You are here

Prescribed fire


RMRS researchers Terrie Jain, Kate Dwire, and Travis Warziniack are partnering with managers on the Boise National Forest and scientists at the University of Idaho to develop, implement, and evaluate place-based adaptive management strategies with the goal of improving the resilience of Northern Rockies ponderosa pine stands to fire and other disturbances.
RMRS scientists and staff have started an intensive project with the Arapaho Roosevelt National Forest, along with other cooperators such as Colorado Forest Restoration Institute, to develop a comprehensive plan for fire management on the forest. This project will rely on the Cohesive Strategy framework and will bring in many cooperators.
Recognizing the need to enhance learning from escaped prescribed fires, the Rocky Mountain Research Station analyzed current review processes through a series of five regional, interagency dialogue sessions. These two-day workshops were held in Portland, Denver, Salt Lake City, Tucson, and Tallahassee between January and July 2011.
The research objective is to evaluate the effectiveness and cost-effectiveness of a broad range of fuel treatment designs, patterned on treatments applied to dry mixed conifer forest, which address multiple components of resistance to fire in diverse forest settings. The project design accounts for fuel treatment longevity by considering and comparing the effectiveness and costs of treatment over a multi-decade planning horizon, addressing the challenge of rating cost-effectiveness in the context of multiple treatment and land management objectives, and providing a framework for assessing the stand-level effects of fuel treatment on fire behavior and resistance to fire.
There is an urgent need to develop adaptive management strategies that foster ecosystem resilience to the impact of climate change and enable forests to adapt to uncertain future conditions. This project utilizes a scientist-land manager partnership to develop, implement, and measure ecological responses in a large-scale replicated study of three adaptive management treatments strategies in the dry mixed conifer forest type.
Over one million acres will receive treatments across the Great Basin Landscape Conservation Cooperative (GBLCC) to conserve greater sage-grouse habitat over the next decade. These treatments are intended to restore native sagebrush habitat by reducing encroachment of juniper, infestations of invasive weeds, and wildfire. This project will evaluate the effects of vegetation treatments on population connectivity, genetic diversity and gene flow of wildlife species across the full extent of the Great Basin Landscape Conservation Cooperative.
This project seeks to address two key scientific questions: (1) Are emission factors for CO2, CO, CH4, NOX, PM2.5, and BC significantly dependent on either fuel moisture or fuel bed structure? and (2) Can fuel moisture and fuel bed structure serve as independent variables for empirical models that reliably predict these emission factors?
In this study, we determined the locations of wildfire-derived emissions and their aggregate impacts on Salt Lake City, Utah, a major urban center downwind of the fires. The USFS Rocky Mountain Research Station’s new Wildland Fire Emission Inventory Version 2 model was used to determine the location and timing of wildfire emissions.
In 2015, analysts with Fire Modeling Institute (FMI) continued to be involved with application of a wildfire risk assessment framework developed largely by RMRS scientists from both the Fire, Fuel, and Smoke Science Program and the Human Dimensions Program. The risk assessment framework is useful for multiple reasons: it provides a means to assess the potential risk posed by wildfire to specific highly valued resources and assets (HVRAs) across large landscapes, and it also provides a scientifically-based foundation for fire managers to think strategically and proactively about how to best manage fire and fuels on their landscapes in a way that integrates with broader land and resource management goals.  
Each year thousands of wildfires occur within the United States. Increased federal spending on large wildfire management has become a growing concern to Congress, to state and federal agencies, and to the public. The Wildfire Risk Management Team is undertaking a series of empirical studies from recent wildfires that track daily resource use, including aviation and ground-based fire suppression resources, to asses the effects of resource use on wildfire containment under a range of environmental conditions.