You are here

Evaluating fuel treatment effectiveness at stand scales using STANDFIRE

January, 2012

Example 3D fire simulations for a forest stand, before (bottom) and after treatment (top), carried out with STANDFIRE. Model simulations indicate that the fuel treatment resulted in dramatically lower fire behavior.
Example 3D fire simulations for a forest stand, before (bottom) and after treatment (top), carried out with STANDFIRE. Model simulations indicate that the fuel treatment resulted in dramatically lower fire behavior.
Increasingly intense fire seasons, rapidly changing ecosystems, and an expanding wildland-urban interface all increase the hazard that fires pose to communities, watersheds, and ecosystems. Fuel treatments offer managers an opportunity to proactively mitigate threats to firefighters and communities as well as to maintain or restore healthy ecosystems, typically by altering forest canopies before a wildfire incident occurs. Unfortunately, fire that spreads through forest canopies is very complex, and many aspects of such fire behavior are still poorly understood. Therefore, it is difficult to identify the most hazardous stands, and managers cannot be certain that treating a stand will reduce fire hazard.

Fire, Fuel, and Smoke (FFS) Research Ecologists Russ Parsons and Matt Jolly, along with FFS Forester Greg Cohn, RMRS Operations Research Analyst Nick Crookston, and Pacific Northwest Research Station Scientist William Mell, are partnering with researchers at Oregon State University, Colorado State University, Los Alamos National Lab, and the French National Institute of Agricultural Research in a project to explore what makes fuel treatments effective. The project, STANDFIRE, is a platform through which new fire science can be tested, assessed, and incorporated into fuel treatment analysis.

STANDFIRE has three goals:

  1. to improve understanding of how fire spreads through forest canopies,

  2. to think critically about how to measure the success of a fuel treatment, and

  3. to develop and test new approaches for predicting the impact of a fuel treatment.

Most of the time, it is too difficult and dangerous to test how fires burn through forest canopies in real forests, so computer models play a key role in helping us understand this critically important phenomenon. In this project, researchers are working with new physics-based fire behavior models (HIGRAD-FIRETEC and WFDS), which allow them to simulate fire spreading through three dimensional forests to test how different aspects of fuel, such as spacing between trees, can change how fire spreads. They are experimenting with different ways of representing fuels, and examining the potential impact of other fuel properties, such as fuel chemistry, on fire behavior.


How do researchers and managers know if a treatment will be successful? The answer depends on many factors, but an important one is how to measure “success.” To learn more about how different people describe a successful fuel treatment, the researchers organized a workshop in 2014, gathering an international group of researchers and managers to develop clear, measurable, and adaptable benchmarks for fuel treatment success. The workshop revealed the importance of defining measures of success during the planning process and testing multiple potential treatments against those measures. With the ideas generated by this engaged group of researchers, analysts, and managers, scientists have begun to develop and test new stand-scale metrics that can be used by managers to both define fuel treatment goals and evaluate how well a fuel treatment has achieved those goals.

These researchers have taken the knowledge of fire behavior, fuel dynamics, and management needs gained in our research to develop a new software platform that can help predict fuel treatment impacts, through detailed simulations at the scale of individual forested stands. Physics-based fire behavior models have been paired with an existing nationwide forest harvest and growth model (the Forest Vegetation Simulator) to look at the impact of different fuel treatment methods and examine how that impact changes over time.

For more information, please visit

Project Contact: 

Principal Investigators:
Lucas Wells - Oregon State University
Francois Pimont - French National Institute of Agricultural Research (INRA)
Ruddy Mell - U.S. Forest Service
Chad Hoffman - Colorado State University
Angela Mallon - Montana Department of Natural Resources and Conservation

Research Staff:
Rod Linn - Los Alamos National Laboratory

Funding Contributors:
Joint Fire Science Program