You are here

Climate Change

Projects

Forest disturbance reconstructions provide a valuable record of factors leading up to change or stabilization in forest stands. Reconstructions in Colorado usually focus on fire effects, although a few have recorded beetle disturbances. Examining the evidence left by bark beetle disturbance and understanding interactions between insect disturbances and climate events may help guide management of post-disturbance forests.
Plants are a vital component of biodiversity but are facing a high rate of extinction worldwide. This research investigated plant density of a regionally rare threatened species, Packera franciscana, in order to detect current population size trends as well as establish a baseline to detect future climate change effects. Research on population stability and flowering or fruiting rates is critically important to the recovery and long-term management of P. franciscana.
This project seeks to address two key scientific questions: (1) Are emission factors for CO2, CO, CH4, NOX, PM2.5, and BC significantly dependent on either fuel moisture or fuel bed structure? and (2) Can fuel moisture and fuel bed structure serve as independent variables for empirical models that reliably predict these emission factors?
In this study, we determined the locations of wildfire-derived emissions and their aggregate impacts on Salt Lake City, Utah, a major urban center downwind of the fires. The USFS Rocky Mountain Research Station’s new Wildland Fire Emission Inventory Version 2 model was used to determine the location and timing of wildfire emissions.
Forest biomass is a promising feedstock (raw material to supply or fuel a machine or industrial process) for the production of bioenergy, biofuels, and bioproducts because it is renewable and widely available as a byproduct of forest management. However, there are many obstacles have that have prevented more widespread use of forest biomass. This project was set in place to quantify and evaluate these obstacles so that land managers can overcome them.
How is drought affecting the forests and rangelands of the United States? Dr. Karin L. Riley, Research Ecologist with the Human Dimensions program of the USDA Forest Service Rocky Mountain Research Station, participated in a recent effort to synthesize the current science on this topic, along with 76 other scientists from federal land management agencies, universities, and other research institutions.
The Wildfire Risk Management Team is an interdisciplinary team that explores wildfire management through the lenses of risk analysis, economics, decision science, and landscape ecology to improve the scientific basis for the full range of wildfire management decisions. Primary research topics include integrated spatial risk assessment modeling and planning, econometric modeling of fire management expenditures, effectiveness of suppression resource utilization, organizational structure and managerial incentive systems, and performance measurement.
Squirreltail (Elymus elymoides) can rapidly colonize disturbed sites, is relatively fire-tolerant, and is a potential competitor with medusahead (Taeniatherum caput-medusae) and cheatgrass (Bromus tectorum). Determining the extent to which adaptive genetic variation is related to climatic variation is needed to ensure that the proper germplasm is chosen for revegetation and restoration. This study provides (1) seed zones and seed transfer guidelines for developing adapted plant materials of squirreltail for revegetation and restoration in the Great Basin and adjacent areas and (2) guidelines for conservation of germplasm within the National Plant Germplasm System.
Good drought tolerance and fibrous roots make prairie junegrass (Koeleria macrantha) beneficial for revegetation and erosion control on mined lands, over septic systems, in construction areas, on burned sites, and in other disturbed areas. There is a need for greater genetic knowledge of this species to ensure adapted populations are used for restoration and revegetation projects. This study provides (1) seed zones and seed transfer guidelines for developing adapted plant materials of prairie junegrass for revegetation and restoration in the Great Basin and adjacent areas and (2) guidelines for conservation of germplasm within the National Plant Germplasm System.
Previous research funded by the Great Basin Native Plant Project found that bluebunch wheatgrass (Pseudoroegneria spicata) populations differed in traits important for adaptation to precipitation and temperature (St. Clair et al. 2013). Forest Service scientists hypothesize that in the long-term, populations from local seed zones will better establish, survive, and reproduce than those from non-local seed zones. This study examines the efficacy of seed zones for bluebunch wheatgrass to ensure successful establishment and allow for long-term adaptation by maintaining genetic diversity.

Pages