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Abstract

Rating scales provide an efficient and widely used means of recording
judgments. This paper reviews scaling issues within the context of a
psychometric model of the rating process and describes several meth-
ods of scaling rating data. The scaling procedures include the simple
mean, standardized values, scale values based on Thurstone’s Law of
Categorical Judgment, and regression-based values. The scaling meth-
ods are compared in terms of the assumptions they require about the
rating process and the information they provide about the underlying
psychological dimension being assessed.
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Scaling of Ratings: Concepts and Methods

Thomas C. Brown and Terry C. Daniel

INTRODUCTION

Rating scales offer an efficient and widely used means of
recording judgments about many kinds of stimuli. Such
scales are often used in studies relating to natural re-
sources management, for example, to measure citizen
preferences for recreation activities (Driver and Knopf
1977) or perceived scenic beauty of forest scenes (Brown
and Daniel 1986). In this paper we review issues regarding
the use of rating data, and describe and compare methods
for scaling such data.

This paper provides theoretical and descriptive back-
ground for scaling procedures available in a computer
program called RMRATE, which is described in a compan-
ion document (Brown et al. 1990). RMRATE is designed to
(1) scale rating data using a battery of scaling procedures,
(2) compare the scale values obtained by use of these
procedures, (3) evaluate to a limited extent whether the
assumptions of the scaling procedures are tenable, (4) de-
termine the reliability of the ratings, and (5) evaluate indi-
vidual variations among raters.

Both this paper and the RMRATE computer program are
outgrowths of an effort that began in the early 1970s to
better understand the effects of management on the sce-
nic beauty of forest environments. An important report by
Daniel and Boster (1976) introduced the Scenic Beauty
Estimation (SBE) method. The SBE method is reviewed
and further developed herein, along with other scaling
procedures, including median and mean ratings, stan-
dardized scores, and a new scale based on a least squares
analysis of the ratings.

While scenic beauty has been the focus of the work that
led up to this paper, and continues to be a major research
emphasis of the authors, the utility of the scaling proce-
dures is certainly not limited to measurement of scenic
beauty. Rather, this paper should be of interest to anyone
planning to obtain or needing to analyze ratings, no matter
what the stimuli.

Psychological scaling procedures are designed to deal
with the quite likely possibility that people will use the
rating scale differently from one to another in the process
of recording their perceptions of the stimuli presented for
assessment. Scaling procedures can be very effective in
adjusting for some of these differences, but the proce-
dures cannot correct for basic flaws in experimental de-
sign that are also reflected in the ratings. While aspects of
experimental design are mentioned throughout this paper,
we will not cover experimental design in detail; the reader
desiring an explicit treatment of experimental design should
consult a basic text on the topic, such as Cochran and Cox
(1957) or Campbell and Stanley (1963).

We first offer a brief introduction to psychological scal-
ing to refresh the reader’s memory and set the stage for
what follows. Readers with no prior knowledge of scaling

methods should consult a basic text on the subject, such as
Nunnally (1978) or Torgerson (1958). We then describe
and compare several procedures for scaling rating data.
Finally, additional comparisons of the scaling procedures
are found in the appendix.

PSYCHOLOGICAL SCALING

Psychometricians and psychophysicists have developed
scaling procedures for assigning numbers to the psycho-
logical properties of persons and objects. Psychometri-
cians have traditionally concentrated on developing mea-
sures of psychological characteristics or traits of persons,
such as the IQ measure of intelligence. Psychophysics is
concerned with obtaining systematic measures of psycho-
logical response to physical properties of objects or envi-
ronments. A classic example of a psychophysical scale is
the decibel scale of perceived loudness.

Among the areas of study to which psychophysical meth-
ods have been applied, and one that is a primary area of
application for RMRATE (Brown et al. 1990), is the scaling
of perceived environmental quality and preferences. In
this context, scaling methods are applied to measure dif-
ferences among environmental settings on psychological
dimensions such as esthetic quality, scenic beauty, per-
ceived naturalness, recreational quality, or preference.

Scaling Levels

An important consideration in psychological scaling, as
in all measurement, is the “level” of the scale that is
achieved. Classically there are three levels that are distin-
guished by the relationship between the numbers derived
by the scale and the underlying property of the objects (or
persons) that are being measured. The lowest level of
measurement we will discuss is the ordinal level, where
objects are simply ranked, as from low to high, with re-
spect to the underlying property of interest. At this level, a
higher number onthe scale implies a higher degree (greater
amount) of the property measured, but the magnitude of
the differences between objects is not determined. Thus,
arank of 3 is below that of 4, and 4 is below 6, but the scale
does not provide information as to whether the object at
rank 4 differs more from the object at 3 or from the object
ranked at 6. At this level of measurement only statements
of “less than,” “equal to,” or “greater than,” with respect to
the underlying property, can be supported.

Most psychological scaling methods seek to achieve an
interval level of measurement, where the magnitude of
the difference between scale values indicates, for ex-
ample, the extent to which one object is preferred over
another. The intervals of this metric are comparable over



the range of the scale; e.g., the difference between scale
values of 1 and 5 is equivalent to the difference between 11
and 15 with respect to the underlying property. Interval
scale metrics have an arbitrary zero point, or a “rational”
origin (such as the Celsius scale of temperature where 0
degrees is defined by the freezing point of water). They do
not, however, have a true zero point that indicates the
complete absence of the property being measured.

Interval scales will support mathematical statements
about the magnitude of differences between objects with
respect to the property being measured. For example, a
statement such as “a difference of 4 units on the measure-
ment scale represents twice as great a difference in the
underlying property as a difference of 2 units” could be
made about information in an interval scale. It would not
be permissible, however, to state that “the object with a
value of 4 has twice as much of the property being mea-
sured as the object scaled at 2.” The latter statement
requires a higher level of measurement, one where all
scale values are referenced to an “absolute zero.”

The highest level of measurement is the ratio scale,
where the ratios of differences are equal over the range of
the scale; e.g., a scale value of 1 is to 2 as 10 is to 20. Ratio
scales require a “true zero” or “absolute” origin, where 0
on the scale represents the complete absence of the prop-
erty being measured (such as the Kelvin scale of tempera-
ture, where 0 represents the complete absence of heat).
Generally, ratio scales are only achieved in basic physical
measurement systems, such as length and weight. Abso-
lute zeros are much harder to define in psychological
measurement systems, because of the difficulty of deter-
mining what would constitute the absolute absence of
characteristics such as intelligence or preference.

It is important to note that the ordinal, interval, or ratio
property of a measurement scale is determined with refer-
ence to the underlying dimension being measured; 20
degrees Celsius is certainly twice as many degrees as 10,
but it does not necessarily represent twice as much heat.

The level of measurement may place restrictions on the
validity of inferences that can be drawn about the underly-
ing property being measured based on operations per-
formed on the scale values (the numbers). Some fre-
quently used mathematical operations, such as the
computation and comparison of averages, require assump-
tions that are not met by some measurement scales. In
particular, if the average of scale values is to represent an
average of the underlying property, then the measurement
scale must be at least at the interval level, where equal
distances on the measurement scale indicate equal differ-
ences in the underlying property. Similarly, if ratios of scale
values are computed, only a ratio scale will reflect equiva-
lent ratios in the underlying property.

Scaling Methods

A number of different methods can be used for psycho-
logical scaling. All methods involve the presentation of
objects to observers who must give some overt indication

of the relative position of the objects on some desig-
nated psychological dimension (e.g., perceived weight,
brightness, or preference). Traditional methods for ob-
taining reactions to the objects in a scaling experiment
include paired-comparisons, rank orderings, and nu-
merical ratings.

Perhaps the simplest psychophysical measurement
method conceptually is the method of paired compari-
sons. Objects are presented to observers two at a time, and
the observer is required to indicate which has the higher
value on the underlying scale; e.g., in the case of prefer-
ences, the observer indicates which of the two is most
preferred. A related procedure is the rank-order proce-
dure. Here the observer places a relatively small set of
objects (rarely more than 10) in order from lowest (least
preferred) to highest (most preferred). At their most basic
level, these two procedures produce ordinal data, based
on the proportion of times each stimulus is preferred in the
paired-comparison case, and on the assigned ranks in the
rank-ordering procedure.

One of the most popular methods for obtaining reactions
from observers in a psychological measurement context
uses rating scales. The procedure requires observers to
assign ratings to objects to indicate their attitude about
some statement or object, or their perception of some
property of the object.

In each of these methods, the overt responses of the
observers (choices, ranks, or ratings) are not taken as direct
measures of the psychological scale values, but are used as
indicators from which estimates of the psychological scale
are derived using mathematical procedures appropriate to
the method. In theory, the psychological scale values de-
rived for a set of objects should not differ between different
scaling methods. For example, if a paired-comparison pro-
cedure and a rating scale are used for indicating relative
preferences for a common set of objects, the psychological
preference scale values for the objects should be the same,
or within a linear transformation.

While the basic data from the paired-comparison and
rank-order procedures are originally at the ordinal level of
measurement, psychometric scaling procedures have been
developed that, given certain theoretical assumptions,
provide interval level measures. Perhaps the best known
procedures are those developed by Thurstone (see
Nunnally (1978) and Torgerson (1958)), whereby choices
or ranks provided by a number of observers (or by one
observer on repeated occasions) are aggregated to obtain
percentiles, which are then referenced to a normal distri-
bution to produce interval scale values for the objects
being judged. A related set of methods, also based on
normal distribution assumptions, was developed for rating
scale data. Later sections of this paper describe and com-
pare procedures used with rating data. Additional, more
detailed presentations of the theoretical rationale and the
computational procedures are found in the texts by au-
thors such as Torgerson (1958) and Nunnally (1978). Dis-
cussion of these issues in the context of landscape prefer-
ence assessment can be found in papers by Daniel and
Boster (1976), Buhyoff et al. (1981), and Hull et al. (1984).



Rating Scales

Rating response scales are typically used in one of two
ways. With the first approach, each value of the rating
scale can carry a specific descriptor. This procedure is
often used in attitude assessment. For example, the values
of a 5-point scale could be specified as (1) completely
agree, (2) tend to agree, (3) indifferent, (4) tend to dis-
agree, and (5) completely disagree, where the observer is
to indicate degree of agreement about a set of statements.
The observer chooses the number of the response that
most closely represents his/her attitude about each state-
ment. With the second use of rating scales, only the end-
points of the scale are specified. This format is commonly
used with environmental stimuli, where observers are
required to assign ratings to stimuli to indicate their per-
ception of some property of the stimuli. “very low prefer-
ence” for the stimulus, and a “10” indicating very high
preference.” Ratings between 1 and 10 are to indicate
levels of preference between the two extremes. The end-
points are specified to indicate the direction of the scale
(e.g., low ratings for less preference, high ratings for more
preference).

Whether associated with a specific descriptor or not, an
individual rating, by itself, cannot be taken as an indicator
of any particular (absolute) value on the underlying scale.
Forexample, labeling one of the categories “strongly agree”
in no way assures that “strong” agreement in one assess-
ment context is equivalent to “strong” agreement in an-
other. Similarly, a rating of “5” by itself provides no infor-
mation. A given rating provides useful information only
when it is compared with another rating; that is, there is
meaning only in the relationships among ratings as indica-
tors of the property being assessed. Thus, it is informative
to know that one stimulus is rated a 5 when a second
stimulus is rated a 6. Here the ratings indicate which
stimulus is perceived to have more of the property being
assessed. Furthermore, if a third stimulus is rated an 8, we
may have information not only about the ranking of the
stimuli, but also about the degree to which the stimuli are
perceived to differ in the property being assessed.

Ratings, at a minimum, provide ordinal-level informa-
tion about the stimuli on the underlying dimension being
assessed. However, ratings are subject to several potential
“problems” which, to the extent they exist, tend to limit the
degree to which rating data provide interval scale informa-
tion and the degree to which ratings of different observers
are comparable. Before we review some of these prob-
lems, it will be useful to present a model of the process by
which ratings are formed and scaled.

Psychometric Model

The objective of a rating exercise is to obtain a numerical
indication of observers’ perceptions of the relative posi-
tion of one stimulus versus another on a specified psycho-
logical dimension (e.g., scenic beauty). This objective is
approached by two sequential procedures (fig. 1).

Rating procedure Scaling procedure

Observer’s internal process

Stimuli — { Perception — to criterion :
transformation  values

Reference ;
Ratings Mathematical Scale
scale

Figure 1.—Conceptual model of the rating and scaling procedures.

The rating procedure requires that observers record
their ratings of the stimuli on the rating response scale
provided. Observers are presented with stimuli and, via an
internal perceptual and cognitive process, produce overt
ratings. Because the experimental design of the rating
exercise delineates the specific characteristics of this pro-
cedure, it must be carefully conceived to meet the overall
objective of an accurate assessment (vis-a-vis the circum-
stances to which the results are to be generalized) of the
perceived values of the stimuli. The end product of the
rating procedure is a matrix of ratings by observers of
stimuli. The rating for a given stimulus depends upon both
the perceived value of the stimulus (e.g., perceived scenic
beauty) and the judgment criterion scale being applied
(e.g., how beautiful a scene must be perceived to be to
merit a given rating). Thus, the rating recorded by an
observer cannot be interpreted as a direct indicator of the
perceived value for that stimulus. The purpose of the
scaling procedure is to apply appropriate mathematical
transformations to the ratings so as to produce scale values
for the stimuli. These scale values are intended to indicate
the perceived values of the stimuli, or, more correctly, the
relative positions of the stimuli on the psychological di-
mension being assessed.

Within the rating procedure, a distinction is made be-
tween observers’ perceptions of a stimulus and their crite-
ria for assigning ratings to the stimulus. This two-part
model (Daniel and Boster 1976) follows the psychophysi-
cal models developed by Thurstone (Torgerson 1958), as
extended by signal detection theory (Green and Swetts
1966). In simplified terms, the model postulates that im-
plicit perceptual processes encode the features of the
stimulus and translate them into a subjective impression
of that stimulus for the dimension being judged (e.g., if the
stimulus is an outdoor scene, the dimension could be
scenic beauty). This perceptual process is influenced by
the features of the stimulus in interaction with the sensory
and perceptual system of the observer, and may involve
both “cognitive” and “affective” processes (Kaplan 1987,
Ulrich 1983, Zajonc 1980). The result of this process is a
relative impression of the stimulus—of its place relative to
other possible stimuli. To produce an overt rating, the
perception of the stimulus must be referenced to a judg-
ment criterion scale. The organization of that scale allows
the perceived value of the stimulus to be expressed, as on
a 10-point rating scale.?

2Forced-choice (e.g., paired-comparison) and rank-order procedures
avoid the criterion component; in these procedures, the observer’s re-
sponse is only dependent on the relative perceived value of each stimulus.



Figure 2 depicts how hypothetical perceived values for
each of three stimuli could produce overt ratings accord-
ing to four different observers’ judgment criterion scales.
For this example the perceived values for the three stimuli
are assumed to be identical for all four observers, and are
indicated by the three horizontal lines that pass from the
“perceived value” axis through the four different judgment
criterion scales. When referred to the judgment criterion
scale of observer A, the perceived value of stimulus 1 is
sufficient to meet the criterion for the eighth category, but
not high enough to reach the ninth category, so the ob-
server would assign a rating of 8 to the stimulus. Similarly,
the same stimulus would be assigned a rating of 10 accord-
ing to observer C’s judgment criterion scale, and only a 6
according to observer D’s judgment criterion scale.

The illustration in figure 2 begins with the assumption
that the four observers have identical perceptions of the
stimuli, but different judgment criterion scales. In actual
applications, of course, neither the perceived values nor
the criterion scales are known; only the overt ratings are
available for analysis. However, guided by a psychometric
model, scaling procedures derive estimates of differences
in perceived values that are potentially independent of
differences in judgment criteria. Relationships between
ratings of different stimuli by the same observer(s) are
used to infer perceptions. Given the conditions illustrated
in figure 2, where only observer rating criteria differ, the
ideal scaling procedure would translate each observer’s
ratings so that the scale values for a given stimulus would
be identical for all four observers.

Problems With Interpreting Rating Scales

Unequal-interval judgment criterion scales.—The rating
scale provides an opportunity for observers to directly

Observer Observer  Observer Observer
A B c D
10
10 ~
9
] 8
° |10 ] ]
L 9 A
Stimulus 1 8 __8__ _19— 5
4] — 7 9 7
= 7 6 8 5
> 1l — — — —_ —_ —
3 Stimulus 2 5 _‘:— . .
2 — —
o 4 3 5
o |Stimulus 3 | | - "— I —
2 4 5
3 7 . L
2 1
2 _1—
1

Figure 2.—Judgment criterion scales of four observers with identical
perceived values.

indicate magnitudes of differences in their perceptions of
the objects, which is not provided by either paired-com-
parison or rank-order techniques. However, for this to
occur, the intervals between rating categories must be
equal with regard to the underlying property being mea-
sured. Equally spaced intervals would require that, for
example, the difference in the dimension being rated
yielding an increase in rating from 2 to 3 is equal to the
difference in that dimension yielding an increase in rating
from 6 to 7. The criterion scales of observers B, C, and D of
figure 2 are equal-interval scales, while the scale of ob-
server A is an unequal-interval scale.

Unfortunately, the intervals between rating categories
on the underlying psychological dimension will not neces-
sarily be equal. An obvious potential cause of unequal
intervals in people’s use of the rating scale is the “end-
point” problem. This problem could arise when an ob-
server encounters a stimulus to be rated that does not fit
within the rating criteria that the observer has established
in the course of rating previous stimuli. For example, the
observer may encounter a stimulus that he/she perceives
to have considerably less of the property being rated than
a previous stimulus that was assigned the lowest possible
rating. This new stimulus will also be assigned the lowest
possible rating, which may result in a greater range of the
property being assigned to the lowest rating category than
to other rating categories. This may occur at both ends of
the rating scale, resulting in a sigmoid type relationship
between ratings and the underlying property (Edwards
1957).

The end-point problem can be ameliorated by showing
observers a set of “preview” stimuli that depicts the range
of stimuli subsequently to be rated. This allows observers
to set (“anchor”) their rating criteria to encompass the full
range of the property to be encountered during the rating
session. Hull et al. (1984) used this procedure when they
compared rating scale values to paired-comparison scale
values for the same stimuli. Paired-comparisons, of course,
are not subject to an endpoint constriction. The linear
relationship they found between the two sets of scale
values extended to the ends of the scale, suggesting that
the ratings they obtained did not suffer from the end-point
problem.

Of course, the end-point problem is not the only poten-
tial source of unequal-interval ratings. Observers are free
to adopt any standards they wish for assigning their ratings,
and there is no a priori reason to expect that they will use
equal intervals. For example, the intervals might gradually
get larger the farther they are from the center of the scale,
as in the criterion scale of observer A in figure 2.

Because it is not possible to directly test for equality of
intervals among an observer’s ratings, some statisticians
argue that ratings should not be used as if they represent
interval data (e.g., Golbeck 1986). Others, however, argue,
based on Monte Carlo simulations and other approaches,
that there is little risk in applying parametric statistics to
rating data, especially if ratings from a sufficient number of
observers are being combined (Baker et al. 1966, Gregoire
and Driver 1987, O’'Brien 1979). Nevertheless, the possibility
of an unequal-interval scale leaves the level of measurement



achieved by rating scales somewhat ambiguous. The criti-
calissue, of course, is how the ratings, and any statistics or
indices computed from those ratings, relate to the under-
lying (psychological) dimension that is being assessed.
This issue can only be addressed in the context of some
theory or psychometric model of the perceptual/judgmen-
tal process.

Lack of interobserver correspondence.—Individual
observer’s ratings frequently do not agree with those of
other observers for the same stimuli. Lack of correspon-
dence could result from differences in perception, which
of course is not a “problem” at all; rather it is simply a
finding of the rating exercise at hand. Lack of correspon-
dence could also result from poor understanding of the
rating task, poor eyesight or other sensory malfunction,
simple observer distraction, or even intentional misrepre-
sentation. Principal component analysis or cluster analysis
techniques may be useful to determine whether observers
fall into distinct groups with regard to their perception of
the stimuli, or whether observers who disagree are unique.
In some cases it may be appropriate to either drop some
observers from the sample (as being unrepresentative of
the population of interest) or weight their ratings less than
others.

Most often, lack of correspondence between observers
will be due to differences in the judgment (rating) criteria
adopted. Even if individual observers each employ equal-
interval rating criteria, criterion scales can vary between
observers, or the same observer may change criteria from
one rating session to another. As a consequence, ratings
can differ even though the perception of the stimuli is the
same (as shown in fig. 2). When differences between
observers’ ratings are due only to differences in the crite-
rion scale (i.e., their perceived values are the same), their
resulting ratings will be monotonically related, but not
necessarily perfectly correlated. But if these observers
employ equal-interval criterion scales, the resulting rat-
ings will also be perfectly correlated (except for random
variation).

Linear differences in ratings consist of “origin” and
“interval size” components. Assuming equal-interval
scales, these two components can be estimated for two
sets of ratings of the same stimuli by simply regressing
one set on the other. The intercept and slope coefficients
of the regression would indicate the origin and interval
size differences, respectively. As an example of an origin
difference, consider criterion scales of observers B and C
in figure 2. Remember that all observers in figure 2 are
assumed to agree in their perception of the stimuli. Ob-
server B’s and C’s criterion scales have identical interval
sizes, but B’s scale is shifted up two rating values com-
pared with C’s scale (suggesting that observer B adopted
more stringent criteria, setting higher standards than ob-
server C). The ratings of these two observers for scenes 1,
2, and 3 can be made identical by a simple origin shift—
either adding “2” to each of B’s ratings or subtracting “2”
from each of C’s ratings.

Observers’ criterion scales can probably be expected to
differ somewhat by both their origin and interval size. As
an example, consider the criterion scales of observers C

and D in figure 2. The judgments for the three stimuli
(ratings of 4, 7, and 10 for observer C and 2, 4, and 6 for
observer D) indicate that these scales differ by an origin
shift of 1.0 and an interval size of 1.5. That is, the relation-
ship between the ratings of observers C and D is repre-
sented by Rc = 1 + 1.5 Rp, where R¢, and Rp indicate the
ratings of observers C and D, respectively.

There is no direct way to observe either the perceived
values of the stimuli or the judgment criteria used by the
observer; both are implicit psychological processes. Thus,
if two sets of ratings are linearly related, it is impossible to
tell for sure whether the ratings were produced (1) by two
observers who have identical rating criterion scales, but
perceive the stimuli differently; (2) by two observers who
perceive the stimuli the same, but use different criterion
scales; or (3) by two observers who differ both in percep-
tion and rating criteria. In our application of the basic
psychometric model, however, we have taken the position
that perception is a relatively consistent process that is
strongly related to the features of the stimulus, while
judgment (rating) criteria are more susceptible to the
effects of personal, social, and situational factors. This is a
theoretical position that is consistent with the Thurstone
and signal detection theory models (Brown and Daniel
1987, Daniel and Boster 1976, Hays 1969). Given this posi-
tion, linear differences (i.e., differences in origin and inter-
val size) between sets of ratings are generally taken to be
indications of differences in judgment criteria, not differ-
ences in perception. When differences in ratings are due
to the criterion scales used by different observers (or
observer groups), psychometric scaling procedures can
adjust for these effects and provide “truer” estimates of the
perceived values of the stimuli.

Linear differences between group average criterion
scales.—A related problem may arise where ratings of two
different observer groups are to be compared. The two
groups may on average use different rating criteria, per-
haps because of situational factors such as when the rating
sessions of the different groups occurred. For example,
time of day may influence ratings, regardless of the spe-
cific attributes of the stimuli being judged. Scaling proce-
dures can be used to adjust for criterion differences (origin
and interval) between observer groups.

Lack of intraobserver consistency.—An individual
observer’s ratings can be inconsistent, with different rat-
ings being assigned to the same stimulus at different times.
This problem is not restricted to ratings, but can occur
whenever an observer’s perception and/or rating criterion
boundaries waver during the rating exercise, so that, for
example, a given stimulus falls in the “6” category on one
occasion and in the “5” category the next.

Psychometric models generally assume that both the
perceived values and the judgment criteria will vary some-
what from moment to moment for any given stimulus/
observer. This variation is assumed to occur because of
random (error) factors, and thus is expected to yield a
normal distribution of perceived criterion values cen-
tered around the “true” values (Torgerson 1958). Given
these assumptions, the mean of the resulting ratings for a
stimulus indicates the “true value” for that stimulus,



and the variance of the observer’s ratings for that stimulus
indicates the variation in underlying perceived values com-
bined with variation in rating criterion boundaries. The
effects of inconsistencies in an observer’s ratings can be
ameliorated by obtaining a sufficient number of judgments
of each stimulus (by requiring each observer to judge each
stimulus several times) to achieve a stable estimate of the
perceived values. Repeated presentation of the same
stimuli may, however, lead to other problems.

Perceptual and criterion shifts.—In some circumstances
there may be a systematic shift in rating criteria and/or
perception over the course of a rating session. Such a shift
could be related to the order in which the stimuli are
presented, or to other aspects of the rating session.3 This is
a potential problem with all types of observer judgments
where several stimuli are judged by each observer. If the
problem is related to order of presentation, it can be
controlled for by presenting the stimuli to different observ-
ers (or on different occasions) in different random orders.
If the shift is primarily, due to changing criteria, it may be
possible to adjust for this effect to reveal more consistent
perceived values.

Baseline Adjustments

It is often necessary to combine the ratings for a set of
stimuli obtained in one rating session with ratings for
another set of stimuli obtained in a different rating session
(for examples, see Brown and Daniel (1984) and Daniel
and Boster (1976)). This need may occur, for example,
when ratings are needed for a large group of stimuli that
cannot all be rated in the same session. In such cases, the
investigator’s option is to divide the set of stimuli into
smaller sets to be rated by different observer groups, or by
the same group in separate sessions. In either case, it is
important that some stimuli are common to the separate
groups/sessions; this provides a basis for determining the
comparability of the ratings obtained from the different
groups/sessions, and possibly a vehicle to “bridge the gap”
between different groups/sessions. The subset of stimuli
common to all rating sessions is called the baseline.

If baseline stimuli are to be used to determine compara-
bility between two or more rating sessions, it is important
that the baseline stimuli be rated under the same circum-
stances in each case. Otherwise, the ratings may be influ-
enced by unwanted experimental artifacts, such as inter-
actions between the baseline stimuli and the other stimuli
that are unique to each session. To enhance the utility of
baseline stimuli, the following precautions should be fol-
lowed: (1) the observers for each session should be ran-
domly selected from the same observer population, (2) the

3An example of such shifts is found in the “context” study reported by
Brown and Daniel (1987). Two observer groups each rated the scenic
beauty of a set of common landscape scenes after they had rated a set of
unique (to the groups) scenes. Because of the differences between the two
sets of unique scenes, the ratings of the initial common scenes were quite
different between the groups. However, as more common scenes were
rated, the groups’ ratings gradually shifted toward consensus.

observer groups should be sufficientlylarge, (3) the baseline
stimuli should be representative of the full set of stimuli to
be rated, (4) the other (nonbaseline) stimuli should be
randomly assigned to the different sessions?, and (5) all
other aspects of the sessions (e.g., time of day, experi-
menter) should remain constant.

The effectiveness of a baseline is also a function of the
number of stimuli included in the baseline. The greater the
proportion of the stimuli to be rated that are baseline
stimuli, the more likely that the baseline will adequately
pick up differences in use of the rating scale between
observers or observer groups, all else being equal. Of
course, one must trade off effectiveness of the baseline
with the decrease in the number of unique stimuli that can
be rated in each session as the baseline becomes larger.

If proper experimental precautions are followed, it is
unlikely that the ratings will reflect substantial perceptual
differences among the different groups/sessions. In this
case, given the model described above, we would assume
that any differences across sessions in baseline ratings
were due to differences in judgment criteria, not differ-
ences in perception, and we would then proceed to use
the baseline ratings to “bridge the gap” between the rating
sessions.

In the following section, we describe and compare 11
methods for scaling rating data. Some of these procedures
attempt to compensate or adjust for the potential prob-
lems described above, and some utilize a baseline. We do
not attempt to determine the relative merit of these proce-
dures. Our purpose is to provide the reader with the means
to evaluate the utility of the various scaling procedures for
any given application.

SCALING PROCEDURES

Eleven scaling procedures are described, from the simple
median and mean to the more complex Scenic Beauty
Estimation (SBE) and least squares techniques. All 11
procedures are provided by RMRATE (Brown et al. 1990).
All but one of the scaling procedures provide a scale value
for each stimulus, and all procedures provide scale values
for groups of stimuli. In addition, some of the procedures
provide scale values for each rating. The scaling options
are described below, along with some discussion of the
relative advantages and disadvantages of each.

Differences among the various scaling methods are
illustrated using several sets of hypothetical rating data.
Each set of data represents ratings of the same five
stimuli by different groups of observers. For example,
table 1 presents the ratings of three hypothetical observer
groups (A, B, and C) each rating the same five stimuli

4An example of where this guideline was not followed is reported by
Brown and Daniel (1987), where mean scenic beauty ratings for a constant
set of landscape scenes were significantly different depending upon the
relative scenic beauty of other scenes presented along with the constant
(baseline) scenes. In that study, the experimental design was tailored
precisely to encourage, not avoid, differences in rating criteria by different
observer groups.



(1,2, 3,4, and 5). Table 1 provides a comparison of simple
mean ratings and baseline-adjusted mean ratings as scal-
ing options. Subsequent tables use some of the same
rating sets (observer groups), as well as additional hypo-
thetical groups, to compare the other scaling options.
Additional comparisons of the scaling procedures are pre-
sented in the appendix.

Median Rating

The scale value calculated using this procedure repre-
sents the numerical rating that is above the ratings as-
signed by one-half of the observers and below the ratings
assigned by the other half of the observers. Thus, the
median is simply the midpoint rating in the set of ordered
ratings; e.g., among the ratings 3, 6, and 2, the median is 3.
If there is an even number of observers, the median is the
average of the two midpoint ratings; e.g., among the rat-
ings 2, 4, 5, and 6, the median is 4.5. If the ratings assigned
to a stimulus are symmetrically (e.g., normally) distrib-
uted, the median is equal to the mean rating.

An advantage of the median is that it does not require the
assumption of equal-interval ratings. The corresponding
disadvantage is that it provides only an ordinal (rank-
order) scaling. In terms of the psychological model pre-
sented above, selecting the median ratings as the scale
value restricts one to simple ordinal (greater than, less
than) information about the position of stimuli on the
underlying psychological dimension (e.g., perceived
beauty).

Mean Rating

In many applications researchers have used simple av-
erage ratings as a scale value. The mean rating for a
stimulus is computed as:

MR,:liR” [1]

n IEN
where
MR; = mean rating assigned to stimulus i
R; = rating given to stimulus i by observer |
n = number of observers.

Table 1 lists ratings by three hypothetical observer groups
that each rated 5 stimuli. The mean rating for each stimu-
lus within each data set is also listed.

Ratings, and mean ratings, do provide some indication
of the magnitude of differences between objects, repre-
senting an improvement over ranks in the direction of an
interval measure. However, simply averaging rating scale
responses is potentially hazardous, as it requires the as-
sumption that the intervals between points on the rating
scale are equal. Some statisticians are very reluctant to
allow this assumption, and reject the use of average rat-
ings as a valid measure of differences in the underlying
property of the objects being measured. Other statisticians
are more willing to allow the use of mean ratings, at least
under specified conditions. The results of computer mod-
eling studies support the latter position. These studies
have shown that when ratings are averaged over reason-
able numbers of observers (generally from about 15 to 30)
who rate the same set of objects, the resulting scale values
are very robust to a wide range of interval configurations in
the individual rating scales (see citations in the Psycho-
logical Scaling section, above, plus numerous papers in
Kirk (1972)).

To compare mean ratings of stimuli judged during a
given session, one must assume that on average the rating
criterion scale is equal interval. A group’s rating criterion
scale is equal interval “on average” (1) if each observer
used an equal-interval rating criterion scale, or (2) if the
deviations from equal intervals employed by specific ob-
servers are randomly distributed among observers

Table 1.—Ratings and origin-adjusted ratings (OARS) for three observer groups.

Rating OAR Scale value
Observer... 1 2 3 1 2 3

Observer Stimulus Mean Mean
group rating OAR
A 1 1 3 6 -2.0 -2.0 -2.0 3.33 -2.00
2 2 4 7 -1.0 -1.0 -1.0 4.33 -1.00
3 3 5 8 .0 .0 .0 5.33 .00
4 4 6 9 1.0 1.0 1.0 6.33 1.00
5 5 7 10 2.0 2.0 2.0 7.33 2.00
B 1 1 2 1 -4.0 -4.0 -4.0 1.33 -4.00
2 3 4 3 -2.0 -2.0 -2.0 3.33 -2.00
3 5 6 5 .0 .0 .0 5.33 .00
4 7 8 7 2.0 2.0 2.0 7.33 2.00
5 9 10 9 4.0 4.0 4.0 9.33 4.00
C 1 1 2 2 -4.0 -4.0 -4.0 1.67 -4.00
2 3 4 4 -2.0 -2.0 -2.0 3.67 -2.00
3 5 6 6 .0 .0 .0 5.67 .00
4 7 8 8 2.0 2.0 2.0 7.67 2.00
5 9 10 10 4.0 4.0 4.0 9.67 4.00




(there are no consistent deviations, such as all or most
observers compressing the end-points of the scale). The
assumption of equal-interval criterion scales is probably
never strictly met for individual observers, but for suffi-
ciently large groups of observers (15 to 30 or more, de-
pending on variability within the group) it may not be
unreasonable to assume that “on average” the intervals
between categories are approximately equal.

The experimenter must decide whether and when it is
appropriate to use mean ratings as an index of preference,
quality, or whatever property is being measured. In typical
applications with multiple observers and a proper experi-
mental design, however, we have rarely found situations in
which the results of using mean ratings, as compared to
more sophisticated scaling methods, produced substan-
tive differences in conclusions, statistical or scientific,
regarding relative preferences or perceived quality (see
also Schroeder (1984)). However, use of mean ratings as
interval scale data must be approached with considerable
caution. In the final analysis, differences between mean
ratings will assuredly indicate commensurate differences
on the underlying psychological dimension only if the
rating criterion scales of relevant observers or groups are
equal-interval.

Origin-Adjusted Rating

This procedure applies an origin adjustment to each
observer’s ratings prior to aggregating over observers to
obtain a group index for a stimulus. First, individual
observer’s ratings are transformed to origin-adjusted rat-
ings (OARS) by subtracting each observer’s mean rating
from each of his or her ratings as follows:

OAR; =R; ~MR, (2]
where
OAR;; = origin-adjusted rating of stimulus i by
observer j
Rj = rating assigned to stimulus i by observer j
MR; = mean rating assigned to all stimuli by
observer j.

Then the OAR;; are averaged across observers in a group,
in a similar fashion to the averaging of raw ratings in
equation [1], to give one scale value for each stimulus.

OARs of three hypothetical observer groups are listed in
table 1. The ratings of the three observers of group A have
the same interval size (the difference in ratings between
any two stimuli is the same for all observers) but different
origins (the mean ratings of the observers differ). Thus,
when the mean rating of each observer is subtracted from
each of the observer’s ratings, the resulting OARs of all
three observers are identical for any given stimulus. That
is, the adjustment has removed the origin differences
among observers to reveal, assuming common percep-
tion, that the observers do not differ in how they distinguish
the relative differences among stimuli. Similarly, the OARs
of observers in groups B and C are identical, and the mean
OARs of the two sets are identical.

Baseline-Adjusted OAR

When scale values are needed for large numbers of
stimuli, requiring two or more separate rating groups or
sessions, use of a common set of stimuli, a baseline as
described above, is recommended. In such situations, a
variation of the OAR technique may be applied, whereby
the origin adjustment is accomplished by subtracting the
mean of the baseline stimuli (rather than the mean of all
stimuli) from each rating. This baseline adjusted OAR is
computed by:

BOAR; =R, -BMR, (3]
where
BOAR;; = baseline-adjusted OAR of stimulus i by
observer j
R;; = rating assigned to stimulus i by observer j
BMR; = mean rating assigned to baseline stimuli by

observer j.

The BOAR;; are then averaged across observers in a group
or session to yield one scale value for each stimulus. Of
course, the cautions regarding the proper design of the
baseline “bridges” between different rating groups/ses-
sions should be carefully considered.

The origin-adjustment corrects for the effects of differ-
ences in the origin of observers’ rating criterion scales, but
not for the effects of differences in interval size, as seen by
comparing ratings of group A with those of groups B and C
in table 1. Mean OARs are identical for groups B and C,
which each used an interval of two rating points for distin-
guishing between proximate stimuli. Group A, however,
exhibits an interval size of only 1, resulting in mean OARs
that differ from those of the other two groups. A more
sophisticated standardized score, such as the Z-score pre-
sented next, adjusts for both origin and interval differences
and, thus, is preferable to a simple origin adjustment.
However, the origin-adjusted rating is included here to
facilitate the transition from simple mean ratings to more
sophisticated standardized scores. If an investigator is
willing to assume that observers/groups differ only in the
origin of their rating criteria, then origin-adjusted ratings
could be taken as indicators of stimulus locations on the
underlying (hypothetical) scale.

Z-Score

This procedure employs a Z-score transformation of
individual observer’s ratings prior to aggregating over ob-
servers to obtain a group index for a stimulus. First, indi-
vidual observer’s ratings are transformed to standard scores
using the conventional formula:

z,=(R,~MR;) / SDR, 4]
where
Zij = Z-score for stimulus i by observer j
R; = rating assigned to stimulus i by observer j
MR; = mean rating assigned to all stimuli by observer j



SDR; = standard deviation of ratings assigned by ob-
server j
n = number of observers.

Then the Z;; are averaged across observers in the group to
give one scale value for each stimulus.

Z-scores have several important characteristics. For each
individual observer, the mean of the Z-scores over the
stimuli rated will always be zero. Also, the standard devia-
tion of the Z-scores for each observer will always be 1.0.
Thus, the initial ratings assigned by an observer, which
may be affected by individual tendencies in use of the
rating scale, are transformed to a common scale that can
be directly compared between (and combined over) ob-
servers. Note that this procedure allows direct comparison
even if different observers used explicitly different rating
scales, such as a 6-point scale versus a 10-point scale.

When Z-scores are computed for individual observers by
[4], the mean and standard deviation of the resulting scale
will be changed to 0 and 1.0, respectively. The shape of the
resulting Z-score distribution, however, will be the same
as that of the original rating distribution, because only a
linear transformation of the ratings has been applied (e.g.,
it will not be forced into a normal distribution). However,
the subsequent procedures of averaging individual ob-
server Z-scores to obtain aggregate (group) indices for
stimuli makes individual departures from normality rela-
tively inconsequential.®

The transformation effected by the Z-score computation
removes linear difference among observers’ ratings. All

5The basis for this claim is the same as that which supports the

application of normal distribution (“parametric”) statistics to data that are
not normally distributed.

differences among observers’ ratings that result from crite-
rion scale differences will be linear if the observers em-
ployed equal-interval criterion scales. Thus, to the extent
that observers’ criterion scales were equal-interval, arbi-
trary differences between observers in how they use the
rating scale are removed with the Z transformation. These
differences include both the tendency to use the high or
low end of the scale (origin differences) and differences in
the extent or range of the scale used (interval size differ-
ences), as illustrated in figure 2. If the equal-interval scale
assumption is satisfied, scaling ratings by the Z transforma-
tion allows any differences among the observers’ Z-scores
to reflect differences in the perceived values of the stimuli.

Hypothetical ratings and corresponding Z-scores are
listed in table 2 for four observer groups. Three results of
the Z-score transformation can be seen in table 2. First, the
Z-score transformation adjusts for origin differences, as
can be seen by comparing ratings and Z-scores among
observers of group A, or among observers of group B.
Second, the transformation adjusts for interval size differ-
ences, as can be seen by comparing ratings and Z-scores
of observer 2 of group A with those of observer 1 of group
B. The combined effect of these two adjustments is seen
by examining group E, which includes a mixture of ratings
from groups A and B. Finally, it is seen by comparing
groups B and D that sets of ratings that produce identical
mean ratings do not necessarily produce identical mean
Z-scores. Two sets of ratings will necessarily produce
identical mean Z-scores only if the sets of ratings are
perfectly correlated (if the ratings of each observer of one
set are linearly related to all other observers of that set and
to all observers of the other set).

Table 2.—Ratings and Z-scores for four observer groups.

Rating Z-score Scale value
Observer... 1 2 3 1 2 3

Observer Stimulus Mean Mean
group rating Z-score
A 1 1 3 6 -1.26 -1.26 -1.26 3.33 -1.26
2 2 4 7 -.63 -.63 -.63 4.33 —-.63

3 3 5 8 .00 .00 .00 5.33 .00

4 4 6 9 .63 .63 .63 6.33 .63

5 5 7 10 1.26 1.26 1.26 7.33 1.26

B 1 1 2 1 -1.26 -1.26 -1.26 1.33 -1.26
2 3 4 3 —.63 —-.63 —-.63 3.33 —.63

3 5 6 5 .00 .00 .00 5.33 .00

4 7 8 7 .63 .63 .63 7.33 .63

5 9 10 9 1.26 1.26 1.26 9.33 1.26

D 1 1 2 1 -.95 -1.63 -1.14 1.33 -1.24
2 2 6 2 —.63 -.15 -.89 3.33 —-.56

3 3 7 6 -.32 22 .10 5.33 .00

4 5 8 9 .32 .59 .84 7.33 .58

5 9 9 10 1.58 .96 1.09 9.33 1.21

E 1 1 6 1 -126 -126 -1.26 267  -1.26
2 2 7 3 -.63 -.63 -.63 4.00 —-.63

3 3 8 5 .00 .00 .00 5.33 .00

4 4 9 7 .63 .63 .63 6.67 .63

5 5 10 9 1.26 1.26 1.26 8.00 1.26




Baseline-Adjusted Z-Score

When different observers have rated sets of stimuli that
only partially overlap, and their scores are to be compared,
baseline stimuli can provide a common basis for trans-
forming individual observer’s ratings into a standardized
scale. Using ratings of the baseline stimuli as the basis of
the standardization, the baseline-adjusted Z-score proce-
dure computes standard scores as:

BZ, =(R; ~BMR;) / BSDR, [5]
where

BZ; = baseline-adjusted standard score of stimulus i
for observer j

R;; = rating of stimulus i by observer j

BMR; = mean rating of the baseline stimuli by ob-
server j

BSDR; = standard deviation of ratings of the baseline

stimuli by observer j.

The BZ;; are then averaged across observers to yield one
scale value per stimulus (BZ;).

All ratings assigned by an observer are transformed by
adjusting the origin and interval to the mean and standard
deviation of that observer’s ratings of the baseline stimuli.
BZ, then, is a standardized score based only on the stimuli
that were rated in common by all observers in a given
assessment. While the standardization parameters (mean
and standard deviation) are derived only from the baseline
stimuli, they are applied to all stimuli rated by the observer.
Thus, as stated above, it is important that the baseline
stimuli be reasonably representative of the total assess-
ment set, and that the additional “nonbaseline” stimuli
rated by the separate groups (sessions) are comparable.

Given the assumptions described above, the computed-
Z procedures transform each observer’s ratings to a scale
that is directly comparable to (and can be combined with)
the scale values of other observers. This is accomplished
by individually setting the origin of each observer’s scale to
the mean of the ratings that observer assigned to all of the
stimuli (or the baseline stimuli). The interval, by which
differences between stimuli are gauged, is also adjusted to
be the standard deviation of the observer’s ratings of all (or
the baseline) stimuli. The appropriate scale value for each
stimulus is the mean Z over all observers.6

The Z transformation is accomplished individually for
each observer, without reference to the ratings assigned
by other observers. An alternative procedure is to select
origin and interval parameters for each observer’s scale so
that the best fit is achieved with the ratings assigned by all
of the observers that have rated the same stimuli. This

8Both origin and interval are arbitrary for interval scale measures. The
origin for the mean Z-score scale (the zero point) will be the grand mean for
all stimuli (or all baseline stimuli), and the interval size for the scale will be
1. 0 divided by the square root of the number of observers. Because the
interval size depends on the number of observers, one must be careful in
making absolute comparisons between mean Zs based on different sized
observer groups. This would not, however, affect relative comparisons
(e.g., correlations) between groups.
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“best fit” is achieved by the least squares procedure de-
scribed next.

Least Squares Rating

This procedure is based on a least squares analysis that
individually “fits” each observer’s ratings to the mean
ratings of the entire group of observers. There are two
variants of the procedure, depending upon whether rat-
ings of all stimuli, or only the baseline stimuli, are used to
standardize or fit the individual observer’s ratings.

Part of the rationale for transforming observers’ ratings
to some other scale is that the ratings do not directly reflect
the associated values on the assumed psychological di-
mension that is being measured. The need for transforma-
tion is most obvious when different observers rate the
same objects using explicitly different rating scales;
unstandardized ratings from a 5-point scale cannot be
directly compared or combined with ratings from a 10-
point scale, and neither can be assumed to directly reflect
either the locations of, or distances between, objects on
the implicit psychological scale. Similarly, even when the
same explicit rating scale is used to indicate values on the
psychological dimension, there is no guarantee that every
observer will use that scale in the same way (i.e., will use
identical rating criteria).

The goal of psychological scaling procedures is to trans-
form the overt indicator responses (ratings) into a com-
mon scale that accurately represents the distribution of
values on the psychological dimension that is the target of
the measurement effort. The Z-score procedure approaches
this measurement problem by individually transforming
each observer’s ratings to achieve a standardized measure
for each stimulus. Individual observer’s ratings are scaled
independently (only with respect to that particular
observer’s rating distribution) and then averaged to pro-
duce a group index for each stimulus. The least squares
procedure, like the Z-score procedure, derives a scale
value for each observer for each stimulus. Individual
observer’s actual ratings, however, are used to estimate
(“predict”) scores for each stimulus based on the linear fit
with the distribution of ratings assigned by the entire group
of observers that rated the same stimuli. This estimated
score is produced by regressing the group mean ratings for
the stimuli (MR;) on the individual stimulus ratings assigned
by each observer (R;). The resulting regression coefficients
are then used to produce the estimated ratings:

LSR, =a +b, R; [6]

where

LSR; least squares rating for stimulus i of observer j
R;; = raw rating for stimulus i assigned by observer j
q; intercept of the regression line for observer j
b; slope of the regression line for observer j.

This is done for each observer, so that a LSR;; is estimated
for each R;;.

Table 3 lists ratings and associated least squares scores
for six observer groups. The table shows that if the ratings



Table 3.—Ratings and least squares ratings for six observer groups.

Rating LSR Scale value
Observer... 1 2 3 1 2 3

Observer Stimulus Mean Mean
group rating LSR
A 1 1 3 6 3.33 3.33 3.33 3.33 3.33
2 2 4 7 4.33 4.33 4.33 4.33 4.33
3 3 5 8 5.33 5.33 5.33 5.33 5.33
4 4 6 9 6.33 6.33 6.33 6.33 6.33
5 5 7 10 7.33 7.33 7.33 7.33 7.33
B 1 1 2 1 1.33 1.33 1.33 1.33 1.33
2 3 4 3 3.33 3.33 3.33 3.33 3.33
3 5 6 5 5.33 5.33 5.33 5.33 5.33
4 7 8 7 7.33 7.33 7.33 7.33 7.33
5 9 10 9 9.33 9.33 9.33 9.33 9.33
D 1 1 2 1 2.48 51 1.81 1.33 1.60
2 2 6 2 3.43 4.89 2.57 3.33 3.63
3 3 7 6 4.38 5.99 5.64 5.33 5.34
4 5 8 9 6.28 7.09 7.94 7.33 7.10
5 9 9 10 10.08 8.18 8.71 9.33 8.99
E 1 1 6 1 2.67 2.67 2.67 2.67 2.67
2 2 7 3 4.00 4.00 4.00 4.00 4.00
3 3 8 5 5.33 5.33 5.33 5.33 5.33
4 4 9 7 6.67 6.67 6.67 6.67 6.67
5 5 10 9 8.00 8.00 8.00 8.00 8.00
F 1 1 2 1 1.07 1.07 2.10 1.33 1.41
2 3 4 2 3.03 3.03 3.07 3.00 3.04
3 5 6 3 5.00 5.00 4.03 4.67 4.68
4 7 8 5 6.97 6.97 5.97 6.67 6.63
5 9 10 9 8.93 8.93 9.83 9.33 9.23
G 1 1 3 3 2.60 2.60 3.36 2.33 2.85
2 2 4 4 3.07 3.07 2.92 3.33 3.02
3 3 5 3 3.53 3.53 3.36 3.67 3.48
4 4 6 2 4.00 4.00 3.79 4.00 3.93
5 5 7 1 4.47 4.47 4.23 4.33 4.39

of two observers in a given group correlate perfectly, they
will yield identical LSRs. For example, the ratings by all
observers of group A are perfectly correlated and, thus, all
observers have identical LSRs. The same is true for observ-
ers in groups B and E, and for observers 1 and 2 of group F.
However, unlike the Z-score procedure, observers of two
different data sets will not necessarily yield identical LSRs,
even though their ratings are perfectly correlated or even
identical (compare LSRs of observer 1 of groups A, E,
and G).

Table 3 also shows that if ratings of all observers within
a group are perfectly correlated with each other, as in
groups A, B, and E, the group mean LSRs for the stimuli will
be identical to the group’s mean ratings. However, if rat-
ings of one or more observers in the set are not perfectly
correlated with those of other observers the mean LSRs
will not (except by chance) be identical to the mean
ratings, as in group F. Finally, it can be seen, by comparing
groups B and D, that identical mean ratings will not neces-
sarily produce identical mean LSRs.

The LSR transformation reflects an assumption of the
general psychometric model that consistent differences
between observers (over a constant set of stimuli) are due
to differences in rating criteria, and that consistent differ-
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ences between stimuli (over a set of observers) indicate
differences on the underlying psychological dimension.
In the LSR procedure, individual observer’s ratings are
weighted by the correlation with the group means. The
group means are taken to be the best estimate of the
“true” values for the stimuli on the underlying perceptual
dimension.

Equation [6] can be restated to better reveal how indi-
vidual observer’s estimated ratings are derived from the
mean ratings of all observers:

LSR; =MMR +r, (SDMR/ SDR;)(R; - MR;) (7]

where

LSR;; = transformed rating scale value for stimulus i for
observer j (as above)

MMR = mean ofthe meanratings assigned to all stimuli
by all observers in the group (the grand mean)

Tjn = correlation between observer j’s ratings and
the mean ratings assigned by all (n) observers
in the group

SDMR = standard deviation of the mean ratings assigned
by all observers in the group

SDR; = standard deviation of observer j’s ratings



MR;

As examination of [7] shows, the resulting LSR values
for every observer will have a mean (over all stimuli)
equal to the grand mean (MMR). The standard deviation
of the transformed scale depends upon the correlation
between the individual and group mean ratings and on
the ratio of the individual and group standard deviations.
As in all regression procedures, the standard deviation
will be less than or equal to that for the original ratings.

The variation in each individual observer’s least squares
scale (LSRy) about the group’s grand mean rating (MMR)
depends largely on how well the observer agreed with the
group of observers (rj,). The greater the absolute value of
the correlation, the greater the variation in the observer’s
LSRs will be. If rj, = 0, for example, observer j will contrib-
ute nothing toward distinctions among the stimuli. In ef-
fect, the least squares procedure weights the contribution
of each observer to the group scale values by the observer’s
correspondence with the group. Thus, in table 3, observers
of groups A and B contribute equally to the scale values of
their respective data sets, but observers of group D do not.
Of particular interest is observer group F. The raw ratings
of all three observers have the same range (8) and stan-
dard deviation (SDR; = 3.16), but the correlation of an
observer’s ratings with the group mean ratings (r,) is
slightly larger for observers 1 and 2 (0.995) than it is for
observer 3 (0.977). This difference in correlations causes
the range and standard deviation of observer 3’s LSRs to be
smaller than those of observers 1 and 2.

The ratio of standard deviations in [7] (SDMR/SDR;) acts
to mediate for differences among observers in the variety
(e.g., range) of rating values used over the set of stimuli.
Observers who use a relatively large range of the rating
scale, and therefore generate relatively large differences
between individual ratings and their mean ratings (R; -
MR;), will tend to have larger standard deviations (SDR;)
and, therefore, smaller ratios of standard deviations (SDMR/
SDR;), thereby reducing the variation in the observer’s
LSRs. Conversely, the variance of the LSRs of observers
who use arelatively small range of the rating scale will tend
to be enhanced by the ratio of standard deviations in [7].
For an example, consider observer group E in table 3. The
ratings of all three observers correlate perfectly, so rj, plays
no role in distinguishing among the observers’ LSR;;. How-
ever, the standard deviation of observer 3’s ratings is larger
than that for observers 1 and 2. It is this difference in, SDR;
that adjusts for the difference in interval size in the ratings,
causing the three observers’ LSRs to be identical.

Observer group G of table 3 contains one observer (num-
ber 3) whose ratings correlate negatively (-0.65) with the
group mean ratings. The effect of the least squares proce-
dure is to produce LSRs for observer 3 that correlate
positively (0.65) with the group mean ratings. The cause of
this sign reversal can be seen in [7], where the sign of Iin
interacts with the sign of (R;; — MR;) to reverse the direction
of the scores of an observer in serious disagreement with
the group (such a person will have a negative rj,, and tend
to have a sign for (R; — MR;) that is contrary to the sign for

rating assigned to stimulus i by observer j
mean of all ratings by observer j.
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observers in agreement with the group). This reversal is of
small consequence for values of rj, close to 0. But for more
substantial negative values of rj,, the reversal is signifi-
cant, for it in effect nullifies the influence on the group
metric of an observer who may actually have “opposite”
preferences from the group. If such a reversal is not
desired, the observer’s ratings should be removed. How-
ever, a substantial negative correlation with the group
can also arise when the observer has misinterpreted the
direction of the rating scale (e.g., taking “1” to be “best”
and “10” to be “worst,” when the instructions indicated
the opposite). If misinterpretation of the direction of the
scale can be confirmed, a transformation that reverses
the observer’s scale, such as that provided by the LSR,
would be appropriate.

Baseline-Adjusted LSR

The “baseline” variant of the least squares procedure is
the same as the normal least squares procedure de-
scribed above, but the regression is based only on the fit
between the individual and the group for the baseline
stimuli. Note that the baseline-adjusted LSR (BLSR) pro-
cedure does not provide a mechanism for absolute com-
parisons of LSRs across observer groups, because the
procedure does not adjust for linear, or any other, differ-
ences between groups; the function of the regression
procedure is to weight observers’ ratings, not assist com-
parability across groups.

Comparison of Z-Scores and LSRs

The least squares procedures are related to the Z-score
procedures. Both involve a transformation of each indi-
vidual observer’s ratings to another common measure-
ment scale before individual indices are averaged to
obtain the group index, and both rely on the assump-
tion of equal interval ratings. The Z-score computation
transforms each individual rating distribution to a scale
with a mean of 0 and a standard deviation of 1.0. With
only a slight modification in the transformation equa-
tion, the rating scales could instead be transformed to
some other common scale, such as a scale with a mean
of 100 and a standard deviation of 10. In any case, the
resulting Z scores for any individual observer are a
linear transformation of the observer’s initial ratings
and, therefore, will correlate perfectly with the
observer’s initial ratings.

The least squares procedure also transforms each
observer’s ratings to a common scale, this time based on
the group mean ratings. The mean of the least-squares
transformed scale for every individual observer is the
grand mean rating over all observers, and the standard
deviation will depend upon the standard deviation of the
original ratings and on the obtained correlation between
the individual’s ratings and the group average ratings.
Like the Z-score procedure, however, an individual



observer’s LSRs will correlate perfectly with the observer’s
initial ratings.

The relationship between the computed Z-score ap-
proach and the least squares estimation procedure can be
more easily seen by rearranging the terms of the basic
regression equation [7] into:

(LSR, -MMR)/SDMR =7, (R, ~MR;)/ SDR, [8]
In this arrangement the left term is recognized as ZLSRij, the
standardized transform of the least squares estimated
ratings of observer j. The right term includes the correla-
tion between observer j’s ratings of the stimuli and the
mean ratings assigned by the group, r;,, and the standard-
ized form of the observer’s ratings, Z; (see [4]). Note that
if |r, | = 1.0 (indicating a perfect linear relationship
between observer j’s ratings and the group mean ratings),
Zisg;- and Z;; are equal. For this to occur, the observer’s
ratings and the group mean ratings would have to differ
only by alinear transform; i.e., they would have to be equal
except for their origin and interval size, which are arbitrary
for equal-interval scales. Because | rj, | is virtually never 1. 0,
the computed Z-scores (Z;) will not generally be equal to
the ZLSRij, and neither will be equal to the standardized
group means. However, unless the individual observer
correlations with the group means differ substantially, the
distributions of average scale values, the mean Z; and the
mean LSR;, will be strongly correlated.

Unlike the computed Z scale, which is a standardized
scale, the least squares estimated scale is always in terms
of the original rating scale applied;i.e., a 10-point scale will
produce transformed scores that can only be compared to
other scales based on 10-point ratings. This may be an
advantage for communication of the rating results; for
example, it avoids the negative number aspect of the
Z-score scale. At the same time, care must be exercised in
combining or comparing one least squares scale with
others, especially if the other scales are based on a differ-
ent explicit rating scale. This comparability problem can
be overcome, however, by appropriate transformations of
the final scale (as to percentiles, Z-scores, or some other
“standard” distribution).

Scenic Beauty Estimate

Scenic Beauty Estimate (SBE) scaling procedures were
originally developed for use in scaling ratings of scenic
beauty of forest areas (Daniel and Boster 1976), but the
procedures are appropriate for use with ratings of other
types of stimuli. Both the “by-observer” and “by-slide”
options for deriving SBEs proposed by Daniel and Boster
(1976) are described here. The derivation of individual
scale values in each option follows Thurstone’s “Law of
Categorical Judgment” (Torgerson 1958), modified by pro-
cedures suggested by the “Theory of Signal Detectability”
(Green and Swetts 1966). Scale values are derived from the
overlap (“confusion”) of the rating distributions of differ-
ent stimuli, where the rating distributions are based on
multiple ratings for each stimulus. The overlap in stimulus
rating distributions indicates the proximity of the stimuli
on the underlying psychological dimension (e.g., perceived
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beauty). SBEs provide an equal-interval scale measure of
perceivedvalues, given the underlying measurement theory
and computational procedures, as described by Hull et al.
(1984).

Following the general psychometric model introduced
earlier, the rating assigned to a stimulus indicates the
relationship between the perceived value of the stimulus
and the categories on the observer’s rating criterion scale
being applied on that occasion. For a stimulus to be rated
an “8,” its perceived value must be below the upper bound-
ary of the “8” category on the criterion scale, but above the
upper boundary for a rating of “7” (as illustrated by ob-
server A for stimulus 1 in fig. 2). Thurstone’s Law of Cat-
egorical Judgment proposes that the magnitude of the
difference between the perceived value of a stimulus and
the location of the lower boundary of a given rating cat-
egory (e.g., for an “8”) can be represented by the unit
normal deviate corresponding to the proportion of times
that the stimulus is perceived to be above that criterion
category boundary.”

As Torgerson (1958) explains, the Law of Categorical
Judgment relies on variation in perceived values. It is
assumed that the perceived value of any given stimulus
varies from moment to moment (and observer to ob-
server) due to random processes, and forms a normal
distribution on the underlying psychological continuum.
The locations of the individual category boundaries also
vary from moment to moment due to random processes,
acting much like stimuli, each forming a normal distribu-
tion on the psychological continuum. The momentary
values for a particular stimulus and for the criterion cat-
egory boundaries determine the rating that will be as-
signed to that stimulus in a given instance.

The area under the theoretical normal distribution of
perceived values for a given stimulus can be divided into
the portion corresponding to the number (proportion) of
times the stimulus is perceived to be higher on the dimen-
sion of interest than a given category boundary, and the
remaining portion corresponding to the number (propor-
tion) of times the stimulus is perceived to be lower than the
given boundary. These proportions, in turn, can be trans-
lated to standard deviation units, or unit (standard) normal
deviates (commonly referred to as Zs). The unit normal
deviate corresponding to the proportion of times a stimu-
lus is rated at or above a given rating category indicates the
magnitude of the difference between the perceived value
of the stimulus and the location of the lower boundary of
that rating category on the underlying dimension. In other
words, Thurstone’s judgment scaling model assumes that
differences in distances on the underlying psychological
continuum are proportional to the unit normal deviates
associated with the observed proportions (based on the
ratings assigned).

"Torgerson (1958) presents the Law of Catergorical Judgment in terms
of the proportion of times a stimulus is perceived to be below the upper
boundary of a given rating category. Torgerson’s approach and the one
presented here yield perfectly correlated scale values. The approach used
here, which was also used by Daniel and Boster (1976), has the advantage
of assigning higher scale values to the stimuli that were assigned higher
ratings.



In Thurstone’s full model (Torgerson 1958), the differ-
ence between the perceived value of a stimulus and the
location of a category boundary is:

C,-S =0*(cP)(0, +0, -2r,0.0,)" (9]
where

Cy = location of the lower boundary of the ki cat-
egory on the rating scale (e.g., the perceived
scenic beauty value sufficient to meet the
observer’s standards for a rating of at least “8”)

S; = scale value (e.g., perceived scenic beauty) of
stimulus i

CP;, = proportion of times stimulus i is rated above the
lower boundary of the k! rating category

o~ = inverse normal integral function (which trans-
lates CP;y, the cumulative proportion, to the ap-
propriate unit normal deviate, Z)

ogi = dispersion (standard deviation) of the stimulus
value distribution

ox = dispersion of the category boundary distribution

ric = correlation between positions of stimulus i and
category boundary k.

Simplifying assumptions are necessary to apply
Thurstone’s model, because 0, 0y, and r, are unknown
and may be unique for any pairing of a stimulus and a
category boundary, causing the standard deviation units in
which each estimate of C, — S; is expressed to also be
unique. If we assume that C, and S; are normally distrib-
uted and independent for all k and i, so that r = 0, and that
o;and oy are unknown constants for all values of i and k,
so that the variances of stimulus distributions and re-
sponse criterion distributions are respectively homoge-
neous (Torgerson’s “Condition D,” 1958), [9] reduces to:

C,-S =@7(CP)a [10]
where a is an unknown constant® and ¢ (CPy,) is simply
the standard normal deviate (Z) corresponding to the
cumulative proportion CP;,. As noted by Torgerson (1958)
and Hull et al. (1984), these simplifying assumptions are
generally tenable and greatly reduce computational com-
plexity. Note that a can be assumed to be 1.0 since an
interval scale is, in any case, determined only to within a
linear transformation (both origin and interval are arbitrary).

The unit normal deviates (Zs) are computed for differ-
ences between S; and each of the rating category bound-
aries (e.g., based on the proportion of times stimulus i is
rated at or above a “7,” an “8,” etc.). Torgerson (1958)
shows that, given a complete matrix of Zs and the simpli-
fying assumptions mentioned above, the mean of the Zs
averaged across the category boundaries is the best esti-
mate of the scale value for a stimulus. This scale value
(mean Z) indicates the average distance, in standard de-
viation units, of the perceived value of the stimulus from
the different rating category boundaries.

8« jstheinterval size of the theoretical scale on which the differences are
05 . 05 .
measured, (o, +0, -20,0,) ", which reduces to (o, +0,)” given the
assumption that ry. = 0.
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Mean Zs are computed for each stimulus. Given the
necessary assumptions, the mean Zs indicate the relative
positions of the stimuli on the underlying psychological
continuum. So long as the mean rating category bound-
aries remain consistent across stimuli being rated, the
difference between the perceived values for any two stimuli
will be unaffected by the relative locations of the category
boundaries.? The differences between stimuli are not af-
fected by observers’ rating (criterion) biases; whether
observers choose to apply “strict” criteria (tending to as-
sign low ratings to all stimuli) or “lax” criteria (tending to
assign high ratings), the scaled differences between the
stimulus values will be the same. Indeed, the stimulus
differences will be the same even though entirely different
ratings scales were applied (e.g., an 8-point scale versus a
10-point scale).!® Moreover, the scaled differences be-
tween stimulus values will be the same regardless of how
the category boundaries are arranged.!! This feature of the
Thurstone scaling procedures assures that the measure of
stimulus differences can be interpreted as an equal-inter-
val scale even though the category boundaries might not
be equally spaced. Thus, if the necessary assumptions are
met, ratings which may only achieve an ordinal level of
measurement provide the basis for an interval scale mea-
sure of the perceived values of the stimuli.

In practice, Thurstone’s model relies on multiple ratings
for a stimulus to provide the proportions corresponding to
the theoretical momentary locations of the perceived val-
ues of the stimuli and category boundaries. Ratings may be
provided either by multiple observers who each rate the
same stimuli or by a single observer who rates each stimu-
lus a number of times. The normality and constant vari-
ance assumptions are perhaps most easily met in the case
where a single observer provides all the necessary ratings
(where replications of ratings of a given stimulus are
provided by the same observer). In this case, as long as the
observer is consistent with respect to the mean locations
of the rating criterion boundaries and adheres to the inde-
pendence and homogeneous variance expectations, the
ratings are all based on the same set of boundaries. A
practical problem with this case, however, is that it places
a considerable burden on a single observer, who may
become bored or otherwise affected by the requirement to
rate the same stimuli again and again.

Scale values that are specific to individual observers can
also be generated when stimuli are grouped into “condi-
tions,” as in Daniel and Boster’s (1976) “by-observer” SBE.

9Note that (C,—S;) — (Cx— Sj+1) = Si+1— Si, and that this holds across all
category boundaries (all Cy). That is, if the rating criterion boundaries are
consistent, the Ck “drop out” and the differences between the scale values
of the stimuli indicate differences in perceived value.

10This assumes, of course, that each scale has enough categories to
allow for sufficiently fine distinctions among the perceived values of the
stimuli. A 3-point scale, forexample, would not generally allow for sufficient
discrimination among a set of stimuli.

11This assumes, of course, that the categories are properly ordered, with
each successive criterion signifying more (for example) of the underlying
property being measured.



“Conditions” are simply higher order stimuli that can each
be represented to observers by multiple stimuli. Ratings of
the stimuli within a condition provide the necessary repli-
cations as long as the conditions are each relatively homo-
geneous and the stimuli within a condition are randomly
selected. As in the single observer case, this approach
produces observer-specific scale values, such that each
scale value only relies on one observer’s set of rating
criteria. However, because scale values are only produced
for conditions (i.e., groups of stimuli), and not all objects of
interest are easily represented by a sufficient number of
randomly selected stimuli, this approach cannot always be
applied.

The most commonly applied case is where each ob-
server only rates each stimulus once and each stimulus is
independent of all others. Here, the replications necessary
for creating the rating distributions must be provided by
combining ratings over multiple observers. Because each
stimulus scale value is based on the rating criteria of
multiple observers, it must be assumed that the constant
mean and variance assumptions hold across observers.
This assumption is more likely to be met if observers are
randomly sampled from some relevant observer popula-
tion, but it is a more stringent assumption than that re-
quired in the single-observer applications.!2

By-Stimulus SBE

The “by-stimulus” option (Daniel and Boster’s (1976)
“by-slide” option) requires that multiple observers rate
each stimulus. The by-stimulus procedure is generally
used when only one or a few stimuli are available for each
condition of interest, or when preference values are needed
for each stimulus. In this procedure, a mean Z for each
stimulus is computed based on the distribution of ratings
assigned by the different observers. The cumulative pro-
portion of observers judging the stimulus to be at or above
each rating category is transformed to a Z by reference to
the standard normal distribution. The Zs are then averaged
over the rating categories to yield a mean Z for each
stimulus. This procedure requires the assumption that
perceived values of stimuli and rating criterion boundaries
are normally distributed over the multiple observers.

12Readers desiring a more thorough explanation of Thurstone’s categori-
cal judgment scaling model should consult Torgerson (1958), and examine
the chapter on the Law of Comparative Judgment before going on to the
chapter on the Law of Categorical Judgment.

13When this baseline is only used to set the origin of the SBE scale based
on ratings obtained in one rating session, the stimuli comprising the
baseline can be selected so that an SBE of zero indicates some specific
condition. For example, in assessing the scenic beauty of forest areas
managed under different harvest methods, this condition has often been the
set of scenes sampled from an area representing the pretreatment state of
the forest. However, when the SBEs of two or more rating sessions are to
be compared, the baseline is also used to “bridge the gap” between ratings
obtained in those different sessions. In this case, the baseline stimuli might
best be selected to be representative of the full range of stimuli being rated,
as described in the Psychological Scaling section.

15

Individual mean Zs for each stimulus are further ad-
justed, following a procedure suggested by the Theory of
Signal Detectability, to a common “rational” origin. A sub-
set of the stimuli called a “baseline” is selected to deter-
mine the origin of the SBE scale.!3 The overall mean Z of
the baseline stimuli is subtracted from the mean Z of each
stimulus, and then the difference is multiplied by 100
(eliminating the decimals) to yield individual stimulus
SBEs. As with any interval scale, of course, both the origin
and interval size are arbitrary.

To summarize, the computation of the original (Daniel
and Boster 1976) SBE for a stimulus requires three steps.
First, the mean Z for each stimulus is computed as follows:

1l S
MZ, _m_—lkzz(b (cr,) [11]
where
MZ; = mean Z for stimulus i
& = inverse normal integral function
CP;, = proportion of observers giving stimulus i a rating
of k or more

m = number of rating categories.

In step 2, the mean of the mean Zs of the stimuli composing
the baseline condition is computed. In the last step, the
mean Z of each stimulus is adjusted by subtracting the
mean Z of the baseline, and the mean Z differences are
multiplied by 100 to remove decimals:

SBE, =(MZ, -BMMZ) 100 [12]
where
SBE; = SBE of stimulus i
MZ; = mean Z of stimulus i
BMMZ = mean of mean Zs of the baseline stimuli.

Two conventions are used to facilitate computation of
MZ; in [11]. First, because all ratings of any stimulus must
be at or above the lowest (e.g., the “1”) category, so that
CPy; for the bottom rating category is always 1.0, the
bottom category is omitted in the computation of MZ;.
Second, Thurstone’s model only strictly applies where the
distribution of ratings for a stimulus extends over the full
range of the rating scale (i.e., where each stimulus is
placed atleast once in each criterion category). Where this
does not occur (where CP;, = 1.0 for rating categories at
the low end of the scale or CP;, = 0 for categories at the
high end), ¢*(CPy) is undefined. For these cases, we
have adopted the convention proposed by Bock and Jones
(1968) and adopted by Daniel and Boster (1976): for CP;, =
1.0 and CPj; = 0, substitute CP;, = 1-1/(2n) and CPy, = 1/
(2n), respectively, where n is the number of observations
(ratings) for each stimulus.!*

14For example, if n = 30, a cumulative proportion of 1.0 is set to 0.9833,
and a cumulative proportion of 0 is setto 0.0167. The Zs of these cumulative
proportions, like those of the other cumulative proportions, could then be
obtained from a normal probability table. For example, the Z for a cumula-
tive probability of 0.0167 is —2.13. Note that in many presentations of the
normal probability table, only the upper half of the normal curve areas is
tabulated. In such cases, the cumulative probability must be appropriately
adjusted before using the table to determine the Z.



Avariation on the original SBE procedure is to also adjust
the interval size of the SBE scale by dividing the original
SBE by the standard deviation of the mean Zs of the
baseline stimuli. For this variation, the SBE of equation
[12] is adjusted to the interval size of the baseline to effect
a standardization of the mean Zs:

SBE*; = SBE; / BSDMZ [13]
where
SBE*; = standardized SBE of stimulus i
BSDMZ = standard deviation of mean Zs of baseline

stimuli.

The combination of the origin and interval size adjust-
ments effectively standardizes the SBEs to the baseline.
This standardization is particularly useful where SBEs of
different observer groups who have rated different
nonbaseline stimuli are to be combined or otherwise com-
pared. Although the computation of mean Zs, described
above, theoretically creates an equal-interval scale, it does
not assure that the scales of different groups of observers
will have the same origin or interval size. The original SBE
was designed to adjust for the possibility that different
observer groups may differ in the origin of their scores. The
full standardization of the mean Zs based on the ratings of
the baseline stimuli is designed to adjust for the possibility
that different observer groups may differ in the origin and/
or interval size of their scores.

Table 4 depicts by-stimulus SBEs and associated ratings
for four observer groups. The baseline of each set is the full

set of stimuli. The ratings of all three observers within each
of groups A, B, and E are perfectly correlated, although, as
seen by examining the mean ratings, the interval sizes for
each group are different. Examining the SBEs for these
three data sets, we see that the origins of all three are
identical (stimulus 3 of each set has an SBE of 0), but the
interval sizes differ. Moving to the SBE*s, we see that the
interval sizes among the three sets are now also identical,
as would be expected following a standardization of the
mean Zs to the baseline where the ratings of all observers
of the three sets correlate perfectly. Thus, agreement (in
absolute terms) between two observer groups’ scale val-
ues is improved by adjusting for both origin and interval
size differences. Of course, neither adjustment affects the
linear association between the sets of scale values. It can
also be seen by comparing observer groups B and D of
table 4 that equal mean ratings between data sets does not
necessarily lead to equal SBEs or SBE*s if the two sets of
ratings are not perfectly correlated.

By-Observer SBE

The by-observer option requires that each observer
provide multiple ratings of each condition (e.g., forest
area) that is to be scaled. This may be accomplished by
having each observer rate the same stimulus a number
of times on different occasions. Usually, however, this is
accomplished by having an observer rate a number of
different stimuli representing each condition (e.g., dif-
ferent scenes from within the same forest area). The
distribution of an individual observer’s ratings of the

Table 4.—Ratings and by-stimulus SBEs for four observer groups.

Rating Scale value
Observer... 1 2 3
Observer Stimulus Mean SBE? SBE*2
group rating
A 1 1 3 6 3.33 -43 -126
2 2 4 7 4.33 -22 -63
3 3 5 8 5.33 0 0
4 4 6 9 6.33 22 63
5 5 7 10 7.33 43 126
B 1 1 2 1 1.33 -86 -126
2 3 4 3 3.33 -43 -63
3 5 6 5 5.33 0 0
4 7 8 7 7.33 43 63
5 9 10 9 9.33 86 126
D 1 1 2 1 1.33 -87 -125
2 2 6 2 3.33 -47 -68
3 3 7 6 5.33 3 4
4 5 8 9 7.33 46 66
5 9 9 10 9.33 85 123
E 1 1 6 1 2.67 -62 -126
2 2 7 3 4.00 =31 -63
3 3 8 5 5.33 0 0
4 4 9 7 6.67 31 63
5 5 10 9 8.00 62 126

aBaseline is the entire set of (ie., all 5) stimuli.
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multiple stimuli for a condition is then used to derive a
scale value for that condition. Individual observers’ rating
distributions are “normalized” by transforming the propor-
tion of stimuli assigned to each rating category to the
appropriate unit normal deviate, or Z. This procedure
requires the assumption that ratings by an observer of the
stimuli within a condition are sampled from an underlying
normal distribution. Zs for each rating category are then
averaged to yield a mean Z for each individual observer for
each condition. These computations are summarized as
follows:

MZ,, = ml_ : iq;-l(cpjck)

[14]

where
MZ;. = mean Z of observer j for condition c
¢! = inverse normal integral function
CPjcx = proportion of stimuli of condition c given a rat-
ing of k or more by observer j
m = number of rating categories.

The two conventions listed for [11] also apply to [14].

Individual observer mean Zs for each condition are then
adjusted to the origin of a common baseline. Each
observer’s overall mean Z for the baseline condition(s) is
subtracted from the mean Z for each of the conditions
being assessed. The baseline condition is thus assigned a
value of zero. The origin-adjusted mean Zs are then multi-
plied by 100 to yield individual observer SBEs for each
condition:

SBE,. =(MZ,, -BMZ 100 [15]
where
SBE;. = SBE of observer j for condition c
MZ;. = mean Z of observer j for condition ¢
BMZ; = mean Z of observer j for the baseline.

Individual observer SBEs, adjusted to the same baseline,
may then be averaged to derive an aggregate or group SBE
value for each condition:

1 n
SBE, ==Y SBE, [16]
C n JZ JC
where
SBE. = SBE for condition ¢
n = number of observers.
Note that the by-observer SBE described here is the

same as the one presented by Daniel and Boster (1976),
who provide a detailed example of the computation of by-
observer SBEs. We do not introduce a variation to their
procedure similar to the standardization variation pre-
sented above for the by-stimulus SBE. The by-observer
computations do not offer a similar opportunity for stan-
dardization unless scores are combined across observers,
and to combine across observers would eliminate a key
feature of the by-observer procedure, which is individual
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interval scale scores for each observer.

Comparison of By-Stimulus and By-Observer SBEs

The principal difference between the two SBE proce-
dures is in whether the final SBE index is derived from the
distribution of ratings of multiple stimuli by a single ob-
server, or from the distribution of ratings by multiple ob-
servers for a single stimulus. The by-observer procedure
uses the distribution of ratings of multiple stimuli within a
condition by one observer to derive that observer’s SBE for
that condition. In so doing, it is not possible to obtain an
SBE measure for each stimulus; the variation among stimuli
is used to derive the condition SBE. The by-stimulus proce-
dure uses the distribution of ratings by multiple observers
for a single stimulus to derive an SBE for that stimulus. By
this procedure it is not possible to obtain an SBE measure
for each observer; the variation among observers is used to
derive the SBE for a stimulus. A condition SBE can be
computed from stimulus SBEs by averaging over stimuli,
however, if there is an adequate sample of stimuli to
represent the condition.

The choice between the two SBE procedures typically is
determined by the design of the assessment experiment. If
a relatively small number of conditions, each represented
by a number of different stimuli, are to be assessed, the by-
observer procedure may be used. Usually atleast 15 stimuli,
randomly sampled from each condition, are required to
make the normal distribution of stimulus ratings assump-
tion tenable. If there are many conditions, each repre-
sented by only one or a few stimuli, the by-stimulus proce-
dure typically must be used. Usually at least 15 randomly
assigned observers are required to meet the normal distri-
bution of observer ratings assumption. When data having
multiple observers and multiple stimuli for each condition
have been analyzed by both the by-observer and the by-
stimulus procedures, the resulting condition SBEs have
typically been found to be essentially identical. In practice,
situations allowing the by-observer procedure (i.e., where
at least 15 randomly sampled stimuli are available to
represent each condition assessed) have been relatively
infrequent. But, in such situations, as long as at least 15
observers are used, the by-stimulus procedure can usually
be applied with mathematically equivalent results.

Comparison of SBEs and Mean Ratings

The by-stimulus SBE is distinguished from the mean
rating of [1] by the transformation to standard normal
deviates. This is shown by recognizing the relationship
between the mean rating and the sum of the proportions of
ratings in each rating category:

1m

MR, =—) kP [17]
m ik
where
MR; = mean rating of stimulus i
P;x = proportion of observers giving stimulus i a rating
of k
m = number of rating categories.



Thus, the important difference between the mean rating of
[1] (MR;) and the mean Z of [11] (MZ;) is that in the mean
rating the proportion (P;,) is weighted by the rating value
(k), while in the mean Z the cumulative proportion (CP;,)
is weighted by the inverse normal integral function (tD’l).
Other differences between the mean rating and the SBE,
the standardization to the baseline and multiplication by
100 in [12], merely cause a linear transformation.

To compare mean ratings of stimuli judged during a
given session, one must assume that on average the group’s
rating criterion scale is equal interval, plus of course that
the rating criterion scale is consistent for the duration of
the rating session. To compare mean ratings of two differ-
ent observer groups, we must also assume that the rating
criterion scales of the two groups are identical. But to use
SBEs to compare stimuli within a group or to compare
across groups, we need to assume (in addition to the
normality and independence assumptions) only that rat-
ers, on average, were each consistent in use of their
individual rating criterion scales for the duration of the
rating session.

Comparison of SBEs With Z-Scores and LSRs

SBEs may be distinguished from Z-scores in several
ways. First, individual Z-scores are directly computed from
the ratings assigned to each stimulus by each observer. In
the by-observer SBE procedure, the Zs are derived from the
distribution of ratings by one observer over the multiple
stimuli within a condition. The proportions (actually cu-
mulative proportions) of the stimuli within a condition that
are assigned to each rating category are transformed to Zs
using the inverse normal integral function, assuming that
those ratings are sampled from a normal distribution.

In the by-stimulus SBE procedure, the Zs are derived
from the distribution of multiple observers’ ratings of an
individual stimulus. The proportion of observers assigning
a given rating category to the stimulus is transformed to a
Z, assuming that the set of observer ratings was sampled
from a normal distribution within the relevant population
of observers. Because these Zs depend upon the distribu-
tion of different observers’ ratings for one stimulus, they
cannot be directly compared with the Z-scores computed
for a single observer over multiple stimuli. Of course, if the
ratings of all observers of a data set are perfectly corre-
lated, the baseline-adjusted mean Z-scores will be identi-
cal to the by-stimuli SBE*s, except for the decimal point
which is two places to the right in the SBE*. And, if the
baseline is the full set of stimuli, the mean Z-scores will be
identical to the SBE*s, except for the decimal point, as can
be seen by comparing tables 2 and 4 for observer groups A,
B, and E. Furthermore, under the condition of perfectly
correlated ratings, mean Z-scores differ from mean LSRs
only by their origin (grand mean rating) and interval size
(standard deviation of mean ratings), and mean LSRs are
identical to mean ratings. That is, if ratings of all observers
within a group are perfectly correlated, and if the baseline
is the entire set of stimuli,
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SBE/100= MZ = (LSR,- MMR)/SDMR

=(MR, ~MMR)/SDMR [18]
where

SBE*; = standardized SBE of stimulus i

MZ; = mean Z-score of stimulus i

LSR; = mean least squares rating of stimulus i

MMR = mean of the mean ratings assigned to all stimuli
by all observers in the group (grand mean
rating)

SDMR = standard deviation of the meanratings assigned
by all observers in the group

MR; = mean rating assigned to stimulus i.

Of course, the ratings of all observers are rarely perfectly
correlated, so the relationship between SBE*s, Z-scores,
LSRs, and ratings will be more complex, as can be seen by
comparing tables 2, 3, and 4 for observer group D. Theoreti-
cally, the SBE metrics would be preferred because they do
not require the assumption that observers’ ratings consti-
tute an equal-interval scale. Indeed, as Torgerson (1958),
Green and Swetts (1966), and others have shown, SBE-
type metrics computed for reasonable-sized groups of
observers will be quite robust to substantial violations of
the formal distribution assumptions.

Summary

The information presented above about the various pro-
cedures available in RMRATE for scaling rating data is
summarized here in two ways. First, we review which
procedures address the potential problems with interpret-
ing rating data. Second, we discuss when to use each of the
procedures.

Scaling Procedures and the Interpretation of Ratings

In the “Psychological Scaling” section, several potential
problems with interpreting rating data were described,
which, to the extent they exist for a given set of ratings,
limit inferences that can be drawn about the perceptions
of the stimuli being rated. Two of those problems, lack of
intraobserver consistency and perceptual or criterion shifts,
can only be addressed by proper experimental design,
which is outside the scope of this paper. The other poten-
tial problems can all be reduced or avoided by employing
a proper scaling procedure. Those problems are listed in
table 5.

An X in table 5 indicates that the respective scaling
procedure somehow addresses the potential problem.
Median and mean ratings do not address any of the iden-
tified problems. The OAR adjusts for differences in crite-
rion scale origin, but not interval size differences. The
Z-score procedures adjust for both origin and interval
differences in criterion scales, assuming that each ob-
server is using an equal-interval criterion scale. Thus, if it
is important to adjust for linear differences between



Table 5.—Which scaling procedures address potential problems of rating data?

Potential problems

Unequal- Linear differences Linear differences Lack of
interval between observers’ between groups’ interobserver
scale criterion scales criterion scales correspondence
(aside from
Scaling Origin Interval Origin Interval linear
procedure size size differences)
Median rating
Raw ratings
OAR X
BOAR X X
Z-score X X
BZ-score X X X X
LSR X X X
BLSR X X X
By-stimulus SBE X X
By-stimulus SBE* X X X
By-observer SBE X X X X

observers or observer groups, the Z-score procedures would
be preferred over raw ratings and OARS.

The LSR procedures also adjust for linear differences
between observers within a group, and in addition weight
each observer’s ratings by how well the observer agrees
with the group. However, this scaling method does not
adjust for linear differences between groups. If weighting
based on fit with the group is desired, and ratings of
separate groups are not going to be compared on an
absolute basis, the least squares rating would be preferred
over the Z-score procedures.

Only the SBE procedures adjust for unequal interval
judgment criterion scales. This advantage is obtained at
the expense of combining ratings over observers or stimuli,
so that individual scale values (for each stimulus by each
observer) are not obtained. All three SBE procedures ad-
just for origin differences among observer groups, but only
the by-stimulus SBE* adjusts for interval size differences
among groups.

Which Procedure To Use When

Choice of the most appropriate psychological scaling
procedure for any given application will depend upon the
design of the scaling experiment, the goals of the measure-
ment task, and the extent to which the investigator is
willing to accept the assumptions of each scaling proce-
dure. If the resulting scale values are to be used for only
ordinal comparisons, no assumptions are necessary about
the nature of the rating scale. In this case, the median is
probably the appropriate scaling procedure, since the oth-
ers would entail needless complexity for the task at hand.
If the scale values are to be used as interval measures
(which is required for most standard statistical opera-
tions), choosing among the mean rating, computed
Z-score, LSR, and SBE procedures will depend primarily
upon the assumptions the investigator is willing to make
about the data, and upon the desired features for the final
scale. The mean rating and LSR procedures produce scale
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values in terms of the original rating scale, while the Z-
score and SBE procedures produce scale values that are
not easily interpret d in terms of the original scale. There is
no absolute meaning to the rating values, so maintaining
the scale values in terms of the original rating scale is only
cosmetic. Nevertheless, it may be easier to explain results
to some audiences in terms of rating points.

The mean ratings, Z-scores, and LSRs assume that each
group of observers used an equal-interval scale for rating
the stimuli. The SBE procedure does not require that
observers or groups use equal-interval scales; it assumes
only that rating criteria are consistent over a rating session,
and that (for by-observer SBE) ratings by an observer of the
stimuli within a condition are normally distributed, or (for
the by-stimulus SBE) the ratings of each stimulus by all
observers are normally distributed.

If the assumption that ratings of a stimulus over multiple
observers are normally distributed is valid, or at least more
tenable than the assumption that each observer’s ratings
represent an interval scale, then the by-stimulus SBE pro-
cedure is a good choice. The SBE procedure also provides
a standard scale, irrespective of the number of categories
in the original rating scale, that has been shown in theory
and practice to be comparable to scales derived by other
psychophysical procedures (e.g., paired-comparisons and
rankings). A possible disadvantage of the by-stimulus SBE
procedure is that scale values are not provided for indi-
vidual observers.

The Z-score procedure is widely used for transforming
distributions to a standard form and is computationally
straightforward. A possible disadvantage is that indi-
vidual observer’s ratings are transformed separately,
without regard to how other observers in the group rated
the same stimuli. Assuming a linear relationship among
observers’ ratings, the least squares procedure “fits”
each observer’s ratings to the mean ratings assigned by
the entire group of observers, thus providing individual
scale values for each observer that depend on the
relationship with the group ratings. The final scale,



however, is dependent on the number of categories in the
original rating scale and thus cannot be directly compared
(or combined) with scales derived from other rating scales,
or other psychological scaling procedures. Also, the least
squares procedure incorporates a differential weighting of
observers, which reduces the natural variation in the rat-
ings, in essence placing more credence on some observ-
ers than others, and may be contrary to the goals of the
assessment.

Unlike the SBE procedures, the Z-score and least squares
procedures each provide individual scores for each ob-
server for each stimulus, a feature that has some important
practical advantages. Individual observer’s scales can be
inspected for internal consistency as well as for consis-
tency with other observers in the same assessment. Fur-
ther, the Z-score and LSR procedures, like the raw ratings,
preserve degrees of freedom for subsequent analyses,
such as analysis of variance to compare stimuli or condi-
tions, or correlation and regression analyses involving
other measures available for the stimuli. Having individual
observer values for each stimulus also facilitates the com-
putation of conventional measures of the error of estimate
for individual stimuli (such as the standard error of the
mean) based on the variability in scores among observers.
Of course, this advantage is gained at the expense of
assuming the individual ratings represent an interval scale
of measurement.

If different observers rate different subsets of the stimuli
and rate one subset in common, then one of the baseline
procedures will be most appropriate. The resulting scale
will have an origin (for the baseline-adjusted OAR and the
SBE) or an origin and interval size (for the baseline-
adjusted Z-score and the SBE*) determined by the ratings
of the baseline stimuli.

Except perhaps for the median, all of these scales gener-
ally produce sets of scale values for a set of stimuli that
correlate greater than 0.90 with each other when indi-
vidual scale values are averaged or otherwise combined
over at least 15 observers to produce a group index (see
Schroeder 1984). However, when different observers have
used explicitly different rating scales, or when individual
differences between observers or differences in the con-
texts in which stimuli have been rated are substantial (e.g.,
Brown and Daniel 1987), some transformation of the origi-
nal scale is required.

There are also theoretical reasons for choosing a trans-
formed scale. The goal of the different scaling procedures
is to provide estimates of the locations and distances
between objects on the inferred psychological dimension.
RMRATE (Brown et al. 1990) provides the investigator a
choice among, and the opportunity to compare, several
psychological scaling procedures that approach this goal
somewhat differently.
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APPENDIX

RELATIONSHIPS AMONG SCALE VALUES

Here we review relationships among the scaling proce-
dures by comparing the results of using each procedure to
scale ratings from several hypothetical observer groups.
Table Al lists scale values of seven scaling procedures for
five hypothetical observer groups, each assumed to have
rated the same five stimuli. The baseline for the SBE is the
entire set of five stimuli for each data set.

Observers of group A differ only in the origin of their
ratings. Thus, the origin-adjusted ratings (OARS) of the
three observers in the group are identical. Likewise, the
Z-scores of the three observers are identical, as are their
least squares ratings (LSRs). Furthermore, notice that the
mean ratings and mean LSRs are identical.

Group B, like group A, contains observers who differ only
in the origin of their ratings. However, groups A and B differ
in the interval size of their respective ratings, with observ-
ers of group B using a larger rating difference than observ-
ers of group A to draw distinctions among the same stimuli.
For example, observers of group A use a rating difference
of 1 to distinguish between stimulus 1 and stimulus 2,
while observers of group B use a rating difference of 2 to
make this distinction. Thus, the mean OARs of these two
data sets differ, as do the mean LSRs, but the mean
Z-scores of the two sets are identical.

Group E contains observers whose ratings differ from
each other in both origin and interval size. Thus, the OARs
are different between observers who differ in interval size
(observer 3 versus observers 1 and 2). However, because
the ratings of the three observers are perfectly linearly
related, the Z-scores of all three observers are identical,
the LSRs of the three observers are identical, and the mean
ratings, mean OARS, mean Z-scores, mean LSRs, and SBEs
are perfectly linearly related. Furthermore, because the
ratings of observers of group E are perfectly linearly related
to those of observers of groups A and B, the Z-scores of all
observers of these three data sets are identical, as are the
mean Z-scores.

The SBE*s of observer groups A, B, and E are identical,
again because the ratings of the observers of each group
are perfectly correlated. Furthermore, because of this, the
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SBE*s are identical to the mean Z-scores (except for the
placement of the decimal point). Group F differs from
group B in that observer 3’s ratings in group F are mono-
tonically related to but not perfectly correlated with those
of observers 1 and 2. This difference has the following
effects. First, the OARS, Z-scores, and LSRs of observer 3
are not identical to those of observers 1 and 2. Second,
mean Z-scores and SBE*s of group F differ from those of
group B. Third, the mean Z-scores and SBE*s of group F
differ (by more than the decimal point shift) and, in fact,
are no longer perfectly correlated.

The ratings of observers of group D are monotonic but
not perfectly correlated. Thus, the OARs of the three ob-
servers differ, as do the Z-scores and LSRs of the three
observers. Furthermore, the mean ratings, mean Z-scores,
mean LSRs, and SBEs are not perfectly linearly related
(although the SBEs are perfectly linearly related to the
SBE*s). Note, however, that the mean ratings and mean
OARs of group D are identical to those of group B. Again,
identical mean ratings do not necessarily produce identi-
cal Z-scores, LSRs, or SBEs.

Comparisons for Data Sets
With a Common Baseline

Table A2 contains ratings for five hypothetical observer
groups. The groups are assumed to have each been ran-
domly selected from the same observer population and to
have each rated sets of eight stimuli, each set containing
three common baseline stimuli (indicated by a “B”) and
five unique stimuli. The nonbaseline ratings of observer
groups IL, III, IV and V are identical, but the baseline ratings
of the four groups differ. The nonbaseline ratings of
group | differ from those of the other groups, but the
baseline ratings of groups I and II are identical. Assuming
that the baseline stimuli of the five data sets are identical,
but the nonbaseline stimuli of the sets are unique, baseline
adjustments would facilitate comparison across the sets.

The baseline ratings of observer groups I and II of table
A2 are identical, but the nonbaseline ratings are not. How-
ever, the nonbaseline ratings of the two groups are per-
fectly correlated, differing only in interval size. Assuming



Table A1.—Comparison of scale values for five observer groups.

Rating OAR Z-score LSR Scale value
Observer... 1 2 3 1 2 3 1 2 3 2 3
Observer Stimulus Median Mean Mean Mean Mean By- By-
group rating OAR Z- LSR stimulus stimulus

score SBE? SBE*a

A 1 1 3 6 -20 -20 -20 -1.26 -1.26 -1.26 3.33 3.33 3.33 3 333 -200 -1.26 3.33 -43 -1.26
2 2 4 7 -10 -1.0 -1.0 -63 -63 -63 433 4.33 4.33 4 433 -1.00 -63 433 -22 -63

3 3 5 8 .0 .0 .0 .00 .00 .00 5.33 5.33 5.33 5 5.33 .00 .00 5.33 0 0

4 4 6 9 1.0 10 1.0 .63 .63 .63 6.33 6.33 6.33 6 6.33 1.00 .63 6.33 22 63

5 5 710 20 20 20 126 1.26 126 7.33 7.33 7.33 7 7.33 200 126 7.33 43 126

B 1 1 2 1 -40 -40 -40 -126 -1.26 -1.26 1.33 1.33 1.33 1 133 -4.00 -1.26 1.33 -86 -126
2 3 4 3 -20 -20 -20 -.63 -.63 —-.63 3.33 3.33 3.33 3 3.33 -2.00 -63 3.33 -43 —63

3 5 6 5 .0 .0 .0 .00 .00 .00 5.33 5.33 5.33 5 5.33 .00 .00 5.33 0 0

4 7 8 7 20 20 20 .63 .63 .63 7.33 7.33 7.33 7 7.33 2.00 .63 7.33 43 63

5 910 9 40 40 40 1.26 1.26 1.26 9.33 9.33 9.33 9 9.33 4.00 1.26 9.33 86 126

D 1 1 2 1 -30 -44 -46 -95 -1.63 -1.14 2.48 51 1.81 1 1.33 400 -1.24 160 -87 -125
2 2 6 2 -20 -4 -36 -63 -15 -89 3.43 4.89 257 2 3.33 -2.00 -56 3.63 -47 —68

3 3 7 6 -1.0 .6 4 -.32 .22 .10 4.38 599 5.64 6 5.33 .00 .00 5.34 3 4

4 5 8 9 1.0 16 34 .32 .59 .84 6.28 7.09 7.94 8 7.33 2.00 .58 7.10 46 66

5 9 910 50 26 4.4 1.58 .96 1.09 10.08 8.18 8.71 9 9.33 400 121 8.99 85 123

E 1 1 6 1 -20 -20 -40 -1.26 -1.26 -1.26 2.67 2.67 2.67 1 2.67 -2.67 -1.26 2.67 -62 -126
2 2 7 3 -10 -1.0 -20 -.63 -.63 —-.63 4.00 4.00 4.00 3 4.00 -1.33 -63 4.00 -31 —63

3 3 8 5 .0 .0 .0 .00 .00 .00 5.33 5.33 5.33 5 5.33 .00 .00 5.33 0 0

4 4 9 7 1.0 1.0 20 .63 .63 .63 6.67 6.67 6.67 7 6.67 1.33 .63  6.67 31 63

5 510 9 20 20 40 1.26 1.26 1.26 8.00 8.00 8.00 9 8.00 2.67 1.26 8.00 62 126

F 1 1 2 1 -40 -40 -3.0 -1.26 -1.26 -.95 1.07 1.07 2.10 1 1.33 -3.67 -1.16 141 -80 -119
2 3 4 2 -20 -20 -20 -63 -63 -63 3.03 3.03 3.07 3 3.00 -2.00 -63 3.04 -43 -64

3 5 6 3 .0 .0 -1.0 .00 .00 -.32 5.00 5.00 4.03 5 4.67 -0.33 -.11 4.68 -6 -9

4 7 8 5 20 20 1.0 .63 .63 .32 6.97 6.97 5.97 7 6.67 1.67 .53 6.63 37 55

5 910 9 40 40 50 1.26 1.26 1.58 8.93 8.93 9.83 9 9.33 4.33 1.37 9.23 92 137

aBaseline is the entire set of (i.e., all 5) stimulli.

that the nonbaseline stimuli in each set did not affect the
ratings of the baseline stimuli (i.e., assuming that there is
no interaction between the ratings of the baseline and
nonbaseline stimuli), the identity of the baseline ratings of
the two data sets suggests (but of course does not prove)
that the observers of the two groups perceive the stimuli
equally and use identical judgment criteria. Thus, assum-
ing equal-interval scales, and given the psychometric
model, the mean ratings of the two groups could reason-
ably be assumed to be directly comparable. The baseline-
adjusted metrics (BOAR, BZ-score, BLSR, and SBE*) would
then also be assumed to be directly comparable. For
example, using SBE*s, stimulus 1 (rated by group I) would
be considered as different from stimulus 3 as stimulus 7
(rated by group II) is from stimulus 8, since both differ-
ences are indicated by an SBE* difference of 200. How-
ever, the procedures that generate scale values from a
combination of the baseline and nonbaseline ratings (the
mean OAR, mean Z-score, and mean LSR) would produce
scale values that are not directly comparable across data
sets; the basis of comparison must be only the set of
common (i.e., baseline) stimuli.

Although the nonbaseline ratings of observer groups II
and Il are identical, the baseline ratings of the two sets
differ in terms of origin (baseline ratings of group III have
a higher origin than those of group II). This simple differ-
ence in ratings of the baseline stimuli suggests (given the
psychometric model) that the two observer groups used
different rating criterion scales, and that the identity of the
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ratings of the nonbaseline stimuli is fortuitous. The mean
ratings of the two sets are identical, because the mean
rating computation does not use the baseline ratings.
Given the baseline ratings of the two sets, we would be in
error to assume that the mean ratings of the two sets are
directly comparable (e.g., to conclude that stimulus 7 is
identical, or nearly so, to stimulus 12 on the underlying
dimension).

The baseline-adjusted mean OARs of observer groups Il
and III, however, can more reasonably be compared (again,
assuming equal-interval ratings and the psychometric
model) because the baseline OAR procedure adjusts for
origindifferences among sets that have acommonbaseline,
and, as we have seen, the two sets differ only in origin of
the rating scale. A similar logic applies to the SBE (except
that the assumption of equal-interval ratings is not needed).
In addition, the mean baseline-adjusted Z-scores and SBE*s
are comparable across the two groups, because these
procedures also adjust for origin differences in the baseline
ratings. All these metrics (mean BOAR, mean BZ-score,
SBE, and SBE*) indicate, for example, that stimulus 6 is
considered equidistant between stimuli 11 and 12 on the
underlying dimension. But the mean OARs, or the mean Z-
scores, of the two sets are not comparable, because the
individual OAR or Z-score transformations are based on
the ratings of all the stimuli, including the nonbaseline
stimuli. Also, note that the SBE*s of each of the groups are
identical to the mean baseline-adjusted Z-scores of the
groups, except for the decimal point. This occurs because



Table A2.—Comparison of scale values for five observer groups that rated sets of baseline and unique stimuli.

Rating Scale value
Observer ... 1 2 3
Observer Stimulus Median Mean Mean Mean Mean Mean Mean Mean By- By-
group rating OAR BOAR Z- BZ- LSR BLSR stimulus stimulus
score score SBE SBE*
| 1 1 3 6 3 3.33 -2.00 -2.00 -1.53 -2.00 3.33 3.33 -43 -200
2 2 4 7 4 433 -1.00 —-1.00 -.76 -1.00 4.33 4.33 =22 -100
3 3 5 8 5 5.33 .00 .00 .00 .00 5.33 5.33 0 0
4 4 6 9 6 6.33 1.00 1.00 .76 1.00 6.33 6.33 22 100
5 5 7 10 7 7.33 2.00 2.00 1.53 2.00 7.33 7.33 43 200
B1 2 4 7 4.33
B2 3 5 8 5.33
B3 4 6 9 6.33
1] 6 1 2 1 1 1.33 -4.00 -4.00 —-1.48 -4.00 2.04 1.33 -86 -400
7 3 4 3 3 3.33 -2.00 -2.00 -.73 -2.00 3.72 3.33 -43 -200
8 5 6 5 5 5.33 .00 .00 .01 .00 5.40 5.33 0 0
9 7 8 7 7 7.33 2.00 2.00 .76 2.00 7.08 7.33 43 200
10 9 10 9 9 9.33 4.00 4.00 1.51 4.00 8.76 9.33 86 400
B1 2 4 7 4.33
B2 3 5 8 5.33
B3 4 6 9 6.33
1] 11 1 2 1 1 1.33 -4.38 -5.00 -1.60 -5.00 2.01 1.33 -107 -500
12 3 4 3 3 3.33 -2.38 -3.00 -85 -3.00 3.74 3.33 -64 -300
13 5 6 5 5 5.33 .00 -1.00 -11 -1.00 5.48 5.33 =21 -100
14 7 8 7 7 7.33 2.00 1.00 .64 1.00 7.21 7.33 21 100
15 9 10 9 9 9.33 4.00 3.00 1.39 3.00 8.95 9.33 64 300
B1 3 5 8 5.33
B2 4 6 9 6.33
B3 5 7 10 7.33
v 16 1 2 1 1 1.33 -4.00 —-4.00 -1.53 -2.00 1.33 1.33 -86 -200
17 3 4 3 3 3.33 -2.00 -2.00 -.76 -1.00 3.33 3.33 -43 -100
18 5 6 5 5 5.33 .00 .00 .00 .00 5.33 5.33 0 0
19 7 8 7 7 7.33 2.00 2.00 .76 1.00 7.33 7.33 43 100
20 9 10 9 9 9.33 4.00 4.00 1.53 2.00 9.33 9.33 86 200
B1 3 4 3 3.33
B2 5 6 5 5.33
B3 7 8 7 7.33
\Y, 21 1 2 1 1 1.33 -3.88 -3.67 -1.49 -2.00 1.36 1.31 -79 -204
22 3 4 3 3 3.33 -1.88 -1.67 -.72 -.91 3.35 3.32 -36 -93
23 5 6 5 5 5.33 .13 .33 .05 .18 5.33 5.33 7 19
24 7 8 7 7 7.33 2.13 2.33 .82 1.27 7.32 7.34 50 130
25 9 10 9 9 9.33 4.13 4.33 1.58 2.36 9.30 9.35 93 241
B1 2 4 3 3.00
B2 5 6 5 5.33
B3 6 8 6 6.67

the ratings of all observers within each of the groups are
perfectly correlated.

Now examine the ratings of groups II and IV. As in
the previous comparison (of groups II and III), the rat-
ings of the nonbaseline stimuli of groups Il and IV are
identical. However, the baseline ratings of these two
groups differ in interval size, such that a difference of 1
in group II's baseline ratings appears to be equivalent to
a difference of 2 in group IV’s baseline ratings. The
mean ratings of groups Il and IV are identical, but, as
before, the baseline ratings suggest a difference in crite-
rion scales and that the identity in nonbaseline ratings
is misleading. The baseline-adjusted OARs of the two
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sets are also identical, as are the SBEs of the two sets, but
these scale values are not comparable between sets,
because the OAR and SBE procedures do not adjust for
interval size differences between sets of baseline ratings.
Only the baseline-adjusted Z-scores and SBE*s of the two
sets could (given the psychometric model) reasonably be
assumed to be comparable, because these two proce-
dures adjust for interval size differences between sets of
baseline ratings.

Next, consider the ratings of observer groups I and IV.
Ratings of all observers of group I, including those of
the baseline, are perfectly correlated with those of ob-
servers of group IV, but (as seen by examining the ratings



for the baseline stimuli) the ratings of the two data sets
differ in interval size. The mean ratings of the base-
line stimuli suggest that a rating difference of 1 was used
by group I to indicate the same difference between stimuli
as a rating difference of 2 by group IV. The mean rat-
ings of the stimuli of the two groups differ, as do the
mean OARs. The mean Z-scores of the two groups are
identical, because all ratings of the two sets are perfectly
correlated. Likewise, the baseline-adjusted mean
Z-scores of the two sets are identical. However, the mean
Z-scores of each group are not identical to the baseline-
adjusted mean Z-scores, because the mean and standard
deviation for the standardization are computed from all
the ratings for the mean Z-score and just from the
baseline ratings for the baseline-adjusted mean Z-score.
The mean LSRs of the two data sets differ, as do the mean
baseline-adjusted LSRs, because the least squares pro-
cedures do not adjust for linear differences between data
sets. Finally, the SBEs of the two observer groups are
different, but the SBE*s of the two groups are identical,
and are equal to the baseline-adjusted mean Z-scores,
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except for the decimal point, because the two sets of
ratings are perfectly correlated and the latter two proce-
dures adjust for interval size differences across sets of
baseline stimuli.

The nonbaseline ratings of observer group V are iden-
tical to those of groups II, Ill, and IV, but the baseline
ratings of group V are neither identical to nor perfectly
correlated with those of the other groups. Because the
Z-score, least squares, and SBE procedures all utilize the
baseline ratings in the computation of their respective
scale values, for each procedure the scale values of group
V are not perfectly correlated with those of the other
groups. For example, the correlations of the SBE*s of
group V to those of groups I, III, and IV are less than 1.0.
Furthermore, the scale values produced by the Z-score,
least squares, and SBE scalings of group V’s ratings are not
perfectly correlated with each other, or with the mean
ratings. Each procedure deals with the lack of correlation
in a different way. Only the SBEs and SBE*s can be per-
fectly correlated, because one is a simple linear transfor-
mation of the other.
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The Rocky Mountain Station is one of eight
regional experiment stations, plus the Forest
Products Laboratory and the Washington Office
Staff, that make up the Forest Service research
organization.

RESEARCH FOCUS

Research programs at the Rocky Mountain
Station are coordinated with area universities and
with other institutions. Many studies are
conducted on a cooperative basis to accelerate
solutions to problems involving range, water,
wildlife and fish habitat, human and community
development, timber, recreation, protection, and
multiresource evaluation.
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Research Work Units of the Rocky Mountain
Station are operated in cooperation with
universities in the following cities:

Albuquerque, New Mexico
Flagstaff, Arizona

Fort Collins, Colorado”
[Laramie, Wyoming
Lincoln, Nebraska

Rapid City, South Dakota
Tempe, Arizona
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