You are here

Southwest Watershed Science Team

Publications

Private and public land managers are attempting to reintroduce fire into the ecosystems of the Peloncillo Mountains to reduce the density of woody species, increase the herbaceous plant cover, and improve the area’s ecological diversity.
Experimental watershed studies can provide answers to new challenges facing land managers and society including the impacts of fires and climate change on upstream and regional hydrology.
A hydrologic research network was established in Arizona in the 1950s and 1960s called the Arizona Watershed Program (Baker et al. 1999). It consisted of a number of public agencies and private groups interested in obtaining more water for future economic growth while maintaining the State's watersheds in good condition. As part of the Program.
This volume is a state-of-knowledge synthesis of monitoring and research conducted on the Upper Verde River (UVR) of Arizona. It contains information on the history, hydrology, soils, geomorphology, vegetation, and fish fauna of the area that can help land managers and other scientists in successfully conducting ecosystem management and future monitoring and research in this important Southwest river ecosystem.
Beginning in the 1950s, researchers of the United States Department of Agriculture Forest Service established a series of paired watershed studies throughout north-central and eastern Arizona. A total of nine experimental watershed areas were established in the pinyon-juniper and chaparral woodlands, as well as the ponderosa pine and mixed conifer forests.
This bibliography is a compendium of state-of-knowledge publications about the threats affecting western U.S. riparian ecosystems and is a companion to the website: http://www.fs.fed.us/rm/boise/AWAE/publications/bibliography.shtml#riparian.
Wildfire is a natural disturbance with epic potential to drastically alter watershed hydrologic condition. Basins with high-burn severity, especially those with steep previously forested terrain, have flashier hydrographs and can produce peak-flows orders of magnitude greater than pre-fire conditions. This is due to fundamental changes in the hydrology of burnt watersheds, especially in the short term (1-3 years).
In the late summer of 2007 the Institute for Pacific Islands Forestry (IPIF), which is part of the US Forest Service Pacific Southwestern Research Station, asked the USFS Rocky Mountain Research Station's (RMRS) Air, Water and Aquatic Program's (AWA) Southwest Watershed Science Team for assistance in the establishing baseline data in the initial phase of a long term research project in the newly established Hawaiian Experimental Forest.
The Beaver Creek experimental watershed, located in north-central Arizona, was established in 1956 in response to public concerns that the flow of streams and the amount of livestock forage on watersheds in the Salt-Verde River Basins were being reduced by increasing densities of ponderosa pine saplings and pinyon-juniper trees.