Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): R. Hubbard; M. Ryan; C. Giardina; H. Barnard
    Date: 2004
    Source: <i>In</i> Global Change Biology (2004) 10, 427?436, doi: 10.1111/j.1529-8817.2003.00741.x
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Forest and Range Experiment Station
    PDF: Download Publication  (279.83 KB)


    Land devoted to plantation forestry (50 million ha) has been increasing worldwide the genus Eucalyptus is a popular plantation species (14 million ha) for its rapid growth and ability to grow well on a wide range of sites. Fertilization is a common silvicultural tool to improve tree growth with potential effects on stand water use, but relationship between wood growth and water use in response to fertilization remains poorly quantified. Our objectives in this study were to determine the extent, timing longevity of fertilization effects on water use and wood growth in a non-water limited Eucalyptus saligna experimental forest near Hilo, HI. We evaluated the short- and long-term effects of fertilization on water use by measuring sap flux per unit sapwood area, canopy conductance, transpiration per unit leaf area and water-use efficiency in control and fertilized stands. Short-term effects were assessed by comparing sap flux before after fertilizer application. Long-term effects were assessed by comparing control plots and plots that had received nutrient additions for 5 years. For the short-term response, total water use in fertilized plots increased from 265 to 487mm yr-1 during the 5 months following fertilization. The increase was driven by increase in stand leaf area accompanied by an increase in sap flux per unit sapwood area. Sap flux per unit leaf area and canopy conductance did not differ during the 5 months following fertilizer additions. For the last 2 months of our short-term measurements, fertilized trees used less water per unit carbon gain (361 compared with 751kgH2Okg C-1 in control stands). Trees with 5 years of fertilization also used significantly more water than controls (401 vs. 302mmyr-1) because of greater leaf in the fertilized stands. Sap flux per unit sapwood area, sap flux per unit leaf area, canopy conductance did not differ between control and fertilized trees in the long-term plots. In contrast to the short-term response, the long-term response of water use per wood growth was not significant. Overall, fertilization of E. saligna at our site increased stand water use by increasing leaf area. Fertilized trees grew more wood and used more water, but fertilization did not change wood growth per unit water use.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Hubbard, R.; Ryan, M.; Giardina, C.; Barnard, H. 2004. The Effect of Fertilization on Sap flux and Canopy Conductance in a Eucalyptus saligna Experimental Forest. In Global Change Biology (2004) 10, 427?436, doi: 10.1111/j.1529-8817.2003.00741.x


    growth, nutrients, sap flow, stomatal conductance, transpiration, water use

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page