Q) '] /n. Huber's development 
- -1 -1 

of M-estimators is slightly more general than 
Maronna's. 

We used a modified form as suggested by 
Randles et al. ( 1978) • Start with :! and ~. the 
ordinary estimates. Compute 

di = [(_!i-!)'~-1(_!i-:!)J1/2, i = 1, 2, ••• , n. 

Replace .! and ~ by weighted estimates 

-· X = (EWi_!i)/Ewi and 

* 2 -* -* 2 S = (tw. (x.-x )(x.-x )')/tw. 
1 -1 - -1 - 1 

if d. < k. 
1 -

-* The procedure is iterated until the change in x 

* and S is sufficiently small or until a 
predetermined number of iterations is reached. 

A graph of the weight function is given in 
figure 5. Note that the weight is 1 for an 
observation unless the Mahalanobis distance is 
greater than k. The weight then decreases 
inversely with the Mahalanobis distance. If all 
observations are sufficiently well-behaved, then 
all the weights remain 1 and the · ordinary 
estimates result. 

1.0------

-.J: 
G) 0.5 
•• 
~ 

o~----2-----4-----6----~~--~1~0 

Mahalanobis Distance 

Figure 5. Weight function for estimating the mean 
vector and covariance matrix by Huber's method 
with a constant of k = 1.97. 
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This approach of robust estimation can be 
fruitfully applied in principal component 
analysis, factor analysis, regression, 
discriminant analysis, etc. The application in 
this paper will be in principal components and 
discriminant analysis. 

The robust discriminant problem is discussed 
in Randles et al. ( 1978). They discuss several 
procedures for the two-group case. A method that 
is suggested naturally is to estimate the mean 
vector and covariance matrix separately and 
robustly (as above) for each group. These are 
then substituted into the linear or quadratic 
discriminant function. 

Let _! 1 , _!2, ••• , .!n and x_1 , x_2 , ••• , 1m be 

two independent random samples from p-variate 
populations. Let z be an observation from one or 
the other population. The Huberi zed 1 inear 
discriminant function (HLDF) then is 

-* -* -1 - --Q.~ (~)=[~- 1/2(_! +x_ )]' ~ [_!*-x_*] where x* and 

x_* are the robust sample mean vectors and ~~ is 

the robust pooled sample covariance matrix. It is 
defined by 

S* = [(n-1)S*+(m-1)S*]/(n+m-2) -p -X -y 

where S* and S* are the robust sample covariance -x -y 

matrices. The robust sample discriminant 
coefficients are given by 

a* = s•-1 <'x*-'Y*>. - -p - -

Fisher's linear discriminant function (LDF) 
is defined similarly except that the ordinary 
estimates are placed in the above HLDF. Huberized 
or Fisherian quadratic discriminant functions can 
be defined easily as in Randles et al. (1978). 

The geometry of robust discriminant analysis 
is similar to that of ordinary discriminant 
analysis. Concentration ellipsoids are determined 
by the equations of the form 

(x-x*)'S*-1(x-x*) = c and 
-- -p --

- -1 -
(x_-x_*)'~ <x.-x_*) = c 

where c is a positive constant. Probability 
statements can be made concerning the ellipsoids 
by using a chi-square distribution with p degrees 
of freedom as an approximation. 

Stability of the Estimators 

In order to assess the discriminant model it 
is important to assess the stability of the sample 
discriminant coefficients. A technique both for 
obtaining new estimates and for assessing their 
stability is the Jackknife (Mosteller and Tukey 
1977). An initial step of the Jackknife procedure 



called "leave-one-out" is also useful for 
validating the model. These procedures are not 
applied to the .principal component coefficients in 
this paper although it would be possible to 
jackknife them. 

The robust discriminant coefficients are 

* given by _! 1 = (g~, g~, The method 

starts by recomputing the coefficients each time 
after leaving out a single observation. For 
simplicity, let j range from 1 to N:n+m whereas 
i=1,2, ••• ,p denotes the variables, i.e. Bf(-j) is 

the coefficient for the ith variable with the jth 
observation removed. B*< ') is used to predict - -J 

the jth observation in the leave-one-out 
validation. Note that a prediction is being made 
based on values which were not used in building 
the model. 

The jth pseudo-value for variable i is given 
by 

'S"tt:( ') :Ngtt:-(N-1)gtt:( '). 
1 -J 1 1 -J 

Then the jackknife estimator is given by 

A standard deviation estimate for both gf and ef 
is given by 

N 2 1/2 
Sr;,.;* = { E (~(.)-'it') /[N(N-1)]} • 
ai j=1 1-J 1 

We can then test for significance since Btt:/s * or 
1 'S"i 

ef/s~ has an approximate t distribution with N-1 
1 

degrees of freedom under the null hypothesis that 
the coefficient is zero (Tukey 1958). 

SPARROW EXAMPLE 

Since 1976 data on sparrow habitats have been 
collected on "reclaimed" strip mines in northern 
West Virginia. Our purpose is to illustrate the 
robust procedures discussed in the previous 
section using a small portion of these data. In 
particular, habitat data of savannah sparrows 
(Passerculus sandwichensis) and grasshopper 
sparrows (Ammodramus savannarum) areused based on 
field work done in 1978 on the Great Mine (47.5 
ha) in Preston County, West Virginia. 

Ten vegetation variables were measured based 
on the territories of the sparrows. However, 
after preliminary screening, only four variables 
are used in this paper. They are bare ground 
cover (BGC), litter depth (LD), vertical diversity 
of grass (VH), and total grass density (TD). 
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Methods of measurement are described by Whitmore 
( 1979). Units of measurement are presented only 
in table 1. (Tables follow literature cited.) 
Twenty savannah sparrows and 51 grasshopper 
sparrows were found on this mine in 1978. 
However, in order to make the sample sizes equal 
(for convenience) only the first 20 grasshopper 
sparrows were used. No attempt was made to screen 
the data to pick the "best" observations to 
illustrate our techniques. 

Principal Component Analyses 

The effects of outliers on principal 
component analyses depend on their position 
relative to the "ellipsoidal" 'swarm of points in 
p-space. The general effect is to shift and 
stretch the ellipsoid in the direction of the 
outliers. If the outliers are along the major 
axes, then the ellipsoid is elongated more than it 
should be. On the other hand, if the outliers are 
orthogonal to the major axes, the ellipsoid is 
contracted more than it should be. 

The analyses that follow estimate the mean 
vectors and covariance matrices by ordinary 
maximum likelihood (ML) adjusted to be unbiased 
and by Huber 1 s method at cutoffs of k = 1. 97 
(H197) and k = 1.56 (H156). The cutoff at 1.97 
corresponds to weighting observations less which 
fall tn the outer 10 percent of the distribution 
whereas the 1. 56 cutoff corresponds to those 
observations in the outer 30 percent of the 
distribution. For this data set the 1. 97 cutoff 
should be adequate to protect against the bad 
effects of outliers. 

The raw data are presented in table 1 and 
weights based on the Huber technique in table 2. 
The savannah sparrow data is typical of most data 
sets in having a few observations (about 10%) 
somewhat distant from the bulk, particularly 
observations 16 and 17. Three values are 
relatively bad for the grasshopper sparrow data, 
observations 1, 3, and 13 (table 2). 

Savannah Sparrow 

Summary statistics for habitat variables 
measured on savannah sparrows are given in table 
3. The robust mean estimates were rather similar 
to the ML estimates although some shift is 
present. The robust estimate for BGC increased 
relative to the ML estimate, whereas the robust 
mean estimates for LD, VH and TD decreased (table 
3). The standard deviations estimated by H197 
decreased relative to those estimated by ML, 
except for VH. The H156 standard deviations are 
consistently larger than the H197 standard 
deviations. 

The most 
values was 
variables. 
consistently 
estimates. 

pronounced effect caused by outlying 
on the relationships among the 

The H 197 correlation estimates were 
less (in absolute value) than the ML 

The H 156 estimates were not as 



consistent but note that the correlation between 
BGC and VH is essent~a~ly zero (table 3). 

In order to un~i'erstand better the nature of 
the relationships, principal components were 
computed on the correlation matrix. The largest 
eigenvalue decreased as robustificaion increased, 
whereas the second largest eigenvalue increased 
(table 4). This indicates that the outlying 
observations, principally observations 1, 12, 16, 
and 17 (table 2), approximately lie along the 
first principal axis which causes the ellipsoid to 
be elongated with certain relationships 
accentuated and others obscured. 

In all three techniques the percent of 
variation explained by the first two components 
was about 90% (table 4). The change of emphasis, 
however, is best seen by examining the 
eigenvectors (principal component coefficients). 
The first component contrasts BGC to the other 
variables in all cases. However, BGC becomes 
increasingly less important based on the robust 
estimates. For the ML technique, the second 
component seems to suggest a contrast between LD 
and TD. On the other hand, the robust second 
component suggests a linear combination of BGC and 
VH is important. 

Grasshopper Sparrow 

Summary statistics for the four variables 
measured on grasshopper sparrow habitat are given 
in table 5. Although the mean vector estimates 
for grasshopper sparrows were somewhat different 
than those for savannah sparrows, a nearly 
identical change occu·rred when the estimates were 
robustified. The same was true of sample standard 
deviations although not always with the same 
variables (tables 3 and 5). 

For the most part, the grasshopper sparrow ML 
correlations were lower in absolute value than the 
corresponding Savannah sparrow correlations. The 
H197 estimates consistently indicated less strong 
relationships, particularly between BGC and VH. 
In all cases, the correlation between LD and TD 
remained about the same. 

Results of the principal component analyses 
for grasshopper sparrows were analogous to those 
for savannah sparrows. The first two components 
explained about 85% of the variation with 
increasing importance going to the second 
component for the robust estimates (table 6). 
Again, notice the decreasing importance of BGC in 
the first component. In the second component, LD 
becomes less important whereas VH becomes more 
important. As with the savannah sparrow data, the 
robust second component is primarily a linear 
combination of BGC and VH (table 6). 

Discriminant Analysis 

The next phase of the study was to examine 
whether or not it is possible to discriminate 
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between savannah and grasshopper sparrow habitat 
based on these four variables. Tests to determine 
equality of covariance matrices were not done, 
since it is not clear how to do this for the 
robust estimates. However, upon inspecting the 
covariance matrices, the differences between them 
for each estimation technique did not appear to be 
large enough to cause concern. 

Discriminant coefficients, their standard 
errors, and the t-values for all methods are given 
in table 7. None of the coefficients were 
significant for any of the methods. However, in 
all cases the variables in the LDF model were 
closer to significance than the corresponding 
variables in the HLDF (1.97). or HLDF (1.56) 
models. What is the reason for this? For both 
species, the outliers lie along the principal axis 
which tends to elongate the ellipsoids, perhaps 
resulting in an optimistic appraisal of the LDF 
model's ability to discriminate. However, this 
better discrimination can be deceiving since 
estimates of the coefficients are based on 
outliers. Outliers in another sample might appear 
in totally different regions resulting in a very 
different discriminant model. 

Predictions for the LDF, HLDF (1.97) and HLDF 
( 1. 56) models are given in table 8. A value 
greater or equal to zero predicts the observation 
to be associated with a savannah sparrow whereas a 
value less than zero predicts the observation to 
be of the grasshopper sparrow type. For the LDF 
model 75% of the observations are classified 
correctly. The corresponding result for the HLDF 
(1.97) model is 77.5%, and for the HLDF (1.56) 
model it is 65% (table 8). The LDF and HLDF 
(1.97) models have rather similar performances 
with HLDF (1.56) giving poorer results. More 
accurate estimates of misclassification 
percentages, however, were obtained from the 
leave-one-out predictions (table 9). These give 
70, 70, and 60 correct classification percentages 
for LDF, HLDF ( 1. 97) , and HLDF ( 1. 56) , 
respectively. 

We would not recommend the use of the LDF 
model, however, due to its dependence on outliers; 
the HLDF ( 1. 97) model does as well and is more 
stable. As mentioned before, these data are 
reasonably typical with respect to outlier 
occurrence. Thus, a cutoff at 1.56 probably 
targets too many observations as outliers. This 
means that the HLDF (1.56) model for this data is 
too harsh on judging an observation to be an 
outlier and should not be used. 

The lack of significance for the terms in the 
models together with the reasonably good 
classification indicate that models with fewer 
variables might discriminate nearly as well. In 
fact, a model based on only VH does nearly as 
well, but does not illustrate robustness in a 
multivariate setting. 

Realizing that covariance matrices for each 
species may have been too different to justify 
linear discriminant analyses, ordinary and robust 

.·· ..... 



quadratic discriminant analyses were done. These 
models did not imp~ove the probability of 
correctly classtfy;ing an observation and thus are 
not included. , 

REMARKS 

Outliers in multivariate data are difficult 
to detect if the dimensionality of the space is 
greater than two. It is rare that practitioners 
of multi variate methods attempt to adjust their 
analyses to minimize these effects. Partly this 
is due to both the unavailability of techniques to 
deal with multivariate outliers and the lack of 
computer programs. Nonetheless, outliers can have 
pronounced effects on the conclusions. 

We suggest that both classical and robust 
analyses be performed on the data. If they give 
similar results, then use the results from the 
classical analysis and merely note that the robust 
analysis was done. If the analyses give different 
interpretations, it is important to understand 
what observations caused the discrepancies. The 
robust analysis then is generally to be preferred. 

The M-estimation technique presented in this 
paper is a natural extension of maximum likelihood 
estimation. In fact, it is just a weighted 
version in which the weights are determined 
iteratively from the Mahalanobis distances. Thus, 
these robust estimators are easy to understand and 
interpret. 

Lack of computer programs will make it 
difficult to perform these analyses at the present 
time. However, the senior author is currently 
developing a multivariate data analysis package. 
Some of these procedures should be published in 
the SUGI (SAS User's Group International) 
proceedings in 1981. 

ACKNOWLEDGEMENTS 

We wish to thank Gerald R. Hobbs, Harry V. 
Wiant, and Jake C. Rice for reviewing early drafts 
of this manuscript. This paper was published with 
the approval of the Director of the West Virginia 
University Agricultural and Forestry Experiment 
Station as Scientific Paper No. 1665. 

216 

LITERATURE CITED 

Bickel, P.J. 1973. On some analogues to linear 
combinations of order statistics in the 
linear model. The Annals of Statistics 
1:597-616. 

Hampel, F. R. 1974. The influence curve and its 
role in robust estimation. Journal of the 
American Statistical Association 69:383-393. 

Hettmansperger, T. P., and J. W. McKean. 1977. A 
robust alternative based on ranks to least 
squares in analyzing linear models. 
Techometrics 19:275-284. 

Hogg, R. V. 1979. Statistical robustness: one 
view of its use in applications today. The 
American Statistician 33:10~-115. 

Huber, P. J. 1964. Robust estimation of a 
location parameter. The Annals of 
Mathematical Statistics 35:73-101. 

Huber, P.J. 1977a. Robust statistical 
procedures. CBMS-NSF Regional Conference 
Series in Applied Mathematics. 56p. J. W. 
Arrowsmith Ltd., Bristol, Engrand. 

Huber, P.J. 1977b. Robust covariances. p. 
165-191. In Gupta, S.S., and D.S. Moore, 
editors. Statistical decision theory and 
related topics II. Academic Press, New York, 
N.Y. 

Maronna, R.A. 1976. Robust M-estimators of 
multivariate lo,cation and scatter. The 
Annals of Statistics 4:51-67. 

Mosteller, F., and J.W. Tukey. 
analysis and regression. 
Addison-Wesley, Reading, Mass. 

1977. Data 
588p. 

Randles, R. H., et al. 1978. Generalized linear 
and quadratic discriminant functions using 
robust estimates. Journal of the American 
Statistical Association 73:564-568. 

Tukey, J. W. 1958. Bias and confidence in 
not-quite large samples. Abstract in the 
Annals of Mathematical Statistics 29:614. 

Whitmore, R.C. 1979. Temporal variation in the 
selected habitats of a guild of grassland 
sparrows. Wilson Bulletin 91:592-598. 



Table 1. Measurements of four habitat variables for savannah and grass-
hopper ,sp~rrows. 1 

Savannah sparrow Grasshopper sparrow 
Obs BGC LD VH TD BGC LD VH TD 

1 24.3 1. 02 0.98 897 19.8 6.95 1.21 899 
2 36.4 1. 45 0.74 449 38.7 1.20 0.57 174 
3 19. 1 1. 02 1. 00 579 4.5 3.55 0.87 364 
4 42.5 0.26 0.89 197 55.0 0. 47 0.54 133 
5 58.4 0.18 0.56 113 33.0 2.87 0.60 418 
6 15.3 1. 97 1. 04 432 0.5 2.95 0.73 714 
7 48.8 0.27 0.52 145 33.0 0.51 0.71 222 
8 50.0 0.47 0.64 212 20.5 2. 41 0.79 743 
9 18.0 3.31 0.83 830 22.3 0.34 0.81 188 

10 44.4 2.67 0.88 381 10.5 2.00 0.83 454 
11 20.0 3. 15 1. 14 826 24.9 1. 18 0.77 404 
12 14.8 1. 18 0.77 859 55.5 0.53 0.61 95 
13 13.4 3. 10 0.92 604 66. 1 0.56 0.00 154 
14 40.4 0.53 0.44 210 22.9 0. 48 0.32 274 
15 10.6 2.60 1. 00 480 20.5 1. 66 0.51 308 
16 0.7 6.30 1. 30 1208 24.3 1. 20 0.45 271 
17 11. 3 4.46 0.92 468 14.2 1. 76 1. 21 629 
18 68.5 0.87 0.84 120 22.0 2.77 0.57 431 
19 1. 4 3.55 1. 31 1090 58.5 0.41 0.56 127 
20 13.7 2. 42 1. 07 810 14.2 2.31 0.50 451 

1 Variables are BGC -bare ground cover (%); LD -litter depth (em); VH -
vertical diversity of grass (Shannon-Weaver index); and TD- total grass 
density (hits/unit transect). 

Table 2. Final weights for each four-variate observation using Huber's 
robust procedure with cutoffs of 1.97 and 1.56. 

Final Weights 

Savannah sparrow Grasshopper sparrow 

Obs H197 H156 H197 H156 

1 0.786 0.537 0.319 0.271 
2 1 1 1 1 
3 1 0.736 0.495 0.335 
4 0.960 0.640 1 0.987 
5 1 0.986 1 0.887 
6 o. 924 0.648 0.871 0.608 
7 1 1 1 1 
8 1 1 0.650 0.449 
9 0.964 0.639 0.814 0.604 

10 1 0.900 1 0.984 
11 1 1 1 1 
12 0.757 0.540 1 0.888 
13 1 1 0.479 0.328 
14 1 1 0.926 0.726 
15 1 0.765 1 1 
16 0.534 0.408 1 1 
17 0.679 0.471 0.651 0.487 
18 0.800 0.802 1 1 
19 1 0.780 1 0.906 
20 1 1 1 1 '' 

'• 
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Table 3. Sample mean vectors, standard deviations, and correlations for 
four variables measured on savannah sparrow habitat using maximum 
lik~ltrood and Huber's robust procedure with cutoffs of 1.97 and 1.56. 

Sample mean vectors 
BGC LD VH TD 

ML 27.60 2.039 0.890 545.5 
Huber ( 1. 97) 28.13 1. 940 0.880 530.6 
Huber ( 1. 56) 29.63 1. 880 0.866 510.6 

Sample standard deviations 

ML 19.50 1. 625 0.235 334.4 
Huber ( 1. 97) 19. 16 1. 325 0.248 301.2 
Huber ( 1. 56) 23. 14 1. 329 0.328 309.7 

Sample correlations 

BGC BGC BGC LD LD VH 
VS vs vs vs vs vs 
LD VH TD VH TD TD 

ML -0.728 -0.724 -0.831 0.715 0.699 0.761 
Huber ( 1. 97) -0.715 -0.500 -0.757 0.608 0.698 0.723 
Huber ( 1. 56) -0.421 0.032 -0.441 0.693 0.780 0.767 

Table 4. Sample eigenvalues and eigenvectors based on correlation matrices 
for four variables measured on savannah sparrow habitat using maximum 
likelihood and Huber's robust procedure with cutoffs of 1.97 and 1.56. 

Estimator 

ML 
(Cum. Percent) 

H197 
(Cum. Percent) 

H156 
(Cum. Percent) 

Estimator Component 

ML 

H197 

H156 

1 
2 

3 
4 
1 
2 
3 
4 
1 
2 
3 
4 

3.230 
80.8 

3.007 
75.2 

2.641 
66.0 

BGC 

0.509 
-0.360 
-0.425 
-0.656 

0.496 
-0.578 
-0.350 
-0.546 

0.292 
-0.857 
-0.150 
-0.398 

Sample eigenvalues 

Component 

2 3 4 

0.326 0.283 0.160 
88.9 96.0 100.0 

0.516 0.311 0.166 
88. 1 95.8 100.0 

1. 028 0.234 0.097 
91.7 97.6 100.0 

Sample eigenvectors 

LD VH TD 

-0.485 -0.495 -0.510 
-0.791 -0.096 0.485 

0.336 -0.838 0.068 
-0. 160 0.211 -0.707 
-0.503 -0.468 -0.531 

0.232 -0.779 -0.073 
-0.812 -0.026 0.466 
-0. 183 0.416 -0.704 
-0.565 -0.505 -0.583 

0.022 -0.515 -0.004 
-0.809 0.210 0.528 
-0. 158 0.659 -0.618 
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Table 5. Sample mean vectors, standard deviations, and correlations for 
four var~ables measured on grasshopper sparrow habitat using maximum 
likeli~ood and Huber's robust procedure with cutoffs of 1.97 and 1.56. 

ML 
Huber ( 1. 97) 
Huber (1.56) 

ML 
Huber ( 1. 97 ) 
Huber (1.56) 

ML 
Huber ( 1. 97) 
Huber (1.56) 

BGC 

28.04 
28.63 
28.99 

18.24 
19.32 
20.84 

BGC 
vs 
LD 

-0.518 
-0.473 
-0. 171 

Sample mean vectors 

LD 

1. 806 
1. 591 
1. 569 

VH 

0.658 
0.635 
0.630 

Sample standard deviations 

BGC 
vs 
VH 

-0.542 
0.039 
0.381 

1. 576 
0.992 
1. 048 

0.274 
0.225 
0.276 

Sample correlations 

BGC 
vs 
TD 

-0. 673 
-0.537 
-0. 194 

LD 
vs 
VH 

0.563 
0.266 
0.438 

LD 
vs 
TD 

o. 811 
0.779 
0.836 

TD 

372.6 
345.7 
337.6 

227.0 
176.2 
182.7 

VH 
vs 
TD 

0.640 
0.478 
0.622 

Table 6. Sample eigenvalues and eigenvectors based on the correlation 
matrices for four variables measured on grasshopper sparrow habitat using 
maximum likelihood and Huber's robust procedure with cutoffs of 1. 97 and 
1.56 0 

Sample eigenvalues 

Component 

Estimator 2 3 4 

ML 2.883 0.502 0.457 0.158 
(Cum. percent) 72.1 84.6 96.0 100.0 

H197 2.349 1. 048 0.442 0.161 
(Cum. percent) 58.7 84.9 96.0 100.0 

H156 2.279 1.290 0.332 0.099 
(Cum. percent) 57 .o· 89.2 97.5 100.0 

Sample eigenvalues 

Estimator Component BGC LD VH TD 

ML 1 0.471 -0.506 -0.473 -0.547 
2 o. 704 0.631 -0.235 0.225 
3 -0.477 0.151 -0.847 0.182 
4 -0.236 0.568 0.065 -0.786 

H197 1 0.437 -0.572 -0.318 -0.617 
2 0.587 -0.082 0.801 0.078 
3 -0.641 -0.645 0.410 -0.067 
4 -0.231 0.500 0.297 -0.780 

H156 1 0.025 -0.589 -0.502 -0.633 
2 0.843 -0.209 0.474 -0. 148 
3 -0.479 -0.632 0.602 0.092 
4 0.245 -0.458 -0.402 0.754 
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Table 7. Four-variate discriminant coefficient estimates and standard 
error,s for Fisher's 
dispr~minant models. 

linear discriminant model and Huber's robust linear 

LDF 

BGC LD VH TD 

! 0.0656 -0.525 5.40 0.00427 
sg 0.0431 0.668 2.97 0.00282 
t- 1. 52 -0.79 1. 82 1. 51 

HLDF ( 1. 97) 

BGC LD VH TD 

!* 0.0249 -0.336 3.45 0.00338 

SB* 0.0303 0.655 2.45 0.00340 
t- 0.82 -0.51 1. 41 0.99 

HLDF (1.56) 

BGC LD VH TD 

!* -0.00402 -0.683 2.38 0.00308 
SB* 0.0294 0.682 3.09 0.00369 
t- -0.14 -1.00 0.77 0.83 

Table 8. Discriminant predictions based on Fisher's linear discriminant 
model and Huber's robust linear discriminant models. 

Predictions 
Savannah sparrow Grasshopper sparrow 

( 1. 97) (1.56) { 1. 97) (1.56) 
Obs LDF HLDF HLDF LDF HLDF HLDF 

1 3.22 2.47 2.51 1. 07 1. 16 -0.96 
2 0.59 0.28 0.22 -1.23 -1.09 -0.88 
3 1. 64 1. 33 1. 60 -2.27 -1.05 -1.04 
4 1. 35 0.50 0.58 -0. 11 -0.68 -0.64 
5 0.29 -0.50 -0.47 -1.27 -0.87 -1. 17 
6 0.48 0.56 0.61 -1.48 -0.25 0.13 
7 -0.47 -0.80 -0.49 -0.28 -0.36 0.10 
8 0.44 -0.20 -0.14 0.56 0.73 0.65 
9 0.51 0.80 0.41 -0.49 -0.34 0.39 

10 0.94 0.32 -0.53 -0.90 -0.22 0.17 
11 2.39 1. 96 1. 24 -0.06 0.04 0.38 
12 1.22 1. 33 1. 82 o. 11 -0.58 -0.63 
13 -0. 16 0.30 0.09 -2.26 -2.23 -1.97 
14 -1. 31 -1. 15 -0.62 -2.81 -1.77 -0.61 
15 -0. 17 0.26 0.25 -2.41 -1.45 -0.85 
16 1. 96 2.26 0.72 -2.40 -1.54 -0.80 
17 -1.59 -0.67 -1.25 2.27 1. 85 1. 77 
18 2.13 0.51 -0.29 -2.05 -1. 17 -1.09 
19 3.00 2.84 2.26 0.23 -0.53 -0.58 
20 1. 91 1. 75 1. 54 -2.61 -1.38 -0.85 

Mis-
class-
ified 5 5 7 5 4 7 

.. 
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Table 9. Discriminant leave-one-out predictions based on Fisher's linear 
discriminant and Huber's robust linear discriminant models. 

Leave-One-Out 
Savannah sparrow 

( 1. 97) (1.56) 
Obs LDF HLDF HLDF 

1 3.32 2.33 2.30 
2 0.55 0.24 o. 17 
3 1. 53 1. 26 1. 48 
4 1. 17 0.23 0.33 
5 0.07 -0.79 -0.78 
6 0.25 0.32 0.31 
7 -0.66 -1.08 -0.72 
8 0.32 -0.35 -0.30 
9 0.31 0.51 o. 11 

10 0.76 -0.06 -0.89 
11 2.33 2.05 1.31 
12 0.83 0.88 1. 47 
13 -0.26 0.20 -0.06 
14 -1.64 -1.47 -0.86 
15 -0.43 0.04 -0.08 
16 1. 68 1. 64 o. 10 
17 -2.72 -2.02 -2.42 
18 1. 92 o. 18 -0.67 
19 3.01 3.13 2.29 
20 1. 84 1. 86 1.69 

Mis-
class-
ified 5 6 9 

DISCUSSION 

STEVEN PARREN: In addition to the elimination of 
outliers, does robust DFA have an advantage over 
transformations of habitat variables as we measure 
(and perceive) these variables in the field? 

E. JAMES HARNER: The use of robust estimates does 
not preclude the use of transformations but it 
often makes it unnecessary to transform. An 
outlier can make it appear that a log (say) 
transform is necessary. I prefer not to transform 
unless absolutely necessary because of the 
difficulty of interpretation. 

STEVEN PARREN: Are homogenous covariance matrices 
ever found in ecological studies? 

E. JAMES HARNER: Yes, within reasonable 
statistical variability. In most cases, however, 
they are probably both biologically and 
statistically different. We need more research on 
the effect of not satisfying this assumption on 
the linear discriminant function. I believe A.P. 
Dempster (1969. Elements of continuous multi
variate analysis. 388 p. Addison-Wesley, 
Reading, Mass.) somewhat quantifies the 
"difference" in covariance matrices. 

Predictions 
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Grasshopper sparrow 
( 1. 97) ( 1. 56) 

LDF HLDF HLDF 

3.85 1. 79 -0.37 
-1. 17 -1.01 -0.78 
-2. 13 -1.01 -0.82 
0.08 -0.45 -0.36 

-1. 17 -0.55 -0.91 
-1.32 0.01 0.29 
-0.16 -0.14 0.40 

0.82 0.99 0.84 
-0.14 0.15 0.97 
-0.78 -0.01 0.49 

0.01 o. 15 0.55 
0.36 -0.34 -0.39 

-1.96 -2.49 -1.69 
-2.78 -1.53 -0.45 
-2.36 -1. 41 -0.80 
-2.35 -1.47 -0.76 

3.46 2.41 2.33 
-1.98 -0.97 -0.83 

0.52 -0.23 -0.29 
-2.56 -1.24 -0.67 

7 6 7 

STEVEN PARREN: What effects do transformations of 
variables used in multivariate space (DFA) have on 
the ecological interpretation of habitat 
variables? 

E. JAMES HARNER: If the object is strictly 
classification then by using, for example, the 
power family of transformations causes few 
conceptual difficulties. However, if you desire 
to "interpret" the coefficients I believe it does. 
The robust approach can sometimes make it 
unnecessary to transform. 

LESLIE MARCUS: Standard errors of your jackknifed 
coefficients are large, which support the idea 
that it is difficult to interpret coefficients. 
Please comment. 

E. JAMES HARNER: The t-tests based on these 
standard errors are not significant, but the 
robust standard errors are on the whole somewhat 
smaller than those of the standard analysis. We 
did not use variable selection in determining this 
model. In order to complete the model-building 
process, it would be necessary to eliminate one or 
more variables from the discriminant analysis to 
remove the redundancies. 

, . .. 



USE OF DISCRIMINANT ANALYSIS AND OTHER STATISTICAL 

METHODS IN ANALYZING MICROHABITAT UTILIZATION 

OF DUSKY-FOOTED WOODRATS1 

Janet I. Cavallaro2, John W. Menke3, and William A. Williams" 

Abstract.--In the past 10 years, discriminant analysis 
has become an increasingly used statistical method in small 
mammal studies. Although originally developed as a 
classification procedure, it has been used by ecologists and 
wildlife biologists for a variety of other purposes. No 
generally accepted methods, however, have been developed for 
interpreting the discriminant functions used for these 
alternative purposes. 

Using the dusky-footed woodrat (Neotoma fuscipes) as an 
example, we present a method for interpreting discriminant 
functions when the purpose is both to' characterize micro
habitats used by a species and to explain why individuals of 
a species occur in some microhabitats and not in others. 
Three types of discriminant functions were identified from 
which hypotheses of different forms were developed. More 
complete interpretation of two-group discriminant functions 
can be made if a multiple regression is calculated for the 
dependent variable, presence or absence of woodrats and if 
partial correlations are calculated for the independent 
variables. Since multiple regression coefficients are 
unstable if multicollinearity exists among the independent 
variables, the variance inflation factor was calculated and 
ridge regression was performed so that the effect of 
intercorrelated variables could thereby be examined and 
unstable variables eliminated wherever necessary. 

Key words: California chaparral; multicollinearity; 
multiple regression; partial correlation; ridge regression; 
variance inflation factor; wildlife habitat analysis. 
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INTRODUCTION 

Discriminant :'analysis was developed as a 
classification proced,ure for assigning unknown 
specimens to one of two or more groups. In small 
mammal studies, however, discriminant analysis has 
also been used for other purposes: 1) evidence of 
niche separation, 2) hypothesis formulation about 
the mechanism of coexistence of sympatric species, 
and 3) characterization of microhabitats. 

M'Closkey (1976) and Holbrook (1978) used 
discriminant analysis to provide evidence of niche 
separation of small mammal species by equating 
structural variables in discriminant functions to 
niche dimensions that separated the niches of 
small mammal species. M' Closkey recommended 
caution in equating statistical and biological 
patterns of microhabitat use, but then went on to 
suggest that 

"the statistical patterns of separation 
reflect ecological and evolutionary 
adjustments to inter-specific 
competition. Structural habitat 
division by rodents is either the means 
by which co-existence is achieved or is 
correlated with other niche dimensions 
(e.g., food) responsible for 
coexistence." 

Unless hypotheses are developed from the 
discriminant function to explain how species 
partition the habitat according to structural 
variables, however, little new insight is 
achieved. 

In othe~ work, M'Closkey and Fieldwick (1975) 
used discriminant analysis to develop hypotheses 
to explain how two sympatric species could 
coexist. They hypothesized that since the 
discriminant function contained structural habitat 
variables that were characteristic structural 
features of optimal habitats of Microtus 
pennsylvanicus or Peromyscus leucopus, the two 
species were sympatric because animals of each 
species could find microhabitats which 
corresponded to their optimal habitat. They 
observed that foliage height diversity and tree 
basal area in Peromyscus microhabitats were 
respectively 1.5 and 4 times greater than in 
Microtus microhabitats, and the depth of the 
grassmat in Microtus microhabitats was twice as 
deep as in the Peromyscus microhabitats. 

Dueser and Shugart ( 1978) used discriminant 
analysis to characterize the microhabitats of 
small mammal species and to explain why 
individuals of a species occurred in some 
microhabitats and not in others. By restricting 
their analysis to significant univariate variables 
they were able to conclude that species X occurred 
where more of habitat variable A occurred, where 
habitat variable B was larger, and so forth. They 
used the simple correlation between the function 
and each variable in the function to measure the 
"relative contribution of the variable to the 
power of the function to discriminate between 
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groups". Simple correlation coefficients, 
however, are inappropirate whenever more than one 
independent variable is involved since they only 
show which univariate variables would separate the 
groups similarly to the function. The relative 
magnitude of the correlation coefficient 
corresponds exactly to relative value of the 
univariate F-ratios (Marascuilo and Levin 5

). 

Using live-trap 
dusky-footed woodrats 
ceanothus (Adenostoma 

data collected on 
in chamise-wedgeleaf 

fasciculatum-Ceanothus 
cuneatus) chaparral in northern California, we 
present a method for interpreting discriminant 
functions that includes: 1) determination of the 
type of discriminant function .to be used, 2) 
assessment of multicollinearity with the variance 
inflation factor and ridge regression, 3) use of 
multiple regression and partial correlation 
analysis, and 4) development of hypotheses to 
explain why individuals of a species frequent some 
microhabitats and not others. 

FIELD METHODS 

Woodrats were trapped on 0. 5-ha and 1. 0-ha 
grids in 14- and 25-year old chamise-ceanothus 
chaparral, respectively, for periods of 6 nights. 
Fifty-two structural, botanical, and physical 
habitat variables describing each microhabitat 
were measured using point sampling and nearest 
neighbor methods (Cavallaro 1978). 

INTERPRETING DISCRIMINANT FUNCTIONS 

Discriminant functions can serve as the basis 
for characterizing habitats used by individuals of 
a species. The characterization, however, is much 
more useful if researchers hypothesize why a 
species uses habitats with particular 
characteristics. Partial correlation analysis can 
assist in hypothesis development. Hereafter, we 
present our approach to interpreting discriminant 
functions in wildlife habitat studies using the 
woodrat as an example. 

Selection of Discriminant Function Type 

We have identified three types of 
discriminant functions that help both to 
characterize the habitats used by a species and to 
generate hypotheses explaining that habitat use. 
The types are distinguished on the basis of 
whether or not the function contains variables 
which as univariate variables identify a 
difference between where individuals of a species 
do and do not occur. The three types of functions 
are as follows: Type I contains only significant 
univariate variables, Type II contains both 
significant and nonsignificant univariate 

5 Textbook in preparation, Marascuilo, L.A., 
and J. Levin, Department of Education, University 
of California, Berkeley. 



Table 1. Variables included in two discriminant functions that separated trap sites used and not used by 
dusky-footed wqodr;at.s. (m the 14- and 25 year-old plots; also shown are univariate statistics and variance 
inflation facto~s~ ·~ 

Variable 

14-year-old plot 

1. Other shrub species density 
2. Other shrub species live leaf density 
3. Other shrub species live stem density 
4. Other shrub species dead stem density 
5. Chamise dead stem density 
6. Chamise density 
7. Total vegetation cover 
8. Vertical canopy density 100-150 em aboveground 
9. Vertical canopy density 150-200 em aboveground 

1 o. Total stem (< 0.5 em in diameter) density 
11 • Ceanothus live leaf density 
12. Yerba santa live leaf density 

Type I discriminant function**, R2 = 0.29 
Type II discriminant function**, Rz = 0.53 

25-year-old plot 

13. Other ground cover 
14. Live stem (< 0.5 em in diameter) density 
15. Live stem (1.0-2.5 em in diameter) density 
16. Chamise live leaf density 
17. Vertical canopy density 0-2.5 em aboveground 
18. Live leaf density 
19. Total stem (0.5-1.0 em in diameter) density 

Type I discriminant.function**, R2 = 0.21 
Type II dis·criminant function**, R2 = 0. 40 

*P < 0.05, **P < 0.01 

variables, and Type III contains only 
nonsignificant univariate variables. Hypotheses 
based on Type I discriminant functions would state 
that where wood rats occur variables x, y, and z, 
respectively, are less, greater, and less than 
where woodrats do not occur for some proposed 
reason. In contrast, hypotheses based on Type III 
discriminant f-unctions would state that where 
woodrats occur X = value D, Y = value E, and Z = 
value F, and this particular combination of 
variable values is important for some proposed 
reason even though similar values of x, y, and z 
can be found in microhabitats not used by 
wood rats. Hypotheses based on Type II 
discriminant functions would state that where 
woodrats occur variable X is greater, Y = value H, 
and Z = value I for a stated reason which must 
explain why more of X is necessary and why 
variables Y and Z have their particular values 
even though similar values of Y and Z can be found 
in microhabitats not used by woodrats. 

Univariate Variance inflation factor 
Discriminant 
function type F DF Type I DF Type II 

I, 
I 
I, 
I 
I 
I, 

I, 
I, 
I, 
I, 
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II ** o. 175 0.4 121.4 
** 0.135 3.4 

II ** 0.197 15.5 116.0 
** 0.159 10. 1 
** o. 136 2.8 

II * 0.099 2.8 2.0 
II 0.004 1. 7 
II 0.021 3.0 
II 0.009 2.0 
II 0.022 2.3 
II 0.007 1. 4 
II 0.026 1 . 1 

II ** 0.103 1.1 1. 2 
II * 0.070 1.1 1. 2 
II * 0.064 
II * 0.068 1 • 1 7. 1 
II 0.016 1. 2 
II 0.026 6.7 
II 0.043 1. 1 

It becomes apparent that hypotheses developed 
from Type II or III discriminant functions are 
much more difficult to justify because the 
functions would indicate that animals are using 
extremely specific microhabitats. Those 
discriminant functions may often have 
questionable ecological significance. For 
comparison, however, we will include Type I and II 
discriminant functions in our discussion. 

If a satisfactory hypothesis can be developed 
from a Type I discriminant function, selection of 
variables is a simple matter. All significant 
univariate variables are used. Selection of 
variables to include in a Type II or Type III 
discriminant function is more difficult. A useful 
strategy is to use those variables that increment 
the coefficient of determination, R2 , by a 
specified minimum amount (Marascuilo and Levin 5 ); 

we used a 2% increment for Type II and III 
discriminant functions. 

-. -. 



Discriminant Functions 

For the 14~y~ar-old plot, the Type I 
discriminant function had a R2 value of 29% and 
contained all significant univariate variables 
except one, other shrub species live leaf density 
(2) {table 1). The Type II discriminant function 
had a R2 value of 53% and contained in addition to 
all nonsignificant univariate variables listed in 
table 1 three density variables, other shrub 
species ( 1), other shrub species live stems (3), 
and chamise { 6). For the 25-year-old plot, the 
Type I discriminant function had a R2 value of 21% 
and contained all significant univariate 
variables. The Type II discriminant function had 
a R2 value of 40% and contained all nonsignificant 
univariate variables listed in table 1 as well as 
all significant univariate variables. 

The coefficient of determination, R2
, is 

considered a useful statistic because a function 
may be significant and yet very little variation 
in the function may be associated with the 
variables in the discriminant function. In such 
cases, the function contributes little 
information. In the field of educational 
psychology, R2 values less than 10% are considered 
too inconsequential to be reported.' 

Knowing the importance of each variable in 
the discriminant functions would be extremely 
useful for developing hypotheses. Fortunately, 
the two-group case of discriminant analysis can be 
done as a multiple regression, . with the dependent 
variable beirig presence or absence of woodrats; 
and thereafter, partial correlations can be 
calculated to asses~ the importance of habitat 
variables. .Partial correlations are a measure of 
association between each independent variable and 
the dependent variable in the multiple regression. 

Assessment of Multicollinearity 
in Multiple Regression 

In data sets containing measurements of 
uncontrolled variables, as is usually the case in 
wildlife habitat studies, multicollinearity often 
exists among variables and .r can cause ambiguous 
results in ordinary multiple regression (Hoerl and 
Kennard 1970). Resulting regression coefficients 
can be inflated in absolute value or may even have 
the wrong sign. The po ssi bil i ty that such 
difficulties will occur increases as independent 
variables diverge from orthogonality. Thus, it is 
desirable to test for multicollinearity among 
independent variables. 

Calculation of the variance inflation factor 
{VIF) is the preferred method for determining 
whether a multicollinearity problem exists, 
because the VIF will detect relations that exist 
among several variables that might not be evident 

'Personal communication with L.A. Marascuilo, 
Professor of Statistics, Department of Education, 
University of California, Berkeley. 

22S 

0.21 

0.19 0 

0.4 

0.2 

,8(K) 

0 

-0.2 

0.3 

K 
0.6 

~------14 

0.3 

K 
0.6 

Figure 1. Ridge trace for variables in the Type I 
discriminant function for the 25-year-old plot. 
Variables as defined in table 1. 

from examination of simple correlations (Williams 
et al. 1979). VIF equals 1/{1-Rf) where Rf is the 
multiple correlation coeff1cient of one 
independent variable with all other independent 
variables. As Rf approaches 0 (orthogonality) VIF 
approaches 1; whereas, as R~ approaches 1 
(variables are highly interJorrelated) VIF 
approaches infinity. VIF values exceeding 10 are 
considered likely to cause problems in estimating 
regression coefficients (Chatterjee and Price 
1977). "Tolerance" is the reciprocal of the VIF, 
and the equivalent critical value is 0.1. 

One or more variables in the two discriminant 
functions for the 14-year-old plot has a VIF value 
which exceeds 1 0, suggesting that for those 
variables the regression coefficients probably are 
not stable {table 1). In contrast, neither 
function for the 25-year-old plot contained any 
variables with a VIF greater than 10, thus all 
those variables can be used in calculating a 
multiple regression and partial correlations. 

Ridge regression was developed to allevj,ate 
problems from intercorrelated independent 
variables by including a bias factor k when 
regression coefficients are estimated (Hoerl and 
Kennard 1970). The first step in ridge regression 
involves making a ridge trace by adding increments 
of k over the range of 0 to 1 and plotting the 
respective standardized partial regression 
coefficients !(k) against k. As k increases the 
coefficient of determination, R2

, decreases. 

The ridge trace for variables contained in 



the Type I discrimina~t functions for the 25 
year-old plot (fig., n ''shows that the regression 
coefficients are stable as would be expected since 
no variables in that discriminant function had a 
VIF value greater than 10. As k increases, the 
standardized regression coefficients ~(k) maintain 
both their absolute value and their values 
relative to each other quite well. In contrast, 
in the ridge trace for variables contained in the 
Type I discriminant function for the 14 year-old 
plot (fig. 2) variables 2 and 4, other shrub 
species live leaf density and other shrub species 
dead stem density, were negative for k = 0 and 
became positive for k > 0.13, indicating that 
those variables are highly unstable. Variable 3, 
other shrub species live stem density, was high 
and positive at k = 0, but decreased rapidly as k 
increased, suggesting that variable 3 is also 
unst.able. 

The ridge trace shows either what k value to 
use, if a multiple regression is desired for a 
particular combination of variables (a value which 
stabilizes the regression coefficients while not 
greatly decreasing the R2 value), or which 
variables to eliminate because they are unstable. 
The ridge trace shows visually what the VIF values 
suggest. 

Variables lacking stability were eliminated 
from the Type I discriminant function for the 14-
year-old plot leaving other shrub species live 
stem density (3) and chamise dead stem density 
(5). Both had a VIF of 1. 3 and stable regression 
coefficients upon calculation (fig. 3). 
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Figure 2. Ridge trace for variables in the Type I 
discriminant function for the 14-year-old plot. 
Variables are defined in table 1. 
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Figure 3. Ridge trace for variables originally in 
the Type I discriminant function for the 
14-year-old plot which remained after assessing 
intercorrelation among variables. Variables are 
defined in table 1. 

The ridge trace for variables in the Type II 
discriminant function for the 14-year-old plot is 
shown in figure 4. Variable 1, other shrub 
species density, was strongly negative for k = 0 
but became positive for k > 0.06. In contrast, 
variable 3, other shrub species live stem density 
was strongly positive for k = 0 but decreased 
rapidly in value for k > 0. For k = 0 these two 
variables had opposite signs, even though they had 
a simple correlation of 0. 99 and therefore 
represent the same underlying variable. These 
results demonstrate how multicollinear variables 
can greatly affect the stability of regression 
coefficents. After eliminating two variables in 
the Type II discriminant function, the VIF for all 
variables was less than 3.0, and a new ridge trace 
of the restricted variables show that the 
variables were much more stable (fig. 5). 

Microhabitat Use Hypotheses 

Based on the Type I discriminant function for 
the 14 year-old plot, microhabitats used by 
woodrats can be characterized generally as having 
greater density of other shrub species and lesser 
density of chamise, and specifically as having 
greater density of 1i ve leaves, live stems, and 
dead stems of other shrub species and less density 
of dead chamise stems, than microhabitats not 
used. This combination of variables was 
associated with 29% of variability in woodrat 
occurrence (table 1 and 2). The reason woodrats 



occur in these microhabitats can be hypothesized 
from partial correlation coefficients. Although a 
correlation doe~ not: prove cause and effect, it 
does suggest vatiablees to consider in trying to 
establish a cause and effect relationship. A 
positive relationship exists between woodrat 
presence and amount of live stems of other shrub 
species which included deerbrush (Ceanothus 
integerrimus), scrub oak (Quercus dumosa), poison 
oak (Toxicodendron radicans)~d toyon 
(Heteromeles arbutifolia) with scrub oak being by 
far most abundant. In contrast, no relationship 
existed between woodrat presence and amount of 
dead chamise stems. We, therefore, suggest that 
woodrats occurred in particular microhabitats 
because of presence of other shrub species, rather 
than because of lesser amounts of chamise. This 
hypothesis agrees with the observation that oak 
species are the most important variable in 
determining presence of dusky-footed woodrats 
(Linsdale and Tevis 1951). 

Based on the Type II discriminant function 
for the 14-year-old plot, microhabitats used by 
woodrats can be characterized generally as having 
greater density of other shrub species and less 
density of chamise, and specifically as having 
greater density of live stems of other shrub 
species, total vegetation ~over of 80.9%, vertical 
canopy density of 0.6 and 0.0, respectively, for 
layers between 100-150 em and between 150-200 em 
above the ground, total density of 1. 5 for stems 
less than 0.5 em in diameter, and density of live 
leaves of 0. 1 and 0.0 respectively for ceanothus 

0.50 

0.6 

j3 ( K) 
0 

-0.6 

0 

Figure 4. Ridge trace for variables in the Type 
II discriminant function for the 14-year-old 
plot. Variables are defined in table 1. 
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Figure 5. Ridge trace for variables originally in 
the Type II discriminant function for the 14-
year-old plot which remained after assessing the 
intercorrelation among the variables. Variables 
are defined in table 1. 

and yerba santa. In contrast, microhabitats where 
woodrats did not occur can be characterized as 
having less density of other shrub species, 
particularly live stems of other shrub species, 
greater density of chamise, total vegetation cover 
of 78.7%, vertical canopy density of 0.5 and 0.1, 
respectively, for layers between 100-150 em and 
between 150-200 em above the ground, total density 
of 1.7 for stems less than 0.5 em in diameter, and 
density of live leaves of 0.1 and 0.0, 
respectively for ceanothus and yerba santa. We do 
not think this function provides a good character
ization of microhabitats used and not used by 
woodrats because we can give no reason why wood
rats would select such specific microhabitats. 
Why, for example, should they distinguish between 
80.9 and 78.7% total vegetation cover, and so 
forth? Consequently, we suspect that the Type II 
discriminant function has statistical significance 
in this case but lacks ecological validity. 

On the 25-year-old plot, where other shrub 
species were essentially absent (they accounted 
for only 1.5% of the shrub cover in contrast to 6% 
on the 14-year-old plot) and where all other 
species shrub cover was produced by deerbrush, 
woodrats did not occur in microhabitats with 
greater density of other shrub species. On the 
25-year-old plot, they occurred instead where more 
other ground cover was present, density of live 
chamise leaves was greater, density of live stems 
between 1. 0 and 2. 5 em in diameter was greater, 
and density of live stems less than 0.5 em in 



Table 2. M,ean values (percent) for all variables in Type I and II discriminant 
functions and partial correlations for variables in Type I and II multiple 
regresslons for the 14- and 25-year-old plots. 

Variable 
Microhabitat Partial 

Used Not Used Correlation 

----------14-year-old plot----------

Type I discriminant function 

1. Other shrub species density 
2. Other shrub species live leaf density 
3. other shrub species live stem density 
4. Other shrub species dead stem density 
5. Chamise dead stem density 
6. Chamise density 

Type II discriminant function 

1. Other shrub species denisty 
3. other shrub species live stem density 
6. Chamise density 
7. Total vegetation cover 

0.6 
0.1 
0.2 
0.3 
0.6 
1. 4 

0.6 
0.2 
1. 4 

o.o 
0.0 
0.0 
0.0 
0.9 
2.1 

o.o 
o.o 
2.1 

0.33** 

-0.20 

0.48** 

8. Vertical canopy density 100-150 em aboveground 
80.9 

0.6 
0.0 
1. 5 
o. 1 
o.o 

78.7 
0.5 
o. 1 
1. 7 
0. 1 
0.0 

0.30* 
0.41** 

-0. 28** 9. Vertical canopy density 150-200 em aboveground 
10. Total stem (<0.5 em in diameter) density -0.53** 
11. Ceanothus live leaf density -0. 30* 
12. Yerba santa live leaf density -0.33* 

----------25-year-old plot----------

Type I discriminant function 

13. other ground cover 
14. Live stem (<0.5 em diameter) density 
15. Live stem (1.0-2.5 em in diameter) density 

2. 1 
0.2 
o. 1 
0.5 

0.3 
0.5 
0.0 
0.3 

0.28** 
-0.20 

o. 11 
0.20 16. Chamise live leaf density 

Type II discriminant function 

13. other ground cover 
14. Live stem (<0.5 em in diameter) density 
15. Live stem (1.0-2.5 em in diameter) density 

2. 1 
0.2 
o. 1 
0.5 
0.2 
0.7 
o. 1 

0.3 
0.5 
0.0 
0.3 
0.3 
0.5 
0.0 

0. 32** 
-0.29** 

0.23* 
0.31** 

-0. 43** 
16. Chamise live leaf density 
17. Vertical canopy density 0-25 em aboveground 
18. Live leaf density -0.25* 
19. Total stem (0.5-1.0 em in diameter) density 0.31** 

*P < 0. 05, **P < 0. 01 

diameter was less. This combination of variables 
was associated with 21% of the variability in 
woodrat occurrence (tables 1 and 2). 

The only significant partial correlation 
between woodrat presence and a habitat variable 
was for amount of other ground cover. Other 
ground cover consisted mainly of large downed 
branches which might have attracted the woodrats. 
Linsdale and Tevis ( 1951) stated: "Every pile of 
dead wood within the rat habitat eventually 
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receives an accumulation of twigs deposited by the 
rats." 

Since no significant partial correlation 
existed between woodrat presence and any other 
habitat variable and since we cannot explain why 
other habitat variables in the Type I discriminant 
function would be particularly important to 
wood rats, we hypothesize that other significant 
differences between where woodrats occurred were 
the result of woodrat activity in their micro-



h'abi tats rather than because wood rats select 
microhabitats with those particular 
characteristics. . ~he. lower density of live stems 
less than o. 5 ern <irr~.: diameter may have resulted 
from woo drat utilization of the vegetation. 
Woodrats cut the terminal branches of chamise and 
wedgeleaf ceanothus and take them to their houses 
where they feed on leaves and flowers (Linsdale 
and Tevis 1951). This continual pruning of the 
plants may cause improved vigor so that a greater 
density of live chamise leaves and a greater 
density of live stems between 1.0 ern and 2.5 em in 
diameter occur in microhabitats used by woodrats. 
In this habitat dominated by mature chamise and 
wedgeleaf ceanothus plants, it appears, then, that 
woodrat selection of microhabitats may have been 
in response to other ground cover, while other 
significant differences between where woodrats did 
and did not occur were the result of woodrat 
activity. 

The Type II discriminant function for the 25 
year-old plot contained four significant and three 
nonsignificant univariate variables. Again, we 
could not explain why woodrats would select 
microhabitats with such specific densities of live 
leaves, stems between 0. 5 em and 1. 0 em in 
diameter, or a vertical canopy density between 0 
em and 25 ern above ground, and therefore concluded 
that this combination has little ecological 
validity even though more of the variation in 
woodrat presence was associated with that 
combination of variables. The combination of 
variables probably only had statistical 
significance. 

CONCLUSIONS 

Discriminant analysis, multiple regression, 
and partial correlation results can be used 
together to characterize the microhabitats used by 
individuals of a species and to generate 
hypotheses explaining why animals occur in some 
microhabitats and not in others. The specific 
form of the hypothesis will vary depending on the 
type of discriminant function. 

If the habitat variables are highly 
multicollinear, however, estimates of the 
regression coefficients are unstable and 
unreliable. In such cases VIFs can be calculated 
or ridge regression can be used to identify the 
unstable variables for elimination prior to 
running the multiple regression and partial 
correlations. 

The multi variate approaches in wildlife 
studies can suggest hypotheses to explain 
observations made by the researcher. These 
hypotheses should themselves then be tested so 
that advances can be made in our understanding of 
the habitat relationships of wildlife species. 
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DISCUSSION 

LESLIE MARCUS: 1) The three types of discriminant 
analyses, while simpler, remind me of original 
suggestions in use of uncorrelated variables in 
physical anthropology (Pearson coefficient of 
racial likeness). However the type II variables 
may represent a "gestalt" or common habitat factor 
for the organism. One way of getting at that 
might be a rotation of the multivariate 
discriminant coefficient akin to oblique factor 
rotations, of course only reasonable for K > 2 
groups. 2) I would suggest a better choice for 
your "types" would be the Mahalanobis distance d. 
for each variable rather than a significance test! 
The "type" test is both sample size dependent and 
dependent on significance and level and, of 
course, still requires a cutoff for D. 3) I would 
prefer Mahalanobis D2 as a measure of difference 
rather than R2 for overall discrimination, because 
it gives a plottable metric in the canonical 
variate of discriminant space. 4) It is suggested 
that correlation between canonical variate and 
original variate be looked at. It has been shown 
that for two groups this is just a simple function 
of the mean difference (Bergmann, R.E. 1970. 
Interpretation and use of a generalized 
discriminant function. p. 35-60. In Bose, R. C. 
et al., editors. Essays in probability and 



statistics. University of North Carolina Press.) 
In K groups, this is not so since vectors are not 
orthogonal. Perhaps ;for full interpretation these 
correlations shc>uld '~ be given; they are almost 
never reported. 

JANET CAVALLARO: We find your comments on 
discriminant analysis valuable and we think that 
they may be very useful in further interpreting 
discriminant functions. In response to your 
fourth comment, in the two-group discriminant 
case, the correlation between the canonical 
variate and the original variables provides no new 
information and cannot be used in interpreting the 
original variables as you stated. In discriminant 
analysis where the number of groups exceeds two, 
the correlation may be useful; but it is useful 
only in trying to interpret what the canonical 
variate represents, not in interpreting the 
importance of the original variables in separating 
the groups. An original ~ariable may be important 
because it separates the groups or it may be 
important because it in combination with the other 
original variables creates a new variable, the 
canonical variate, which separates the groups. 

KEN MORRISON: In your first example, it was only 
for Peromyscus maniculatus (the most numerous 
species) that the discriminant function was 
successful. Does this really mean that the 
discriminant function failed? 

JANET CAVALLARO: A discriminant function must be 
evaluated both statistically and ecologically; and 
although it may be significant statistically, we 
contend that it may be ecologically meaningless. 
In the case of the discriminant functions reported 
by Holbrook ( 1978), we assume that at least some 
of the discriminant functions must have been 
statistically significant, but we question whether 
or not they were ecologically meaningful. She 
provided no ecological interpretation of the 
functions except to infer that "species occupy 
habitats with characteristic three-dimensional 
structure". We found it surprising ecologically 
that the microhabitats used by Peromyscus 
maniculatus could be classified better than those 
used by f. truei, f· boylii, f· dificilis. 

In our work in the chamise-ceanothus 
chaparral, P. maniculatus and P. truei occurred on 
all study- plots. We could separate those 
microhabitats P. maniculatus used from those they 
did not use on only one of those plots. In 
contrast., on all the study plots, we could 
separate the microhabitats P. truei used from 
those they did not use. Considering the 
ubiquitous distribution of P. maniculatus, these 
results conform more with current understanding of 
the habitat relations of these species. We should 
mention, however, that as researchers we are 
searching for new information so that the 
discriminant functions Holbrook reported should 
not necessarily be negated. We believe, however, 
that the burden rests on her to hypothesize why 
the microhabitat used by P. maniculatus could be 
classifed more readily than those used by the 
other three species. 
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GERALD SVENDSEN: Because many of your measured 
variables are not independent from one another, do 
you think that you would have gained any insight 
by using a factor analysis to derive new composite 
yet independent variables and then performing 
multiple regression on these new variables? 

JANET CAVALLARO: I think the question you are 
asking is whether or not principal components 
could have been used to create a set of 
independent "habitat" variables for the multiple 
regression analysis rather than using ridge 
regression to identify redundant or highly 
intercorrelated habitat variables. The answer is 
definitely yes, but the use of principal 
components can create problems in itself. 
Primarily, each principal component must be 
interpreted as to what it measures, and this 
interpretation itself can be a difficult task. By 
using the ridge regression to identify a set of 
relatively independent habitat variables, that 
problem is avoided. 

In our approach to analyzing the data, we 
used the discriminant analysis to characterize the 
microhabitats used by a particular species and to 
determine how much of the variance between where a 
species did and did not occur could be accounted 
for by the combination of variables in the 
discriminant function. We were, therefore, 
interested in the suite of characters which 
described the microhabitats used by a species and 
we were not concerned about whether or not the 
variables were intercorrelated. 

The variables in the discriminant function 
which characterized the species' microhabitats, 
however, may or may not be the variables to which 
the animals respond. The subsequent multiple 
regression and partial correlation analysis was 
then used to hypothesize why the animals occurred 
in particular microhabitats and not in others. 
For this phase of the analysis, however, 
independent habitat variables were required. We 
preferred ridge regression over principal 
components to obtain a set of independent habitat 
variables because, as already mentioned, we were 
able to use the habitat variables which were 
actually measured rather than using statistical 
habitat variables, principal components, which 
themselves require interpretation. 

PAUL GEISSLER: If I understand what you said, the 
difference between the conclusions associated with 
the types of discriminant functions is that 
significant univariate variables can be inter
preted individually while nonsignificant variables 
cannot. It seems to me that whether or not 
variables can be interpreted individually depends 
on whether or not it is correlated with other 
variables, and not whether or not a relationship 
can be demonstrated with the response variable. 
Also it seems to me that limiting the discriminant 
functions to significant variables may cause one 
to miss complex relationships which depend on more 
than one variable. 

JANET CAVALLARO: The different types of 



discriminant functions do not determine whether or 
not the individual variables in the discriminant 
function can be i~t~rpreted; the different types 
of discriminant functions determine how the 
individual variables must be interpreted. The 
discriminant function is a new "habitat" variable 
which is a sum of weighted habitat variables, not 
a response variable. If the discriminant function 
contains only significant univariate variables 
(Type I), the discriminant function can be 
interpreted as separating microhabitats which have 
more of variable X, less of variable Y, and more 
of variable Z from microhabitats which have less 
of variable X, more of variable Y, and less of 
variable Z. If the discriminant function contains 
insignificant variables as well (Type II), the 
discriminant function can be interpreted as above 
plus the fact that in microhabitats used by a 
particular species, variable A has a certain 
average value. The hypothesis generated from a 
Type II discriminant function, therefore, may 
include the idea that variable A, the 
insignificant univariate variable, must be at a 
certain threshold level before the animals of a 
species will use a certain habitat. If that is 
the case, however, a significant difference should 
exist in variable A between where animals do and 
do not occur if a broader range of habU.,.ats were 
sampled. Thereafter, a Type I discriminant 
function may well be developed to separate the 
microhabitats used and not used. 

In our study in the chamise-ceanothus 
chaparral, ceanothus density did not differ 
between where Peromyscus truei did and did not 
occur on the 25-year-old plot, and yet ceanothus 
density was a variable in the Type II discriminant 
function. P. truei occurred where ceanothus 
density equalled----:r:1in contrast to 1. 5 where P. 
truei did not occur. It was not clear to us why 
~truei should select on the average 
microhabitats with a ceanothus density of 1. 7 in 
contrast to 1. 5 when those two values were 
essentially no different. On the 8-year-old plot 
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ceanothus density was much less, however, and 
f. truei occurred where the ceanothus density was 
significantly greater, 1.2 in contrast to 0.2 
where they did not occur. From these results on 
the 8- and 25-year-old plots, we can comfortably 
hypothesize that P. truei requires a minimum 
density of ceanothus before they will occupy the 
chamise-ceanothus habitat. This is analagous to 
the observations of McCabe and Blanchard ( 1950) 
who found that P. truei would not use pure stands 
of Baccharis pilUlarrs-but that they would use the 
habitat when shrubs of other species were also 
present. The Type I discriminant function for 
the 8-year-old plot enables us to develop the 
above partial hypothesis much more easily than did 
the Type II discriminant function for the 25-year-
old plot. · 

By restricting the discriminant function to 
significant univariate variables, complex 
relationships between animals and their habitats 
potentially can be missed; but as we have 
suggested, this will depend to a large extent on 
the range of habitats sampled. If a broad enough 
range of habitats is sampled, any complex 
relationship should be detected through a Type I 
discriminant function as well as through a Type II 
or III discriminant function. In addition, we 
need to consider whether or not a Type II or III 
discriminant function will necessarily enable us 
to better detect complex relationships between 
habitat variables and a particular species. The 
Type II or III discriminant function suggests that 
animals are using very precisely defined habitats 
and so for those discriminant functions to have 
ecological meaning, we think the measured habitat 
variables must be very close measures of variables 
to which the animals are actually responding. We 
question how often variables perceived by animals 
when they make their habitat selection are 
actually measured; and we therefore question 
whether or not many of the Type II or III 
discriminant functions are not just artifacts of 
our sampling. 



A DESCRIPTIVE MODEL OF SNOWSHOE HARE HABITAT 

Kathryn A. Converse 2 and Bernard J. Morzucha 

Abstract.--The snowshoe hare (Lepus americanus) on the 
southern edge of its range in Massachusetts provided an 
opportunity for use of multivariate analysis to model 
selection of common habitat components over an extensive area 
during the critical winter months for comparison with 
preferred habitat. Ten areas were chosen for variability in 
their vegetation structure and composition within two 
ecological zones of the Berkshire Mountains in western 
Hassachusetts. Track counts were used as indices of hare 
distribution and regressed on measurements of ground cover; 
shrub volume; shrub and sapling frequency, richness and 
composition; tree composition, frequency and basal area; and 
snow depth. 

A linear regression model was used to analyze these 
hypothesized relationships. The technique of principal 
components is suggested as a method of dealing with 
collineari ty among independent variables. Tests were 
performed to judge the appropriateness of pooling data from 
different study areas. Seemingly unrelated regression was in 
turn, used to analyze the possibility of mutual correlation 
within the error structure. 

Key words: Forest habitat; Massachusetts; 
multicollinearity; pooling cross section data; principal 
components; regression analysis; seemingly unrelated 
regression; Snowshoe hare. 

INTRODUCTION 

Massachusetts has over 5 million acres of 
land with 3 million acres of forests classfied 
into 40 types. In 1971-1972, 76% of these forests 
contained trees greater than 12 m in height and at 
present 45% of the state is harvestable 

1 Paper presented at The use of multi variate 
statistics in studies of wildlife habitat: a 
workshop, April 23-25, 1980, Burlington, Vt. 

2 M.S. Candidate, Wildlife Biology, Department 
of Forestry and Wildlife Management, University of 
Massachusetts, Amherst, MA 01003. 

3 Assistant Professor, Department of Food and 
Resource Economics, University of Massachusetts, 
Amherst, MA 01003. 
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(MacConnell 1975). In addition to increasing 
forestry operations, there are continuing losses 
of wildlife habitat due to clearing for housing, 
commercial and recreational developments, and 
drainage and filling of wetlands. It is essential 
that wildlife managers become concerned with the 
effects of such practices and develop methods for 
location and description of extensive areas of 
wildlife habitat for game and nongame species. 
One possible method that addresses these issues is 
division of the state into ecological zones 
(Sczerzenie 1980). 

The snowshoe hare (Lepus americanus) is 
diversely distributed across Massachusetts from 
the oak-pitch pine barrens of Cape Cod to the 
spruce-fir thickets of the Berkshire Mountains. 
Some hare may have survived transplantation from 



New Brunswick, a management plan in practice since 
1919. It is ass)Jmed t;J\at survival of these hare 
was a function -or:· inherent selective mechanisms 
for corresponding habitat components. Previous 
studies have shown hare to use a variety of 
conifer and hardwood stands of all ages, species, 
and interspersions. In a marginal southern range 
such as Massachusetts, it is difficult to specify 
precisely the variables to be used in a habitat 
model. 

This paper discusses a study conducted May 
1978 to March 1980 where the physical features of 
a variety of forest types within two ecological 
zones in western Massachusetts were sampled 
intensively. A linear regression model was used 
to analyze the hypothesized relationships between 
hare activity and selection of common habitat 
components during the critical winter months. 

STUDY AREAS 

Known hare habitat was determined through 
correspondence and interviews with district 
wildlife managers, hare hunters, and local 
residents. Ten research areas were chosen along a 
90-km circuit through eight towns located in 
Berkshire, Hampshire, and Franklin counties in 
western Massachusetts. Five areas were chosen 
within each of two ecological zones--transitional 
(zone 1) and central Berkshires (zone 
2 )--designated by physiographJc, vegetative, and 
demographic variation (Sczerzenie 1980) (fig. 1). 
Suitability of all areas was determined by field 
investigation of size, permission of private land 
owners, year-round road access, distance from 
residential or recreational disturbance, 
vegetation structure and composition variability, 
presence of browse and/or fecal pellets, and 
ability to census all areas on snowshoes within 24 
hours. 

The most recent land use inventory 
(MacConnell 1975) indicated that the zone 1 study 

e STUI:II' AREAS 
,., RCWlS 
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P.~ 

Figure 1. Location of the ten research areas 
within the eight Massachusetts towns and two 
ecological zones. 
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areas fell within predominately hardwood forests, 
while zone 2 study areas were predominantely 
softwood forests (table 1). Forest maturity was 
confirmed in both zones by the 12.5-18.6 m height 
class and by high density, 81-100% crown closure. 
When the study areas were viewed separately, 
forest types of documented importance to the hare, 
e.g., spruce, became more significant. 
Discontinuity within habitat types was not usually 
reflected on land use maps, but the resulting 
edges provided juxtaposition of food and cover. 

METHODS 

Habitat Measurements and H~re Activity 

Transect lines (total 400 m) were located 
randomly on each area with permanent stations 
every 25 m and plot centers each 50 m. Vegetation 
was measured September 1978 through July 1979 on 
all transects at each 50 m plot center. 
Frequency, composition, and basal area of trees 10 
em dbh and above were measured using a 10 factor 

prism plot. Circular plots, 40.5 m2, were used to 
determine frequency, composition and richness of 
shrubs 30.5 em high to 7.5 em dbh, saplings 7.6 em 
to 9.9 em dbh, and shrub volume for mountain 
laurel (Kalmia latifolia) and yew (Taxus 
canadensis). Percent ground cover less than 30.5 
em high was visually estimated on four 2 m x 2 m 
quadrats and then averaged. 

An understory density screen 1 m wide by 2 m 
high (Telfer 1974, Oldenmeyer 1975) gridded into 
5% blocks was placed 15 m from and at right angles 
to the transect line (Nudds 1977). The screen was 
photographed and the lower (0-1 m) and upper (1-2 
m) percent obscured by vegetation recorded as 
maximum density in July and minimum in March. 
Habitat variables used in the analyses are 
presented below: 

RICH = number of species in the shrub 
and sapling plot, 

EVER = evergreen trees >10 em dbh/0.01 
ha, 

HARD = hardwood trees >10 em dbh/0.01 

BA 
ha, 2 

= basal area m /ha, 
3 SHRUB = shrub volume 100 m /ha, 

EDBHO = evergreen stems >30.5 em high, 
up to 2.5 em dbh/0.01 ha, 

HDBHO = hardwood stems >30.5 em high, up 
to 2.5 em dbh/0.01 ha, 

EDBH1 = evergreen saplings 2.6-9.9 em 
dbh/0.01 ha, 

HDBH1 = hardwood saplings 2.6-9.9 em 
dbh/0.01 ha, 

MINL = lower percent minimum under-
story, 

MINU = upper percent minimum under-
story, 

MAXL = lower percent maximum under-
story, 

GCl = percent ground cover in annuals, 



GC2 = percent ground cover in 
pe.rerynial s, 

GC3 ··• pe'f:icent bare ground (leaves, 
duff and rock). 

Hare tracks intersecting the transect line 
were totalled and snow cie-pth measured for each 50 
m section after each fresh snowfall (Hartmann 
1960, Brocke 1975). Problems of high winds 
drifting fresh snow, and the change from snow to 
sleet along the altitudinal gradient eliminated 
many observation days. If any sections of a 
transect line were not trackable the count for the 
whole line was not used. 

Track counts were used as indices of hare 
cover preference because they can be measured 
easily by one person, provided for analysis by 
habitat, and are good for extensive studies where 
only ·relative population levels are needed. 
Tracks provide an index "to the average number of 
hare using an area part of the time or as part of 
their home range (Adams 195.9, Hartman 1960). 

Statistical Model 

Ordinary Least Squares 

Multivariate ordinary least squares (OLS) 
regression techniques were used to determine the 
relationships between hare activity as a dependent 
variable and weather and habitat measures as 
independent variables. 

The hypothesized relationship was assumed to 
be 1 in ear .and of the form: 

( 1) 

where Yi =the ith value of.the entire set of 
n observations on the dependent 
variable Y; 

x .. lJ. = the ith value of the jth 
independent variable Xj, where j 
ranges from 1 to k; 

Table 1. Dominant species of forest laye.rs and corresponding forest classification system 
(MacConnell 1975) for zones 1 and 2. 

Research Forest 1 Tree 2 Saplings Shrubs 
areas types >10 em dbh 7.5-10 em dbh up to 7. 5 em dbh 

Zone 

0 HS3A SH3A Bi H Be wh Be M L Wh Be 

3 S3A SH3A H M s H H s 

4 H3A SH2A 0 H Wh M Be L Be Wh 

8 SH2A HS3A H M Wp M Bl M L H 

9 HS3A M H Bi Be H L Wo H M 

Zone 2 

1 SH2A HS3A SH3A H M s M H L y M 

2 SH2A SH3A Wp s M M Wp Sb M s 

5 S3A SH3A HS3A s M s M s Bl 

6 HS3A HS2A H2A M Bi H Bi s M M s 

7 S3A SH2A SH3A s s F s Bl M F 

1 Type: H = hardwood and S = softwood, 80% stands; mixed HS = hardwood and SH = softwood 
predominating 
Height: 2= 6.4-12.4 m; 3= 12.5-18.6 m 
Crown closure: A= 81-100%; B= 30-80% 

2 H=hemlock, M=maple, F:fir, S:spruce, Bi=birch, O:oak, Be=beech, Wp=white pine, 
Wh=witch hazel, L=laurel, Bl=blueberry, Wo=witch hobble, Sb=steeplebush, Y=yew. 
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th 
f3 j = the j unknown parameter to be 

estimated; 

f3 
0 

= a corist;an't term; 

= the i th value of the set of n 
random disturbances about the mean 
of Y. 

Equation (1) can be conveniently expressed in 
matrix notation as 

y = X! + ~ (2) 

where Y = ann x 1 observation vector; 

X = an n x k matrix of independent 
variables; 

a k x 1 parameter vector on X; 

an n x 1 vector of error terms. 

Assumptions of the model are that X is of rank k 
and that each £i is normally and identically 

distributed, independent of the other disturbance 
terms, and has mean zero and constant variance cr 2

• 

Violation of any of these assumptions will 
render OLS estimation inadequate. Specifically, 
difficulty with respect to· the rank condition of 
the X matrix, i.e., multicollinearity, requires 
the implementation of some "treatment." Likewise 
problems with respect to the error term, e.g., 
heteroscedasticity or autocorrelation, require 
some manipulative corrective measure to the data 
before OLS can be applied. 

Pooling Data 

A very real problem when dealing with 
cross-section data and model specification in this 
case is the matter of organizing the data between 
the two zones for estimation purposes. That is, 
the model for each zone relating hare activity to 
weather and habitat measures can be expressed 
generally as in equation (2), and the question 
revolves around the manner of implementing the 
entire set of data from both zones to get the most 
efficient parameter estimates. 

Let equation (2) be rewritten to represent 
zone 1 as 

!i = x1~1 + £1 (3) 

where equation (3) . is identical to equation (2) 
except that the subscript 1 relates to zone 1 
information. Correspondingly, the model 
representing zone 2 is 

!2 = x~2 + £2· (4) 

Estimating the model for zone 1 and zone 2 
individually by OLS amounts to the following 
formulation: _ 
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X • 
1 

0 

0 ~1 

+ 

A most important feature of this model is that 
arranging the data in this fashion does not 
restrict the parameters of the independent 
variables in zone 1 to be equal to those in zone 
2, i.e., there are 2k parameters to be estimated 
in the unrestricted model represented by equation 
(5). 

The inclination of many researchers in such a 
situation is to "stack" equations (3) and (4) as: 

x1 

! + (6) 

Notice that estimation of this model imposes 
severe resrictions upon the two parameter vectors 
of equations (3) and (4), i.e., ! 1=!2=!· 

Specifically, the implication is that any 
particular parameter f3 • in zone 1 is equal to the 

J 

corresponding f3. in zone 2. It is suggesed that, 
J 

rather than estimating only the stacked model of 
equation (6) and naively imposing severe 
restrictions on the parameter space, alternative 
model specifications ought to be tested against 
each other and one judged more appropriate than 
another on the basis of some statistical 
criterion. One such criterion is the classical 
F-test (Fisher 1970). 

Briefly, the idea is to calculate the 
residual sum of squares of the unrestricted model 
(RSSU) represented by equation (5) and make 

comparisons with the residual sum of squares of 
the restricted model (RSSR) in equation ( 6). The 

format for making these comparisons is: 

F = 
(RSSR-RSSU) I (DFR-DFU) 

RSSU I DFU 
(7) 

which is distributed as central F (centrality 
parameter equal to zero) with (DFR-DFU) and DFU 

degrees of freedom for 
denominator, respectively. 
that DFR and DFu are the 

the numerator and 
Notice, 
degrees 

furthermore, 
of freedom 



associated with the restricted and unrestricted 
models, respective~y~ 

Under the null hypothesis that ~1 =~2=~, i.e., 

that the restrictions suggested by equation (6) 
hold, versus the alternate hypothesis that 
~l ~ ! 2, i.e., that the restrictions do not hold, 

equation ( 7) has particular appeal. Simply 
stated, if RSSR and RSSu are "close" to each 

other, the implication is that the restrictions 
are not in conflict with the sample data. This is 
reflected in a small calculated F-statistic 
relative to a critical F such that the null 
hypothesis cannot be rejected. If, on the other 
hand, RSSR diverges greatly from RSSU, the 

calculated F-statistic will exceed the critical F 
and the null hypothesis will be rejected, implying 
that the restrictions are in conflict with the 
sample data. 

Seemingly Unrelated Regression 

Once either the stacked or unstacked model 
has been selected as the appropriate 
specification, an important issue revolves around 
whether or not the OLS procedure used for the 
estimation of the selected model leads to the most 
efficient parameter estimates. That is, even 
though 1) the system has been purged of any 
autocorrelation or heterscedastici ty relating to 
the error structure and 2) possible restrictions 
relating to the parameters have been tested, 
additional information may still be gleaned from 
the estimated error vectors ~1 and ~2 • In fact, 

up to now, the assumptions relating to the error 
terms of either model (5) or model (6) have been 
very restrictive in the sense that they do not 
allow for mutual correlation between ~1 and ~2 . 

Testing whether or not the error vectors of the 
selected model (5) or (6) above are actually 
unrelated or only seemingly unrelated involves a 
generalized least squares procedure (Zellner 
1962). Basically, testing for mutual correlation 
involves comparing the estimate of the' variance of 
the selected model (5) or (6) above (call this 

estimate o2
0LS) with the estimate of the variance 

of that same model cast in a generalized least 
squares or seemingly unrelated regression 

framework (call this estimate ... 2 ) 
0 SUR • The 

hypothesis to be tested is one of homogeneity of 

variance with the null hypotheis being o2 OLS = 
... 2 ... 2 
cr SUR and the alternate hypotheis being cr OLS > 
... 2 
cr SUR. The appropriate test statistic is 
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F = ... 2 !"2 
0 OLS 0 SUR 

If -- 2 . h 1 " 2 th 11 cr OLS 1s muc arger than cr SUR' e nu 

hypothesis of no mutual correlation must be 
rejected. 

The appeal of the seemingly unrelated 
regression approach is that the off-diagonal 
elements of the variance-covariance matrix of the 
error term are not restricted to. zero (as in the 
ordinary least squares case) due to possible 
mutual correlation. Through the generalized least 
squares algorithm, the degree of mutual 
correlation in the error structure is analyzed. 
If there exists little or no mutual correlation, 
the zero restrictions on the off-diagonals hold, 

... 2 ... 2 
and cr SUR approaches cr OLS" On the other hand, 

the existence of mutual correlation in the error 
vectors implies the admissibility of additional 
information about the system which in turn implies 

... 2 "2 f that cr SUR < cr OLS and allows or more efficient 

parameter estimates. 

Principal Components 

Collinearity among the independent variables 
can be detected by observing rather high pairwise 
correlations between explanatory variables and 
also by performing auxiliary regressions of 
individual independent variables on the remaining 
set. This latter test is suggested by Farrar and 
Glauber (1967). 

The way to deal with multicollinearity is to 
introduce additional sample information to 
hopefully increase the selective variation among 
the independent variables. Such information is 
normally added by way of restrictions on the 
parameters suggested by theory. These 
restrictions may take the form of exact linear 
restrictions (Goldberger 1964: 256-8), inequality 
restrictions (Judge and Takayama 1966), and 
stochastic restrictions (Theil and Goldberger 
1961). 

In the absence of any theoretical basis for 
admitting restrictions on the parameters, an 
alternative is to place restrictions on the 
independent variables themselves. This can be 
accomplished by transforming the original 
variables into artificial constructs that are 
orthogonal to each other and then retaining 
certain of these constructs in a regression model 
on the basis of their contribution to variability 
in the original data, while eliminating--placing 
zero restrictions on--those constructs that 
contribute little or nothing to the variability in 
the original data. This is precisely the focus of 
principal components • 

In principal components regression, a 
transformed variable is determined to be important 



and included or unimportant and excluded in the 
regression model dependi.ng upon the size of the 
characteristic root'· (eigenvalue) associated with 
its correspondin'g '·"·: characteristic vector 
(eigenvector) (Massy 1965), the statistical 
significance of its regression coefficient 
(Mittelhammer and Baritelle 1977), or some 
combination of eigenvalue size and correlation 
with the dependent variable (Johnson et al. 1973). 

A complication results with respect to the 
optimal number of components to delete. The 
tendency traditionally has been to delete 
components asociated with small eigenvalues, e.g., 
less than one. The limitation of this approach is 
that components with small eigenvalues may be 
correlated very highly with the dependent 
variable. Thus, a structural norm which 
simultaneously considers the amount of variability 
accounted for by a particular component and its 
correlation with the dependent variable has 
greater appeal. A particular norm which accounts 
for these two measures is the F-test described in 
equation (7). Components can be sequentially 
deleted until a new restriction, i.e., the 
deletion of an additional component, causes no 
improvement with respect to the fit of the 
equation. Finally, once the "optimal" number of 
components has been deleted, the principal 
component estimators can easily be transformed to 
estimators on the original independent variables 
(Johnson et al. 1973). 

RESULTS AND DISCUSSION 

OLS regression models were estimated 
individually for zone 1 (n=384) and zone 2 (n=480) 
in the spirit of equation (5) and with the zones 
stacked (n=864) as suggested by equation (6). 
Preliminary to performing these regressions, any 
problems with respect to heteroscedasticity among 
the error variances of the individual areas were 
corrected. The model specifications were tested 
using equation (7) to determine if the parameter 
restrictions held. The F-values were significant 
using the central F -test. This separation was 
consistent with development of these ecological 
zones and indicates that there were major habitat 
differences. 

Seemingly unrelated regression (SUR) was done 
on the unstacked data and the possibility of 
mutual correlation explored. The disturbances in 
the two equations were found to be not mutually 
correlated, and the SUR parameters estimators were 
the same as the OLS estimators. The above tests 
showed that both the set of explanatory variables 
and disturbances between zones were not 
correlated, and there was no justification for 
combining the data. 

Multicollinearity among the explanatory 
variables was indicated by significant 
relationships in the simple correlations and 
auxilliary regressions. Almost perfect 
collinearity existed between each of the three 
ground cover measurements (GC1, GC2, AND GC3) and 
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the rema1n1ng variables. This was expected, as 
ground cover was a function of the amount of light 
reaching the. forest floor which, in turn, was 
determined by canopy closure and understory. 
Basal area (BA), a measure of canopy closure, was 
also collinear with the rest of the variables. 
Furthermore, collinearity among the independent 
variables was confirmed in that the OLS 
regressions for each zone had high standard errors 
resulting in non-significant t-statistics. 

Principal components regression (PCR) was 
done on each zone. Equation (7) was used as the 
deletion criterium with one component deleted from 
zone 1 and four from zone 2. Because information 
was removed from the models, the t-tests were 
recognized only as indicators of more precise 
estimators and suggest variables that may be most 
important habitat descriptors (Freund 1974). 
Final PCR model coefficients and significance 
tests appear in tables 2 and 3. The fact that 
zone 1 was an area of transition between the 
Connecticut River Valley lowlands and upland 
Berkshire Mountains indicated that it would be 
difficult to find common parameters within this 
zone's heterogeniety. 

The final model for zone had eleven 
significant effects while zone 2 had eight. Three 
variates of major importance were retained with 
the same sign in both models. Species richness 
(RICH), indicating open areas, and basal area 
( BA) , or canopy closure, had negative effects on 
hare abundance while hardwood shrub frequency 
(HDBHO) had a positive effect. Four additional 
variable effects were significant in both zones 
but carried opposite signs: number of evergreen 
(EVER) and hardwood (HARD) trees, number of 
evergreen saplings (EDBH1), and upper percent 
winter understory (MINU). Sample data were 
carefully examined for the possibility that the 
signs changed in response to a particular 
sensi ti vi ty in habitat measurements. The number 
of hardwood trees appears to have a sample 
frequency that could explain the change in signs 
(fig. 2), but because zone 1 already had more 
hardwood trees, the only interpretation was that 
increasing numbers of hardwood trees in zone 1 is 
related to increased hare activity, while in zone 
2 the inverse held. The histogram in figure 3 
demonstrates the relative frequencies for 
evergreen trees was similar in both zones, as they 
were for EDBH1 and MINU, so the same effects were 
expected but not found. 

One hypothesis for the different effects 
between zones is that the low hare track count of 
298 for zone 1, compared with 2226 tracks for zone 
2, had low information content for selection of 
variable effects and the quality of the parameter 
estimates were questionable. When EVER and HARD 
were plotted on a three dimensional graph (fig. 4) 
the same frequency distributions were seen but in 
addition the low track count values of zone 1 were 
evident. 

There are possible explanations for the 
different variable effects between zones based on 



Table 2. PrinciJ>al. c_omponents regression model of 
the relationship 'between hare activity and 
selection of habitat in zone 1. 

Variable 1 Estimated 
Names coefficients 

RICH -0.115 

SNOW 0.010 

EVER 0.340 

HARD 0.088 

BA -0.064 

SHRUB -0.001 

EDBHO -0.009 

EDBH1 -0.028 

HDBHO 0.003 

HDBH1 -0.002 

MINL 0.014 

MINU -0.016 

MAXL -0.012 

GC1 .o. 001 

GC2 -0.006 

GC3 -0.001 

Intercept 1.459 

1 see text for variable description 
2 ** P<0.01, * P<0.05 

T- ratio 2 

-1.933* 

2.292** 

7.238** 

2.347** 

-4.796** 

-0.321 

-1. 745* 

-2.471** 

3.189** 

-0.419 

3.056** 

-2. 382** 

-2.472** 

o. 101 

-0.679 

-0. 103 

field observation. For example, median snow 
depths were the same for both zones while the 
maximum depth was 41 em deeper on zone 2. Heavier 
snows in zone 2 had a greater immediate effect on 
the habitat. Accumulation of snow on tree 
branches and crowns bent them down within reach 
for browsing, and often broke them off entirely 
providing tips, and buds for food on top of the 
snow. Shrubs and saplings became completely 
covered with snow in some storms and hare burrowed 
under them and used these areas for food and 
shelter. Snowfalls in zone 1 were 1 ighter and 
melted faster with less accumulation, due to more 
mature trees and denser canopy intercepting the 
snow, preventing most tree damage. This 
relationship between snow and vegetation in the 
two zones explained the hares' selection of 
different components in the sapling (EDBH1 and 
HDBH1) and density (MINL, MINU and MAXL) classes. 

Additional hypotheses could be suggested 
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Table 3. Principal components regression model of 
the relationship between hare activity and 
habitat component selection in zone 2. 

Variable 1 Estimated 
Names coefficients 

RICH -0.148 

SNOW -0.013 

EVER -0.120 

HARD -0.315 

BA -0.040 

SHRUB 0.008 

EDBHO -0.006 

EDBH1 0.066 

HDBHO 0.010 

HDBH1 0.096 

MINL -0.012 

MINU 0.051 

MAXL 0.007 

GC1 -0.019 

GC2 -0.020 

GC3 0.016 

Intercept 3.181 

1 see text for variable description 
2 ** P<0.01, * P<0.05 

T- ratio 2 

-2.337** 

-1.523 

-2.240** 

-3.732** 

-2.816** 

0.512 

-0.968 

3.166** 

2.761** 

5.430** 

-1.074 

2.747** 

0.690 

-1.294 

-1.233 

1. 698* 

pertaining to differences between the models for 
each zone, e.g., response to different species of 
vegetation, interspecific competition between hare 
and white-tailed deer (Odocoileus virginianus), 
and the predator-food complex, but the important 
point has already surfaced. If the parameter 
estimates of these models had been restricted by 
pooling the two data sets, none of these 
differences between zones and ultimately hare 
habitat would have been qualified. Opposite 
effects for the same variable between zones would 
have eliminated detection of some significant 
habitat descriptors and given poor quality 
estimates for others. This problem has severe 
limitations when these data are being used as a 
basis ·for designing and implementing management 
plans. Too often in wildlife research, extensive 
habitat management plans are based on local 
intensive studies. Wildlife managers cannot 
afford to have unrealized negative effects of 
habitat manipulation surface, by either short-term 

·_, .. · 
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Figure 2. Comparison of frequency distributions 
of hardwood trees > 10 em dbh for both zones. 
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Figure 3. Comparison of frequency distributions 
between evergreen trees > 10 em dbh for both 
zones. 
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Figure 4. Three dimensional plot of the 
relationship between hare track counts and 
number of evergreen and hardwood trees > 10 em 
dbh for both zones. 

losses of the wildlife in that habitat or long 
term destruction that will discourage potential 
immigrating populations. 

More specifically, the two zones in this 
study should be managed differently assuming the 
parameter estimates are valid. Zone 2 model 
estimates agreed with our observations of hare 
activity over the past 2 years, and were 
consistent with earlier studies in good hare 
range. The predominately hardwood habitat in zone 
1 has only been studied quantitatively recently, 
and not in areas with the same species composition 
as this study. Sheldon (1957) stated that northen 
hardwood-laurel, and hemlock-laurel habitats in 
zone 1 were the most widespread and important in 
Massachusetts yet in this study they have the 
lowest populations. The zone 1 model should be 
tested with more data to see if the parameter 
effects hold or will move closer to the other zone 
model • 
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DISCUSSION 

GEORGE BURGOYNE, JR.: Would you care to comment 
on the justification for treating a large number 
of observations collected at five sites in two 
regions as completely independent observations. 
The fact that only ten sites were used would be 
expected to yield more homogenous results than if 
the same number of transects were really located 
at random. It is difficult to believe that two 50 
meter transects adjacently located are as 
independent as two 50- meter transects independ
ently, randomly located. 

KATHRYN CONVERSE: Vegetation frequency, 
composition, and structure was heterogenous along 
the ten transect lines. Any problems of the 
dependence with repeated observations was 
corrected by orthogonalizing variables using 
Principle Components. Certainly adjacent 50 m 
transects are less independent than random 50 m 
transects, but they did allow for repeated 
detailed observations of changing hare activity 
and habitat use with varying weather conditions as 
the winter progressed. Intensive vegetation 
measurements and winter tracking over 960 randomly 
located transects would have been logistically 
impossible for one person. 

KEN MORRISON: Being familiar with animal 
tracking, I have a gut feeling that the error in 
measurement increases with increasing activity 
levels, suggesting that a transformation, perhaps 
log, would be appropriate? Is it possible that 
this could have been the case in your study? 

KATHRYN CONVERSE: Indeed, a log transformation 
may be appropriate. We failed to test among 
competing functional specifications for our model. 
We merely assumed linear relationships. 

KEN MORRISON: The number of crossings will be a 
function of time since the last snowfall. When 
you were sampling, is it possible that you 
consistently sampled one area before the other, 
thereby creating a biased difference between the 
two? 

KATHRYN CONVERSE: Two sets of five study areas 
that were a mixture from both zones were tracked 
in alternating order after each snowfall. I think 
this would eliminate any bias between zones. 

DOUGLAS INKLEY: Do you think that snow depth may 
have had an effect on hare mobility, and therefore 
different regional track counts may have been due 
to both population differences and the effect of 
snow depth on mobility? 

KATHRYN CONVERSE: Regional hare activity was 
definitely influenced by snow depth, consistency, 
and accumulation. Inclusion of these snow 
conditions as variables in this model helped to 
explain changing food and cover availability by 
habitat types throughout the winter months. 



MARTIN RAPHAEL: How do you derive the individual 
parameter estimators, i.e., how do you get unique 
estimators using principai components? 

BERNARD MORZUCH: The process is very mechanical 
and straightforward (See Morzuch, B. J. 1981. 
Principal components and the problem of multi
collinearity. Journal of the Northeastern 
Agriculture Economics Council. In press.). 

LESLIE MARCUS: The "seemingly unrelated 
regression" application to the two zone hare data 
seems inappropriate. Since the individual plots 
between zones cc 1i and c2i) are not 

"contemporaneous elements" (Zellner, A. 1963. 
Estimators for seemingly unrelated regression 
equations: some exact finite sample results. 
American Statistical Association Journal 
57:350-367.), there is no reason to relate them. 
The value of c1c2 calculated to estimate a 12 

depends on the permutation of the M1 and M2 

observations, and over permutations E(C 1c2) = O. 

Since it might happen that M1 -J. M2 depending on 

sampling design etc., this is an unnecessary 
application of the interesting idea. Note if the 
sampling sites had been sampled in the same order 
in the two zones or at similar times of the day, 
this might be a useful test. The· way Ms. Converse 
explained the data collection it does not seem 
appropriate. 

BERNARD MORZUCH: As background to answering this 
question, two· entirely different zones (within 
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which five areas were identifed, with eight plots 
per area) were delineated on the basis of 
vegetation and elevation. There was no attempt to 
match a particular plot in zone 1 against any one 
plot in zone 2. Alternatively, performing all 
possible permutations to find one ordering that 
provided the highest degree of mutual correlation 
was not the central theme of this ~nalysis. 

Relative to the question, who is to say that 
ordering the cross sections in zones 1 and 2 in a 
particular fashion to make certain that we have a 
matching of contemporaneous elements is the one 
correct ordering so as to make use of Zellner's 
framework. Given the heterogeneous nature of 
plots between zones and the lack of theory to 
suggest a proper matching, alternative orderings, 
i.e., random or otherwise, are appropriate. 

The purpose of the study was to establish a 
functional relationship between hare distribution 
and habitat variables. The resulting estimators 
of the pooled model have, at least, nice 
asymptotic properties. Therefore, any additional 
testing of the restrictive assumptions of the OLS 
model that might lead to greater efficiencies in 
the estimators would be most welcome. Such is the 
purpose of testing for mutual correlation in a 
seemingly unrelated (SUR) framework. Applying SUR 
in this fashion is, most certainly, appropriate 
and not an unnecessary application of an 
interesting idea. Given our ordering of 
contemporaneous elements, we were unable to 
conclude the presence of mutual correlation. This 
is not to say that another ordering would lead to 
the same conclusions on efficiency grounds. 
However, consistency and asymptotic unbiased ness 
of the estimators would remain unaffected under 
any ordering. 



A DISCUSSION OF ROBUST PROCEDURES IN 

MULTIVARIATE ANAL YSIS1 

Lyman L. McDonald2 

Abstract.--Robust procedures in multivariate analysis 
are briefly reviewed. Conjectures are given for applications 
of existing methods in other areas of multivariate analysis. 

Key words: Discriminant analysis; multicollinearity; 
outliers; principal components; robust procedures. 

Upon review of titles of papers to be 
presented at this meeting, my first reaction was 
io discuss a combination of three subjects: 1) 
the danger of "overfitting" multivariate data with 
descriptive procedures such as principal 
components, factor analysis and canonical 
correlation analysis; 2) the ultra-conservative 
nature of inference procedures in multivariate 
analysis of, varianc~ (MANOVA) and in multivariate 
regression analysis (i.e., simultaneous regression 
of several dependent variables on a collection of 
independent variables); and 3) the need for 
"robust" analysis procedures in multivariate 
studies. 

The first of my concerns is addressed by Karr 
and Martin ( 1981). Their observations reinforce 
my experiences and I endorse their suggestion that 
"One possibility might be a table of expected 
amount of variation accounted for by random number 
matrices that can be used as a test relative to 
the amount of variation accounted for in real 
data." Actually tables of upper percentage points 
in the null distribution of variance accounted for 
by random number matrices would be more 
appropriate for a formal test of hypothesis, but 
the idea is the same. 

The second of my concerns is not of much 
interest in the papers presented. MANOVA is 
mentioned rarely and insofar as I am aware, the 

1 Paper presented at The use of multi variate 
statistics in studies of wildlife habitat: a 
workshop, April 23-25, 1980, Burlington Vt. 

2 Professor, Departments of Statistics and 
Zoology, University of Wyoming, Laramie, WY 
82071. 
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corresponding simultaneous inference procedures 
are not strongly recommended. 

I emphasize, then, the third topic: a need 
for robust procedures. This need becomes obvious 
when reading several of the papers. For example, 
Williams (1981) correctly pointed out that an 
important aspect of canonical variates in 
discriminant analysis is the ecological meaning of 
the coefficients. However he noted that "Most 
people who have worked with discriminant analysis 
have probably seen cases in which positively 
correlated variates have canonical coefficients 
with different signs," and quoting from Weiner and 
Dunn ( 1966), "For complex structures, magnitudes 
and even signs of coefficients are dependent on 
what additional variables are included in the 
model." In a study of discriminant analysis by 
use of multiple regression methods, Cavallaro et 
al. (1981) stated that "Multicollinearity can 
cause the regression coefficients to be inflated 
in absolute value or even to have the wrong sign." 
Smith (1981) in his paper on canonical correlation 
analysis noted that "Most often coefficients are 
exceedingly difficult to interpret, if not 
meaningless (Cassie and Michael 1968). " 
Also, "· .Cassie (1969) found that adding and 
subtracting variables at random 'capriciously' 
changed the values of the corresponding canonical 
coefficients." Harner and Whitmore ( 1981) stated 
that "Outliers in multivariate data can have 
pronounced effects on the interpretations and 
conclusions of statistical analyses." 

With the exception of Harner and Whitmore 
(1981) and Cavallaro et al. (1981), little 
information has been given in these proceedings to 
help the reader understand and solve these 
problems when they arise in a particular 



application. Instead, the reader is warned that 
problems may exist and in some cases analysis 
procedures for detecti~n of the need for more 
robust methods haite,:. been given (e.g., data 
splitting). However, a'l ternati ve methods have not 
always been given if unstable results occur in the 
analysis of a particular data set. 

There appear to be two basic problems and 
hence at least two approaches to "robust" 
multivariate analysis procedures: 1) elimination 
(or reduction) of multicollinearity before 
inversion of a variance-covariance type matrix--or 
equivalently, improved estimation of the inverse 
of a variance-covariance matrix; and 2) robust 
estimation of parameters by some procedure for 
outright trimming of "outliers" or for reduction 
of the influence of outliers. 

Consider first the problem of reducing 
effects of multicollinearity on multivariate 
procedures. Most multivariate methods, except for 
descriptive procedures such as principal 
components and factor analysis, involve the 
inverse of a matrix, S, of sums of squares and 
cross-products. Correlation matrices, variance
covariance matrices, etc., are all special cases. 
Letting Ai,i=1, ... ,p, denote the characteristic 

roots of a (p x p) nonsingular matrix ~. one can 
write 

p 
1:(1/A,) 

i = 1 
1 

a. a! 
-1-1 

(1) 

where ~i denotes the corresponding normalized 

characteristic.. vectors~ If some of the variables 
used to compute S are strongly intercorrelated 
(i.e., there is multicollinearity) then some of 
the characteristic roots will be "small" and the 
matrix S is said to be ill-conditioned. Clearly 
from Eq-:-( 1) division by small values is involved 
and the inverse of S will be unstable in such 
cases. Consider the obvious effect in regression 

analysis [~ = ~- 1 !'!], discriminant functions 

[D(X) <!1-!2 ) ,~- 1 !], Mahalanobis' distance 

- - -1 - -
[D 2 (_!1-_!

2
) '~ <!1-_!

2
)] and canonical variables 

and correlations [characteristic roots and vectors 

notation is used. The regression coefficients, 
discriminant coefficients, will be 
impossible to interpret if the problem is severe. 

Regression analysis has, of course, received 
the most attention under two general approaches. 
First, r·egression on the first few principal 
components (say q with q < p) eliminating those 
corresponding to small characteristic roots. The 
results are obvious in that the reduced 
coefficient matrix of the normal equations is 
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diagonal and the regression coefficients are 

_@* = (diag CA 1, ••• ,Aq))-l [~ _)(_'>':. 

Increased stability can be expected with 
usually only a minor increase in bias. Sczerzenie 
(1981), in his paper on analysis of deer harvest
land use relationships, correctly noted that the 
procedure will often reduce the variance of the 
estimators. Converse and Morzuch (1981) noted 
that the procedure will decrease the effect of 
multicollinearity among independent variables. 
For further details on this procedure, the 
interested reader is referred to Sczerzenie (1981) 
and Converse and Morzuch ( 1981) and their cited 
references. 

Use of principal components to reduce the 
effect of multi call in ear i ty in multivariate 
procedures other than regression analysis has been 
proposed but not studied (insofar as I am aware). 
The approach is to transform all data to the first 
few principal components before starting the 
analysis. Variables are then uncorrelated and 
only diagonal matrices need to be inverted. For 
example, Fisher's linear discriminant function 

would be replaced by 

D*(!) = C<!1 - !2 )'!')(ASA')- 1~)! where 

!qxp!px 1 represents the transformation of all data 

to the "first" q principal components, q < p. 
Hopefully, the loadings in D*(X) will be more 
stable and easier to interpret than in the 
original function without sacrificing the 
discriminating ability. Similar adjustments can 
be made in canonical variate analysis and other 
multivariate procedures. 

The second approach to solving the problem of 
multicollinearity in regression analysis is by 
ridge regression or biased-regression, first 
developed by Hoerl and Kennard ( 1970). Cavallaro 
et al. ( 1981) gave an excellent application of 
this procedure in their use of multiple regression 
techniques for discriminant analysis. The basic 
idea is to allow a certain bias in the regression 
coefficient by adding a constant k to the diagonal 
of the coefficient matrix of the normal equations 
before inverting, i.e., 

This operation will add the constant k to 
characteristic roots of S and hence 

k 
E [1/(A.+k)]a.a! 

. 1 -1-1 
1 =1 

all 



Ridge regression can be viewed as a special 
application of a ~uch broader problem, namely 
improved esthita,tion" of the inverse of a 
variance-covariance matirx, e.g., Efron and Morris 
(1976). In general, small characteristic roots of 
~ are underestimates of the corresponding 
population values and large roots are 
overestimates. Efron and Morris sought to improve 

s-1 by shrinking all roots toward a common value. 

The ridge-adjusted estimate, (~+k.!_) - 1
, works by 

increasing all roots by a constant amount, k. 
Thus the ill-conditioning effect of 
underestimating small roots is countered without 
having much influence on the larger roots. I will 

refer to estimates of !-1 based on adjusted roots 
of S as simply ridge-adjusted estimators. 

I am aware of two investigations into the use 

of ridge-adjusted estimates of f.- 1 in linear 
discriminant analysis, i.e., 

D*(!) = [(!1 - !2) I(~ + k.!)-1 ]!_. 

The first by DiPillo (1976) showed that when the 
variance-covariance matrices are ill-conditioned, 
improvements can be made in the probability of 
correct classification. In an independent 
investigation, Smidt and McDonald (1976) found no 
improvement in classification rate but obtained 
increased stability in estimates of coefficients 
of discriminant functions. 

I am not aware of research of this type into 
the study pf canonical correlation analysis and 
other procedures but would conjecture that similar 
improvements can be made by using ridge-adjusted 
estimators of the inverse of variance-covariance 
matrices. 

The second area of development of robust 
multivariate analysis procedures is in the 
reduction of the effect of outliers on resulting 
analyses. It is well known that outliers in 
multidimensional studies are very difficult to 
detect, and if undetected can have a pronounced 
effect on the analysis. Harner agd Whitmore 
(1981) developed a method for building robust 
discriminant models. In general, they found that 
in the presence of outliers robust models 
performed much better than Fisher's discriminant 
model. With such an improvement in discriminant 
analysis it is almost a certainty that other 
multivariate procedures will perform better if the 
influence of outliers is reduced. Guarding 
against the adverse effects of outliers should be 
a goal in every data analysis. The interested 
reader is referred to cited references in Harner 
and Whitmore's excellent paper for further work in 
this area. 
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U.S. Department ·of Agriculture 
For est Service . 

Rocky Mou.ntain· Forest and 
Range Experiment Station 

The Rocky Mountain _Station is one of eight 
regional experiment stations., plus the Forest 
Products Laboratory a.nd the Washington Office 

, Staff, that make up the Forest Service research 
organization. 

RESEARCH FOCUS 

Research programs at the Rocky Mountain 
Station are coordinated with area universities and 

. with other institutions. Many studies are · 
conducted on a cooperative basis to accelerate 

· solutions to pro:blems involving range, water, 
wildlife and fish habitat; human and community 
development, timber, recreation, protection, and 
multiresource evaluation. 

RESEARCH LOCATIONS 

Research Work Units of the Rocky Mountain 
Station are operated in cooperation with 
universities in the following cities: 

Albuquerque, New Mexico 
Bottineau, North Dakota 
Flagstaff, Arizona 
Fort Collins, Colorado* 
Laramie, Wyoming 
Lincoln, Nebraska 
Lubbock, Texas 
Rapid City, South Dakota 
Tempe, Arizona 

*Station Headquarters: 240 W. Prospect St., Fort Collins, CO 80526 
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