

The Effects of Climate Change on Outdoor Recreation in the United States

December 18, 2019

Laurel Harkness Executive Director, SORP

Jordan Smith Secretary, SORP

SORP is the voice for advancing the outdoor recreation profession.

TODAY'S PRESENTERS

Jordan W. Smith, Ph.D.

Director, Institute of Outdoor Recreation and Tourism Utah State University jordan.smith@usu.edu

Matt Brownlee, Ph.D.

Associate Professor

Clemson University

mbrownl@clemson.edu

Chris Zajchowski, Ph.D.

Assistant Professor Old Dominion University czajchow@odu.edu

SORP is the voice for advancing the outdoor recreation profession.

GLOBAL CLIMATE CHANGE

GLOBAL CLIMATE CHANGE

Annually-averaged Precipitation Trends

Temperature

- Maximum daily
- Minimum daily

Precipitation

- Amount
- Timing
- Phases

- Wildfires
- Floods
- Droughts
- Hurricanes

GLOBAL CLIMATE CHANGE

Temperature

- Maximum daily
- Minimum daily

Precipitation

- Amount
- Timing
- Phases

- Wildfires
- Floods
- Droughts
- Hurricanes

Winter Temperature
Summer Temperature

Image: Summer Temperature
Image: Summer Temperature

<

Temperature

- Maximum daily
- Minimum daily

Precipitation

- Amount
- Timing
- Phases

- Wildfires
- Floods
- Droughts
- Hurricanes

Projected Changes in Annual Average Temperature

- Temperature
- Maximum daily
- Minimum daily

Precipitation

- Amount
- Timing
- Phases

Extreme events

- Wildfires
- Floods
- Droughts
- Hurricanes

PROJECTED

Temperature

- Maximum daily
- Minimum daily

Precipitation

- Amount
- Timing
- Phases

- Wildfires
- Floods
- Droughts
- Hurricanes

Temperature

- Maximum daily
- Minimum daily

Precipitation

- Amount
- Timing
- Phases

- Wildfires
- Floods
- Droughts
- Hurricanes

Historical Mid-Century **End-Century** mm 80 160 240 0 **PROJECTED CHANGES IN WINTER MOUNTAIN HYDROLOGY**

Temperature

- Maximum daily
- Minimum daily

Precipitation

- Amount
- Timing
- Phases

- Wildfires
- Floods
- Droughts
- Hurricanes

Temperature

- Maximum daily
- Minimum daily

Precipitation

- Amount
- Timing
- Phases

Extreme events

- Wildfires
- Floods
- Droughts
- Hurricanes

PROJECTED CHANGES IN WILDFIRE ACTIVITY

R1 = Region 1, Northern Region. R2 = Region 2, Rocky Mountain Region. R3 = Region 3, Southwestern Region. R4 = Region 4, Intermountain Region. R5 = Region 5, Pacific Southwest Region. R6 = Region 6, Pacific Northwest Region. R8 = Region 8, Southern Region. R9 = Region 9, Eastern Region. R10 = Region 10, Alaska Region. RPA = Resources Planning Act.

DEVELOPED SITES

Total Participants By Region (Millions)

Total Participants By Region (Millions)

PRIMITIVE AREAS

Ref. 6

Total Participants By Region (Millions)

UNDEVELOPED SKIING

GEOGRAPHIC VARIABILITY IN SHIFTS IN PARTICIPATION

GEOGRAPHIC VARIABILITY IN SHIFTS IN PARTICIPATION CASE STUDY: DEVELOPED AND UNDEVELOPED SKIING

SNOWMAKING WILL BECOME Mountain resorts will have to continue to

DIVERSIFY THE AMOUNT OF WINTER RECREATIONAL OPPORTUNITES offered. **SNOWMAKING WILL BECOME LESS DEPENDENT** as a means to maintain viable snow coverage.

GEOGRAPHIC VARIABILITY IN SHIFTS IN PARTICIPATION

NATIONAL PARK SERVICE

GEOGRAPHIC VARIABILITY IN SHIFTS IN PARTICIPATION NATIONAL PARK SERVICE

GEOGRAPHIC VARIABILITY IN SHIFTS IN PARTICIPATION CASE STUDY: DESERT PARK VISITATION

Visitation to most outdoor recreation destinations in southern Utah will **PLATEAU IN THE SUMMER MONTHS**, as average daily temperatures reach 85° F...

...but some destinations show **NO SIGNS OF STOPPING.**

GEOGRAPHIC VARIABILITY IN SHIFTS IN PARTICIPATION STATE PARK SYSTEMS

GEOGRAPHIC VARIABILITY IN SHIFTS IN PARTICIPATION CASE STUDY: COASTAL PARK SYSTEMS

PARTICIPATION MOUNTAIN TOWNS AND CITIES

"I guess poor air quality tends to drive skiers up to the mountain more frequently. The Wasatch offers a great place to **escape** from the air pollution: to get above it."

PARTICIPATION MOUNTAIN TOWNS AND CITIES

■ Change due to AQI ■ No Change

ACTIVITY AND SITE CHOICE TEMPERATE PARKS

- Decrease the amount of use
- Shift use to northly parks at higher elevations

 Shift participation among the 10 recreation activities included in the study

EQUIPMENT AND INVESTMENTS COASTAL RESOURCES

- Protection
 - Seawalls, jetties
 - Living shorelines
 - Beach nourishment
- Accommodation
 - Raise
 - Change structures
 - Retrofit
- Retreat
 - Down-zone
 - Reduce use
 - Reallocate

FREQUENCY AND DURATION DESERT RESOURCES

Month	Total Distance		Total Time		Time on Road		Time on Salt		Traveled on Road Only
	M _{miles}	SD	Mminutes	SD	M _{minutes}	SD	M _{minutes}	SD	
May	8.49ª	4.4	42.4ª	35.83	30.64ª	29.70	8.83ª	20.41	64.42%
June	12.01 ^b	6.11	55.02 ^b	30.80	38.24 ^b	24.12	16.78 ^b	16.09	15.53%
July	13.43	7.57	63.67 ^b	32.11	41.33 ^b	23.33	22.33b	21.15	20.71%
F (2, 264)	13.58**		7.01**		2.93 (p = 0.06)		6.93**		χ ² = 143.43** ^

Note. Mean scores with different superscripts within column differ at p < 0.05; *p < 0.05; **p < 0.01; ^ significance determined by Kruskal-Wallis Test; *p < 0.05; **p < 0.01

FREQUENCY AND DURATION DESERT RESOURCES

Indicators of Quality

Open Space, Natural Views, Photo Opportunities, Avoiding Crowds, Roadless Travel Racing History

What now?

- Outdoor recreation professionals will increasingly confront complex climate change scenarios.
- Planning for and adapting to an uncertain future is necessary.
- Accessing the best available science is important.

Trift Glacier in 2006

Trift Glacier in 2015

Principle 1: Begin with managers' needs

- What are the specific issues we are, or will confront in respect to climate change?
- <u>What</u> do we need to know?
- <u>When</u> do we need the information?
- <u>Where</u> does this information exist?
- <u>Who</u> else might be influenced?
- <u>Who</u> can we partner with?

Principle 2: Give priority to the process as well as the products

- Citizen science projects
- Collaborative meetings (internal and external)
- Engaging new generations of professionals

Principle 3: Link information providers and users

- Identify existing information partnerships
- Stakeholder gap analysis
- Universities and research centers

Principle 4: Build connections across disciplines and organizations

- Similarities in mission and policies
- Establish new partnerships
- **Review existing strategies** (e.g., NPS CC Action Plan)

Principle 5: Enhance institutional capacity

- Increase flexibility in policies and processes
- Establish new practices where necessary
- Staff training and development
- Scenario workshops to envision possible futures

Principle 6: Design for learning

- Adaptive management
- Tracking trends
- Baseline data is important
- Document the process

REFERENCES

- D. J. Wuebbles, et al., "Our globally changing climate" in Climate Science Special Report: Fourth National Climate Assessment, Volume I, D. J. Wuebbles, et al., Eds. (U.S. Global Change Research Program, 2017), pp. 35–72.
- R. S. Vose, D. R. Easterling, K. E. Kunkel, A. N. LeGrande, M. F. Wehner, "Temperature changes in the United States" in *Climate Science Special Report: Fourth National Climate Assessment, Volume I*, D. J. Wuebbles, *et al.*, Eds. (U.S. Global Change Research Program, 2017), pp. 185–206.
- D. R. Easterling, et al., "Precipitation change in the United States" in Climate Science Special Report: Fourth National Climate Assessment, Volume I, D. J. Wuebbles, et al., Eds. (U.S. Global Change Research Program, 2017), pp. 207–230.
- M. F. Wehner, J. R. Arnold, T. Knutson, K. E. Kunkel, A. N. LeGrande, "Droughts, floods, and wildfires" in *Climate Science Special Report: Fourth National Climate Assessment, Volume I*, D. J. Wuebbles, *et al.*, Eds. (U.S. Global Change Research Program, 2017), pp. 231–256.

- M. Hand, J. W. Smith, D. L. Peterson, N. A. Brunswick, C. P. Brown, "Chapter 10: Effects of climate change on outdoor recreation" in *Climate Change Vulnerability and Adaptation in the Intermountain Region*, Gen. Tech. Rep. RMRS-GTR-xxx., J. E. Halofsky, D. L. Peterson, J. J. Ho, N. J. Little, L. A. Joyce, Eds. (U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2018).
- USDA Forest Service, "Chapter 12: Outdoor Recreation" in Future of America's Forests and Rangelands: Update to the Forest Service 2010 Resources Planning Act Assessment, Gen. Tech. Rep., (U.S. Department of Agriculture, Forest Service, Research and Development, 2016), pp. 12-1-12– 24.
- 7. N. A. Fisichelli, G. W. Schuurman, W. B. Monahan, P. S. Ziesler, Protected area tourism in a changing climate: Will visitation at US national parks warm up or overheat? *PloS one* **10**, d0128226 (2015).
- 8. J. W. Smith, E. Wilkins, R. Gayle, C. C. Lamborn, Climate and visitation to Utah's "Mighty 5" national parks. *Tourism Geographies* **20**, 250–272 (2018).
- 9. J. W. Smith, E. J. Wilkins, Y.-F. Leung, Attendance trends threaten future operations of America's state park systems. *PNAS*, 201902314 (2019).

REFERENCES

- Zajchowski, C.A.B. & Rose, J. (2020). Sensitive leisure: Writing the lived experience of air pollution. *Leisure Sciences*, 42(1), 1-14.
- Zajchowski, C.A.B., Brownlee, M.T.J., Blacketer, M.J., Rose, J., Rumore, D.L., Watson, J.M., & Dustin, D.L. (2019). "Can you take me higher?": Normative thresholds for air quality in the Salt Lake City Metropolitan Area. *Journal of Leisure Research*, 50(2), 157-180.
- Zhang, H., & Smith, J. (2018). Weather and air quality drive the winter use of Utah's Big and Little Cottonwood Canyons. Sustainability, 10, 1–12.
- Perry, E., Manning, R., Xiao, X., & Valliere, W. (2018). Multiple dimensions of adaptations to climate change by visitors to Vermont State Parks. *The Journal of Park and Recreation Administration*, 36(2), 13–30.
- 14. Woodruff, S., BenDor, T.K., & Strong, A.L. (2018). Fighting the invevitable: infrastructure investment and coastal community adaptation to sea level rise. System Dynamics Review, <u>https://doi-org.proxy.lib.odu.edu/10.1002/sdr.1597</u>

- Brownlee, M.T.J., Zajchowski, C.A.B., Blacketer, M.J., Peterson, B., Bowen, B.B. (in review). Rapid biophysical change and visitor use management: Social-ecological connections at the Bonneville Salt Flats.
- 16. Brownlee, M., & Leong, K. (2011). Climate change, management decisions, and the visitor experience: The role of social science research. *Park Science*, *28(2)*, 21-25.

QUESTIONS?

Type your question in the QUESTION pane in the Control Panel.

CONTACT

Jordan W. Smith, Ph.D. jordan.smith@usu.edu Matt Brownlee, Ph.D. mbrownl@clemson.edu Chris Zajchowski, Ph.D. czajchow@odu.edu

UPCOMING SORP WEBINARS

Leave No Trace – From Science to Application in Parks and Protected Areas: Strategies for Influencing Visitor Behavior

Speaker: Ben Lawhon, Leave No Trace: Center for Outdoor Ethics Date: January 15, 12 (mountain)

A New Table

Speaker: Chevon Powell, Founder Refuge Outdoor Festival Date: February 12, 12 (mountain)

Sustainable Recreation and Tourism on Public Lands

Speakers: Lee Cerveny, US Forest Service, Pacific Northwest Research Station Monika Derrien, US Forest Service, Pacific Northwest Research Station Anna Miller, Institute of Outdoor Recreation and Tourism at Utah State University **Date: March 11, 12 (mountain)**

NATIONAL OUTDOOR RECREATION CONFERENCE APRIL 27-30, 2020

KNOXVILLE, TENNESEE

Recreation Conference society of outdoor recreation professionals

Outdoors for All: Advancing Stewardship, Equity & Wellness in Outdoor Recreation.

THANK YOU!

WWW.RECPRO.ORG

SORP is the voice for advancing the outdoor recreation profession.