Rec'd 6/6/79

ENGINEERING TECHNICAL INFORMATION SYSTEM

FIELD NOTES • TECHNICAL REPORTS DATA RETRIEVAL • MANAGEMENT PROFESSIONAL DEVELOPMENT

VOLUME 11 NUMBER 1

Field

Notes

Selected Programs for Hand Calculators in Civil Engineering

Abandoned Strip Mine Reclamation

Washington Office News

FOREST SERVICE

JANUARY 1979

U.S. DEPARTMENT OF AGRICULTURE

ë

ENGINEERING FIELD NOTES

Volume 11 Number 1

Information contained in this publication has been developed for guidance of employees of the United States Department of Agriculture—Forest Service, its contractors, and its cooperating Federal and State agencies. The Department of Agriculture assumes no responsibility for the interpretation or use of this information by other than its own employees.

The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval of any product or service by the United States Department of Agriculture to the exclusion of others that may be suitable.

The text in the publication represents the personal opinions of the respective author, and must not be construed as recommended or approved procedures, mandatory instructions, or policy, except by FSM references. Because of the type of material in the publication, all engineers and engineering technicians should read each issue; however, this publication is not intended exclusively for engineers.

FOREST SERVICE
U.S. DEPARTMENT OF AGRICULTURE
Washington, D.C. 20013

EDITOR'S NOTE

This issue introduces some format changes to <u>Field Notes</u>. First, we are now using the Courier type style; this larger, more open type will make this and following issues easier to read. We also are using larger paper; Government agencies now have the option of using the commercial $8 \frac{1}{2} \times 11$ -inch paper size for their publications.

Gordon L. Rome Editor

SELECTED PROGRAMS FOR HAND CALCULATORS

IN CIVIL ENGINEERING

Bernhold Rankenberg Region 5

There are times when it is not practical to use the Regional Computer Center or mini-computers in Civil Engineering, although the recurring nature of some problems (those consisting of a series of arithmetic calculations) makes them amenable to a programmed solution. Use of hand-held programmable calculators, such as those found in most National Forest Engineering Offices, provides the necessary alternative method.

The programs presented here are written for calculators that use algebraic notation, such as Texas Instruments' Model SR-52. Programs usually can be stored on magnetic cards to eliminate the necessity of keying-in the program each time it is used. Without magnetic cards, the keying-in process would be necessary. This not only is tedious for the longer programs, but the keying-in process is -- in itself -- a prime source for introducing errors.

PROGRAM EXAMPLES

Program A: Three-Axle Truck on Simple Beam. This program will calculate maximum moments and shear at any point in a simple beam loaded with a 3-axle truck having axles 14 feet (4.27m) apart. The truck loads are AASHTO HS loads.

The usual procedure is to select a maximum moment from AASHTO's Standard Specifications for Highway Bridges for a given span; then the moment curve is calculated, using the assumption that it is parabolic. That assumption is erroneous, however. The moment for a 40-ft. (12.19m) span, for example, is approximately 6 percent low at the 1/4 point, using the parabolic assumption. The error increases for longer spans; an 80-ft. (24.38m) span has a 20 percent error. This program will not work for off-highway loads or for spans of less than 14 ft. (4.27m).

The moments are based on the shear diagram for the area under the rear axle of the truck. The center moment however, is calculated by placing the center of the span equidistant from the resultant of all axle loads and the nearest axle. It is likely that the area calculation procedure used in this program could be used as well on a moment diagram to calculate deflection by the conjugate beam method.

The shears given produce a shear envelope of maximum and minimum shears for a moving load; they are given until x in Program A is 14 ft. (4.27m) from Ra.

Program B: Moment Distribution. This program will calculate moments in the structure shown. The user must provide fixed-end moments and distribution factors for each joint. The carry-over factor is assumed to be 0.5; therefore, the sections must be uniform. The end joints can be assumed to be completely fixed, or pin-connected, or nonexistent, i.e., a structure with cantilever ends.

This program probably could be adapted to problems in sidesway and temperature expansion. It can be applied to haunched members by going into the program and substituting an appropriate carry-over factor other than 0.5.

Although the operations involved are simple and repetitious, they must be made in a specific sequence and the results must go to a specific location. With eight moments to manipulate, the program is a long one that requires 218 steps.

Program C: Moment of Inertia. This program will calculate the moment of inertia of an "I" section; one or more of the flanges can be eliminated and the program will still work.

This program is especially useful in calculating the moment of inertia of composite sections. To do so, use the given thickness of flange and slab, but calculate an equivalent width for the composite slab and flange using an appropriate N value. The program also is helpful in the conjugate beam method for calculating deflections. As shown in the exhibits, the program produces other data, including the distance of the center of gravity from the bottom flange.

Program D: Mannings Equation. This program solves the Equation 7-36 shown in King's Handbook (5th. Edition), pages 7-13. The solution is by trial and error, but converges rapidly; generally, two or three trials are adequate, depending on the accuracy desired. After the proper depth is calculated to produce a given Q, pressing the RUN button will calculate velocity in fee per second.

This program might be improved by manipulating the equation to derive D as a function of Q, thereby calculating D directly, rather than using a trial-and-error method. However, since X and Y are defined in terms of D, the small increase in convenience does not seem to justify the effort.

EXHIBIT A

PAGE1_OF3
◆ B ×

STEP	PROCEDURE	ENTER		PRESS	DISPLAY
	P ₁ , P ₂ , P ₂	P ₁	STO STO	02	
*	R _A — L — R _B	P ₂	STO	06	
÷) A	Х.	А		Mx
			RCL		$V_{MAX} = R_B = V_X$
	ASSUMPTIONS:	7 L	RCL	05	RA
	1. ∠≥14' (4.27m)		RCL	04	M(MAX)
	2. Ÿ = 18.67' (5.69m)		В		
		127			
		A			
	-				
				-	10 0000 to 10 0000
		L			

LOC	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS	LOC	CODE	KEY	СОММ	ENTS	LABELS
000	*[LBL				Χ				9			Main Program
		Α				RCL				*			∥ B ™MAX
		ST0		040 152		0				3			C R _B =2P ₂ +P ₁ -R
		0				1				4		_"7	C R _B =2P ₂ +P ₁ -R ₀ D if P ₁ =0
		1				+		080 192)			E
005 117	F	RCL				1				+			A'
		0				4				RCL	1.		В.
		6		045 157)				0			C.
		-)				2			D,
	F	RCL				÷		085 197		X			€'
010 122		0				RCL				(REGISTERS
		1				0				RCL	4		00
		-		050 162		6				0			01 χ
		2				=				6			
		8				STO		090 202		÷			02 P ₁ 03 P ₂
015 127		=				0	RA			2			04 R _A
	I	NV				4				+			05RB(VMAX)
	i f	Pos		055 167		С				1			06 L
		D				RCL				6			07
	1	RCL				0		095 207					08
020		0				5		201		3	1		09
1		2				Х				3.			10
		Х		060 172		RCL)			11
)				0)	T		12
	R	CL				1		100 212		<i>'</i>	1		13
025 137		0				=				RCL			14
		1				HLT				0			15
		+		065 177		LBL				6			16
		2				В				=			17
		88				RCL		105 217	-		1	1122	18
030 142)				0		217		_STO 0	RA		19
- 1.2		+				3				4	A	\neg	FLAGS
	р	CL		070 182		Х				C			0
		0		102		<u>(- </u>				RCL			1
		3				RCL		110 222		0	-	72.00	2
035		X				0		222		5			3
		(6	 						4
		2		075 187		-		\ \				4	

LOC	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS	LABELS
00 112		X				=				1		A
		(STO				=		В
		RCL		040 152		0				HLT		С
		0				5			277.5			D
		6				*RTN		080 192				E
005 117		÷				LBL				,		Α'
		2				D						В.
		+		045 157		RCL						C.
		2	1 - 1111-1111-11	107		0				S. (1995)		D.
						3		085 197				E.
122		3				Х		137				REGISTERS
		3				2	1					00
)		050 162		X						01
		-		102		(02
- 0		RCL				RCL		090 202				03
)15 127		0				0		202				04
121		3			<u> </u>	6	 			***************************************	1	05
Medi		Х		055 167		-						06
		1		107		RCL						07
		4				0		095 207				08
132		=	MMAX			1		201			1	09
132		HLT	30 3.5			-						10
13/12/		LBL		060 172		7						11
		C		172)						12
		RCL				+	1	100 212				13
025 137		0				RCL	1	212				14
137		4	1		-	0				2200-11		15
		(-)	1	065 177		6						16
	-	+	+	177		=						17
		2				ST0		105 217	-			18
030 142	-	Х	1		1	0		217				19
142		RCL	1	-		5						FLAGS
		0		070 182		RCL						0
		3		102		0						1
		+	1			5		110		ľa		2
035 147		RCL				X				""		3
147		0				RCL			-			4
-	 	2		075 187		0		1				

EXHIBIT B

TITLE Moment Distribution PAGE 1 OF 4

◆ A ×	◆ B ■	

STEP	PROCEDURE	ENTER		PRESS		DISPLAY
		2.11.211				
	В C	F -				
	7/// 7///					
	ASSUMPTIONS:					
	1. Constant Section.					
	2. JTs "A" & "F" can be					
	any degree of fixity.					
	3. All distr. factors ar	e entered with m	inus si	gns.		
1.		F.E.M CF	ST0	02		
2.		F.E.M. CE	ST0	03		
3.		F.E.M. BD	ST0	04		
4.		F.E.M. FC	ST0	05		
5.		F.E.M. CB	ST0	08		
6.		F.E.M. BC	ST0	09		
7.		F.E.M. BA	ST0	10		
8.		F.E.M. AB	ST0	11		
9.		Distr. factor CE	-	ST-0	12	
10.		Distr. factor CB	-	ST0	13	
11.		Distr. factor BD	-	ST0	14	
12.		Distr. factor BC	-	SŢ0	15	
13.		Distr. factor BA	-	ST0	16	
14.		Distr. factor AB	-	ST0	17	
15.		Distr. factor FC	-	ST0	18	

PAGE	2	OF	4	
PAGE	~	()r	-	

◆ A	K		
		!	

T	4 8		

STEP	PROCEDURE		ENTER			PRESS		DISPLAY
16.	D	istr.	facto	r CF	-	ST0	19	
					A			M @ JT B
					RCL	02		MOM. CF
					RCL	03		MOM. CE
					RCL	04		MOM. BD
					RCL	05		MOM. FC
					RCL	08		MOM. CB
					RCL	09		MOM. BC
					RCL	10		MOM. BA
					RCL	11		MOM. AB
	M _{DB} =1 ₂ MBD if "D" is fixed.							
	MDB = 0 if "D" is pin-							
	connected.							
				-	,			
			-					

	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS	LABELS
000 112		#LBL				SUM				Α'	 	Main Prog.
		A				0	FEM BD			=	511.00	B ΣM @ JTB
	-	В		040 152		4				ST0		C ZM @ JTC
		Х				RCL				0		D RCL 16
		D	D.F.BA			0		080 192		6		E RCL 15
005 117		÷				6		132		C		A' RCL 13
		2				=				Х		B' RCL 18
		=		045 157		SUM				SBR		C' RCL 14
		SUM		107		1	FEM BA			1'	DF. CF	D RCL 12
		1	FEM AB			0		085 197				E' RCL 17
010 122		1				RCL		197		ST0		\$BR 1' RCL 19
		В				0				0		00 *dsz
		Х		050 162		7				7		01 _
		E	DF BC	102								
		÷				SUM		090				02 FEM CF 03 FFM CF
015 127		2				0	FEM BC	202		X D'	DF CE	03 FEM CE 04 FEM BD
		=				9	1 211 00				D1 CL	
		SUM		055 167		C				SUM		05 FEM FC 06 Storage
		0	FEM CB	167		Х)	FEM CE	
		8				A'	DF CB	095				OF Storage OF FEM CB
020 132		В				÷	DF CB	207		3 RCL		09 FEM BC
102		X						-				
		D	DF BA	060		2 =				Q. 6		10 FEM BA 11 FEM AB
		=		172								
		ST0			-+	SUM O	FEM BC	100		CUM		Dr CE
025		0				9	FEM BC	212		SUM 0	FEM CB	01 05
. 137		6									I EN CB	DE RD
		В		065 177		C X				88		15 CF BC 16 DF BA
-		Х		1//						RCL		17 DF AB
			DF BC			SBR 1'	DF CF	105		0		18 DF FC
030		=	D1 BC			<u>.</u> ÷	DF CF	217				19 DF CF
142		ST0										FLAGS
		0		070		2				SUM		0
		7		182		= SUM				2	FEM CF	1
\vdash								110 222				2
035		Х Х				<u>0</u> 5	FEM FC	222		RCL		3
147			05.00					I		0		4
			DF BD	075		C						*
L		=		187		Х	L					

	CODE		COMMENTS	LOC	CODE		COMMENTS	LOC	CODE	KEY	COMMENTS	LABELS
000 112		5				+				3		A
		Х				RCL				*RTN		В
		Β ^ι	D.F. BC	040 152		0			-	*LBL		С
		÷				4				В'		D
		2)		080 192		RCL		E
005 117		=				*RTN				1		Α'
		SUM				*LBL				8		B.
		0	FEM CF	045 157		С				*RTN		C.
		2				(3 6		*LBL		D.
		RCL				RCL		085 197		C'		Ε'
010 122		1			***********	0		101		RCL		REGISTERS
		1				2				1		00
		Х		050 162		+				4	-	01
		E'	D.F.AB			RCL				*RTN		02
		+	DITIND			0		090 202		*LBL		03
015 127		2				3		202		D'		04
		=				+				RCL		05
		SUM		055 167		RCL				1		06
		1		107		0				2		07
-		0				8		095 207		*RTN		08
020 132		В)		207		*LBL	1	09
102		=				*RTN	T			E'		10
		ST0		060 172		*LBL				RCL		11
		0		172		D				1		12
- 100		0				RCL		100 212		7		13
)25 137		7477.2	//					212	100 10			14
137		*dsz A				6				*RTN		15
		HLT		065 177		*RTN				*LBL		16
_				1//								17
		#LBL B				*LBL E		105 217		RCL		18
030 142			1			50.00		217		11	*	19
142		RCL				RCL				9		FLAGS
		0	+	070 182		5				*RTN		0
			1.	182	-							1
		9	-		-	*RTN		110 222			-	2
035				- W- N		*LBL		222			-	
147		RCL				A'						3
		1	-	075 187		RCL						4
		0		187		1	1	L				

EXHIBIT C

TITLE Moment of Inertia of "I" Section	PAGE_1_OF3
◆ A E	◆ B∝

STEP	PROCEDURE	ENTER		PRESS	DISPLAY
1	Enter height of				
	bottom flange	37	ST0	01	
2	Enter width of bottom flange		ST0	02	
3	Enter height of web		ST0	04	
4	Enter width of web	*	S.TO	05	
5	Enter height of top flange		ST0	07	
6	Enter width of top flange		ST0	08	
7				А	Ad ² + I _o
		V1000	RCL	03	Area Bot. Flg
			RCL	06	Area Web
			RCL	09	Area Top Flg.
			RCL	11.	7 (from Bot.)
			RCL	12	Ad ²
	,				
-2-11-2					

TITLE	Moment	of	Inertia	of	" I "	Section	PAGE	2	OF	3	
PROGRA							DATE				

	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMM	IENTS	LABELS
000 112		#LBL				X				1			A
		А				RCL				+			В
		RCL		040 152		0				RCL			С
		0				3				0			D
		1				÷		080 192		4			E
005 117		Х				2)			A'
		RCL				=				Х			B.
		0		045 157		SUM				RCL			C.
		2				1	A.Y.			0			D'
		=				0		085 197		9			E'
010		SUM				(=			REGISTERS
		0	A ₁			RCL				SUM			00
		3		050 162		0				1	ΣΑΥ	01	Ht. of Bot. F]g. Width of Bot. F]g. Wrea of Bot. F]g.
		RCL				4				0		02 %	lidth of
		0				÷		090 202		RCL	 	03	rea of
015 127		4				2		102		1		04 H	lt. of Web
		Х				+ '				0		05 W	lidth of Web
	 	RCL		055 167		RCL				÷		06 6	rea of Web (Ac)
		0		101		0				(07 F	t. of
		5				1		095 207		RCL		08 4	trea of (A ₂)
020 132		=		ļ)		207		0		09 7	rea of
102		SUM	-		 	X				3		ļ	10 EAY
		0	A ₂	060 172		RCL				+			11 y
		6		1/2	<u> </u>	0				RCL			12 ΣAd ²
		RCL			<u> </u>	6		100 212	1	0			13
025 137		0				=				6			14
137		7				SUM		1	†	+			15
		Х		065 177		1	(A ₂ +A ₁)Y			RCL			16
	1	RCL		1		0		1		0	<u> </u>		17
		0				(105 217		9	1		18
030		8		1		RCL		#		=	1		19
142	-	=				0				ST0	1		FLAGS
		CUM	,	070 182	1	7				1	Ÿ		0
	 	SUM 0	A3	182		÷				1	1		1
	-		1 73		+			110 222		(_		2
035	-	9 RCL		1	 	+				RCL			3
147		0		1	-	RCL				L_K¢L	-		4
<u> </u>	+-		-	075	,			1					
		1		075 187		0	<u> </u>						

LOC	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS	LABELS
000		0				=				Х		A
		1				SUM				RCL		В
		÷		040 152		1	(A ₁ +A ₂)d ²			0		С
		2				2	2-2-2-4-			2		D
		_				(1	080 192		+		E
005 117		RCL						192				Α.
117		1				RCL 0				RCL		В.
		1		045 157	1	7				0 4		C.
-				157	+				-			D,
_) *X ²	-	-	-	÷ 2		085 197		γ×		E.
122				-	-		-	197		3	-	
122		X		_	-	+				Х		REGISTERS
_		RCL		050	-	RCL				RCL		00
		0		050 162		0				0		01
		3				1		000		5		02
15 .		=				+		090 202		+		03
127		SUM				RCL				RCL		04
		1	A ₁ d ²			0				0		05
		2		055 167		4				7		06
		(-				γ×		07
		RCL				RCL		095 207		3		08
)20 132		0				1				Х		09
		4				1				RCL		10
		÷		060 172)				0		11
		2		172		*X ²				8		12
						X	<u> </u>	100 212)		13
137		+ RCL	I					212		- 1		14
137		0				RCL 0		-	- 7 7 7 7 7	1		
		1		065 177	-	9		-		2		16
			 	177			-	-			-	17
-		RCL		-	-	= CUM		105		+		
142			-			SUM	2	105 217		RCL	2	18
142		1				1	ΣAd ²			1	ΣAd ²	19
		1		070		2				2	12	FLAGS
)		070 182		(=	$\Sigma Ad^2 + I_D$	0
		*X2				RCL		116		HLT		1
		Χ				0		110 222				2
)35 147		RCL				1						3
		0	_			γ×						4
E		6		075 187		3						

	Manning's Equation for Trape	zoidal Channel			
	PÅK		◆B ≤		
TEP	PROCEDURE	ENTER		PRESS	DISPLAY
	→ e ←				2.000
	7				
	D Z				
	b				
	*				
	This is a trial and error so	olution of the f	ollowin	g equation	on:
			-		
	0 - 1.486(Z+ 1/x) 5/3 D 8/3 S	1/2			
	$Q = \frac{1.486(Z+ \frac{1}{X})}{n[\frac{1}{X}+2(Z^2+1)^{\frac{1}{2}}]^{\frac{2}{3}}} $	_			
	Where Z = e ÷ D				
	X = D ÷ b				
	S = Slope of stream (F	T/FT)			
	N = Mannings "N"	WEI (1997)			
	D = Depth	- 11 CO SA - 45 THE - 11 CO SA -			
	Q = CFS (Known)				-
1.	Enter average side slope as				
,	ratio of horizontal to vert	ical			
	Example: 2:1 = 2	Z	STO	01	
2.	Enter width of bottom	b (Ft)	ST0	02	
3.	Enter Slope	S (Ft)	ST0	0:3	
4.	Enter Manning's "N"	"N"	ST0	04	
5.	Enter Assumed Depth	D (Ft)	ST0	06	THE RESERVE OF THE PERSON OF T
6.				А	Q (CFS)
7.	If "Q" is incorrect, enter	another "D"	ST0	06	

		◆B≭	
PROCEDURE	ENTER	PRESS	DISPLAY
		A	Q
"Q" is correct:		RUN	V (FPS)
	"Q" is correct:	PROCEDURE ENTER "Q" is correct:	PROCEDURE ENTER PRESS A "Q" is correct: RUN

TITLE Moment	Distribution	PAGE 3 OF	4
PROGRAMMER_		DATE	

	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS	LABELS
000 112		#LBL				SUM				Α'	+	Main Prog.
		А				0	FEM BD			=		B ΣM @ JTB
		В		040 152		4				ST0		C EM @ JTC
		Х				RCL				0		D RCL 16
		D	D.F.BA			0		080 192		6		E RCL 15
005 117		÷				6				C		A RCL 13
		2				=				X		B' RCL 18
		=		045 157		SUM				SBR		C' RCL 14
		SUM				1	FEM BA			1'	DF. CF	D' RCL 12
	, .	1	FEM AB			0		085 197		=		E RCL 17
010 122		1				RCL				ST0		\$BR 1' RCL 19
		В				0				0		00 *dsz
		Х		050 162		7				7		01 _
		E	DF BC			=				C		O2 FEM CF
		÷				SUM		090 202		Х		03 FEM CE
015 127		2				0	FEM BC			D'	DF CE	04 FEM BD
		=				9				=		05 FEM FC
		SUM		055 167		С				SUM		06 Storage
		0	FEM CB			χ)	FEM CE	O7 Storage
		8				A۱	DF CB	095 207		3		08 FEM CB
020 132		В				÷				RCL		09 FEM BC
		Х				2				Q.		10 FEM BA
		D	DF BA	060 172		=				6		11 FEM AB
		=				SUM				=		12 DF CE
		ST0				0	FEM BC	100 212		SUM		13 DF CB
025 137		0				9				0	FEM CB	-14 DF BD
		6				С				8		15 CF BC
		В		065 177		Х				RCL		16 DF BA
		X				SBR				0		17 DF AB
		E	DF BC			1'	DF CF	105 217		7		18 DF FC
030 142		=				÷				=		19 DF CF
		ST0				2				SUM		FLAGS
		0		070 182		=				0	FEM CF	0
		7				SUM				2		1
		В				0	FEM FC	110 222		RCL		2
035 147		X				5				0		3
		C'	DF BD			С					.	4
		=		075 187		X						

TITLE_	Manning's	Equation	for	Trapezoidal	Channe1	PAGE.	4	OF	4
PROGR	RAMMER					DATE_			

LOC	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS	LABELS
000 112		5										A
		+										В
		RCL		040 152								С
		1										D
		1						080 192				E
005 117		=										Α'
		ST0										B.
		1		045 157								c.
75		2				-						D.
		=						085 197				E.
010 122		HLT						137		- S - S - S - S		REGISTERS
												00
				050 162								01
				102								02
								090		1:		03
015 127												04
												05
				055 167								06
												07
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					095 207			3 113 - 13 - 13 -	08
020		****										09
+ (10
				060 172								11
												12
								100 212				13
025 137			3									14
												15
				065 177								16
102 - TO				-				/-		**************************************		17
								105 217				18
030 142												19
172												FLAGS
				070 182		Ç.			597			0
				.52					-			1
						18937-00	B	110 222				2
035 147					-							3
17/		- 1111									-	4
			1	075 187				1			1	-

ABANDONED STRIP MINE RECLAMATION

Al Vanderpoel Engineer Wayne-Hosier National Forest

Almost 10,000 acres (4,047 hectares) of the Wayne National Forest in southern Ohio are scarred by abandoned strip mines. In 1978, as a result of a grant from the Appalachian Regional Commission, the Forest Service undertook its first large-scale reclamation of such lands on 40 acres (16.19 hectares) that had been mined soon after World War II.

Known as the Yost Tract, this area was characterized by 50-ft. (15.24m) vertical walls, strip pits filled with acid water, and mounds of overburden material (Fig. 1). Because of the exposed coal residues, there was almost no vegetation, and surface water runoff was very acidic; the pH level in the soils ranged from less than 3.5 to 5.5.

Figure 1. -- Conditions before reclamation work showing highwall, strip pit, and spoil bank

A Forest Service team of specialists developed guidelines that were used in preparing a contract package to reclaim the site, and in developing a Land Use Plan for the area. The plan consisted of:

- 1. Draining the acid water ponds;
- 2. Burying as much acid material as possible, and covering the site with a minimum of 24 inches (60.96cm) of nontoxic material;
- Restoring the land to its original contour (to the top of the vertical walls);
- 4. Covering the area with 12 inches (30.48cm) of topsoil;
- Cleaning and opening drainage-ways;
- 6. Liming, fertilizing, and revegetating the site with grasses immediately; and
- 7. Planting a variety of tree species that seemed appropriate to the site.

A public works contract was awarded for this project in April 1978; the earthwork was subcontracted to a coal mining firm experienced with this type of reclamation work. Using D-9 dozers for clearing, grubbing, and earthwork, the area was leveled initially and the acid ponds drained, after which the site was shaped to final grade (Fig. 2). Scrapers were used to haul borrow material for covering 10 (4.047 hectares) of the 40 acres (16.19 hectares) with 12 inches (30.48cm) of cover soil; the 10 acres chosen were the worst soils on the site.

New waterways were constructed to replace the existing drainages on the site, using stone riprap (Fig. 3). Also, diversion ditches were cut halfway down the finished slope to intercept runoff. The contractor's work was completed when the entire area was lined heavily and then fertilized, seeded, and covered with hay as mulch; an antierosion disk was used to crimp the hay into the soil. Figure 4, the completed project, is the same location as shown in Figure 1.

Three D-9 dozers, two scrapers, and a front-end loader were used in the project, which was completed in 122 days at a cost of \$4,950 per acre (.4047 hectare). The time and cost compare favorably with the State and Soil Conservation Service projects in the area. Downtime was essentially zero, but the work was delayed 4 weeks because of wet weather.

Figure 2. -- Dozers push material to final grade

Figure 3. -- New waterways established on site

Figure 4. -- Completed project at same location as Figure 1

Based on this work, some recommendations that could be applied to similar projects in the future are:

- Reduce construction and overhead costs by using a service contract. Calculate earthwork quantities from photogrammetry, rather than by field work, or by use of design quantities.
- Cut the amount of earthwork required by restoring the land to other than its original contour.
- Accommodate the difficulty in sorting excavation material to obtain topsoil in the planning stage; thus, borrow material is needed.
- 4. Note, in planning, that the material excavated in this particular type of site may expand about 30 percent.

WASHINGTON OFFICE NEWS

CONSULTATION & STANDARDS

Walter E. Furen Assistant Director

COST-EFFECTIVENESS ANALYSIS IN ENGINEERING MANAGEMENT

Originally developed by civilian economists in 1936, "benefit-cost analysis" evolved naturally into "cost-effectiveness analysis" -- a familiar tool for economic evaluation of complex national defense and space exploration systems. That tool can be applied efficiently to routine engineering management problems, particularly for situations in which personnel, equipment, or dollar resources are restricted.

Simple cost-effectiveness analysis of a functional specialty (such as geotechnical engineering) can be used:

- to obtain maximum benefits available from a limited program effort;
- to determine investigation intensity levels required for the program;
- to provide assurance that work levels are commensurate with project opportunities, risks, and values; and
- to develop an awareness of operating costs, as well as unit costs, for meaningful work segments.

SITUATION EXAMPLES

Suppose that laboratory work is being accomplished by force account methods, and that commercial laboratory facilities are available to do that work under contract. The cost elements in this situation then can be compared directly on a unit cost basis.

To provide a comparison base, determine the relative importance of other pertinent elements, such as responsiveness (turnaround time), accuracy, availability of equipment, and other factors. Then,

independently evaluate each element (including cost) for each alternative, and compute a weighted rating for those factors. The weighted ratings are a means for comparing the alternatives.

Determine Priorities for Projects and Programs.

- For each unit of work, compute the "fixed cost" to be expended for the estimated time to be dedicated to the work, including the cost of personnel, equipment, and supplies.
- 2. Identify the project/program objectives and make a comparative rating for each. Evaluate the predicted accomplishments in terms of each objective.
- 3. The weighted ratings computed for each project/program can be used to determine the greatest potential benefit to be derived in return for expenditures of limited resources (personnel, equipment, supplies, and dollar equivalents).

Although the techniques for cost-effectiveness analysis were developed to solve highly-complex problems in economics, the methods -- coupled with rational decision analysis -- become extremely meaningful tools for an engineering manager in making decisions on a day-to-day basis.

REFERENCES

- 1. Fabrycky, W.J. and Thuesen, G.J. *Economic Decision Analysis*, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
- 2. Grant, Eugene L. and Ireson, W. Grant. Principles of Engineer-ing Economy, Ronald Press Company, New York, New York.
- 3. Kepner, Charles H. and Tregoe, Benjamin B. The Rational Manager, McGraw-Hill Book Company, New York.

TECHNOLOGICAL IMPROVEMENTS

Heyward T. Taylor Assistant Director

SOLAR POWERED VAULT TOILET VENTING SYSTEM

There are some 27,000 vault toilets located in the National Forests. The natural odors associated with those installations are disagreeable to the people using and maintaining those structures; consequently, there is a tendency to avoid using them, as well as to postpone or avoid servicing the units.

Other problems are related to the disagreeable conditions; the incidence of vandalism is greater, and people use the area around the building instead of the facilities provided. Increased vandalism results in increased maintenance costs, and the human wastes on the ground can become health hazards that are transmitted by insects, rodents, and water.

The San Dimas Equipment Development Center (SDEDC) has been testing systems to provide ventilation and to reduce the objectionable odors in the buildings. Several general patterns and constraints were identified during the preliminary work:

- The buildings are used more frequently during daytime than at night;
- 2. They are used more frequently during clear weather than during inclement conditions;
- Because the units are isolated, access to power sources is severely limited;
- Servicing of ventilating equipment must be simple; and
- 5. Costs for installation must be low.

The SDEDC prototype for the ventilation system consisted of a 20-watt solar array supplying electrical energy to a small fan motor in a 6-inch (15.2cm) diameter stack for the roof of the building (See Figure). The installation requires only small modification to existing structures.

Solar-powered ventilating unit, designed by SDEDC for use in vault toilets. The photo shows a completely installed unit.

The units were tested in Regions 4 and 5, and they proved satisfactory. The solar array provides sufficient energy on clear, sunny days to aspirate the structures at a maximum of .750 cf/minute (229cm/minute); this results in an exchange of all the air in the vault every few minutes. Since the most frequent use occurs during the daytime, no backup electrical system was required, and the usual regulator, batteries, and diodes were unneccessary.

The Department of Energy has funds available for other Federal agencies to purchase solar arrays for use in the development of solar energy systems. The Forest Service plans to install about 500 SDEDC ventilation systems at selected sites throughout the United States (about 2 percent of the existing vault toilet installations). The cost will run about \$235 per unit.

The results of this project will be shared with other Federal, State, and local agencies.

INVITATION TO READERS OF FIELD NOTES

Every reader is a potential author of an article for *Field Notes*. If you have a news item or short article you would like to share with Service engineers, we invite you to send it for publication in *Field Notes*.

Material submitted to the Washington Office for publication should be reviewed by the respective Regional Office to see that the information is current, timely, technically accurate, informative, and of interest to Forest Service Engineers (FSM 7113). The length of material submitted may vary from several short sentences to several typewritten pages; however, short articles or news items are preferred. All material submitted to the Washington Office should be typed double-spaced, and, ideally, all illustrations should be original drawings, glossy prints, or negatives.

Field Notes is distributed from the Washington Office directly to all Regional, Station, and Area Headquarters, Forests, and Forest Service retirees. If you are not currently on the mailing list, ask your Office Manager or the Regional Engineering Technical Data Systems Coordinator to increase the number of copies sent to your office. Copies of back issues are also available from the Washington Office.

Field personnel should submit material for publication or questions concerning *Field Notes* to their Regional Coordinators:

R-1	Melvin Dittmer	R-4	Ted Wood	R-9	Fred Hintsala
R-2	Royal M. Ryser	R-5	Walt Weaver	R-10	F. W. Baxandall
R-3	Juan Gomez	R-6	Kjell Bakke	WO	Al Colley
		R-8	Bob Bowers		

Coordinators should direct questions concerning format, editing, publishing dates, and other problems to:

Forest Service - USDA Engineering Staff (RP-E Bldg) Attn: Gordon L. Rome, Editor P.O. Box 2417 Washington, D.C. 20013

Telephone: (Area Code 703) 235-8198

(40)				
	3	q		2 <u>8)</u>
	≥:			
**				
				£

140			
,			
	4		(#1
*			
			2