Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Robert G. Haight; Brian Cypher; Patrick A. Kelly; Scott Phillips; Hugh P. Possingham; Katherine Ralls; Anthony M. Starfield; P.J. White; Daniel Williams
    Date: 2002
    Source: Conservation Biology. 16(5): 1386-1397.
    Publication Series: Scientific Journal (JRNL)
    Station: North Central Research Station
    PDF: View PDF  (2.93 MB)

    Description

    Expanding habitat protection is a common tactic for species conservation. When unprotected habitat is privately owned, decisions must be made about which areas to protect by land purchase or conservation easement. To address this problem, we developed an optimization framework for choosing the habitat protection strategy that minimizes the risk of population extinction subject to an upper bound on funding. The framework is based on the idea that an extinction-risk function that predicts the relative effects of varying the quantity and quality of habitat can be estimated from the results of a demographic model of population viability. We used the framework to address the problem of expanding the protected habitat of a core population of the endangered San Joaquin kit fox (Vulpes macrotis mutica) in the Panoche area in central California. We first developed a stochastic demographic model of the kit fox population. Predictions from the simulation model were used to estimate an extinction-risk function that depended on the areas of good- and fair-quality habitat. The risk function was combined with costs of habitat protection to determine cost-efficient protection strategies and risk-cost curves showing how extinction risk could be reduced at minimum cost for increasing levels of funding. One important result was that cost-efficient shares of the budget used to protect different types of habitat changed as the budget increased and depended on the relative costs of available habitat and the relative effects of habitat protection on extinction risk. Another important finding was the sensitivity of the location and slope of the risk-cost curve to assumptions about the spatial configuration of available habitat. When the location and slope of the risk-cost curve are sensitive to model assumptions, resulting predictions of extinction risk and risk reduction per unit cost should be used very cautiously in ranking conservation options among different species or population. The application is an example of how the results of a complex demographic model of population viability can be synthesized for use in optimization analyses to determine cost-efficient habitat protection strategies and risk-cost tradeoffs.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Haight, Robert G.; Cypher, Brian; Kelly, Patrick A.; Phillips, Scott; Possingham, Hugh P.; Ralls, Katherine; Starfield, Anthony M.; White, P.J.; Williams, Daniel. 2002. Optimizing habitat protection using demographic models of population viability. Conservation Biology. 16(5): 1386-1397.

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page