Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): R.J. Clement; S.B. Verma; E.S. Verry
    Date: 1995
    Source: Journal of Geophysical Research. 100(D10): 21,047-21,056.
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: View PDF  (2.59 MB)

    Description

    Methane fluxes were measured using eddy correlation and chamber techniques during 1991 and 1997 at a peatland in north central Minnesota. Comparisons of the two techniques were made using averages of methane flux data available during 1-week periods. The seasonal patterns of fluxes measured by the two techniques compared well. Chamber flux, in 1991, was about 1.8 mg m-2 hr-1 greater than the flux obtained by the eddy correlation technique. In 1992, the chamber flux was about 1.5 mg m-2 hr-1 higher than the eddy correlation flux prior to midseason and 1.0 mg m-2 hr-1 lower than the eddy correlation flux after midseason. Chamber data from individual hummock and hollow pairs were used to calculate the averaged dF/dZ (rate of change of methane flux with surface height). During midseason in 1991, the magnitude of dF/dZ ranged between 10 and 100 (mg m-2 hr) m-1. We speculate that high water table conditions caused a decrease in the magnitude of dF/dZ after midseason of 1992. As compared to 1991, greater variability of dF/dZ in 1992 probably resulted from less frequent sampling. To obtain a more valid comparison of the results from the two measurement techniques, chamber data were adjusted to account for the spatial variation in methane flux. Accordingly, the chamber flux values were "scaled up" using thc dF/dZ values and distributions of surface heights representative of the footprint of the eddy correlation sensors. The scaling procedure reduced the chamber fluxes by an average of 1.8 mg-2 hr-1 in 1991 and 1.0 mg m-2 hr-1 in 1992. The comparison of eddy correlation and chamber fluxes was improved both before and after midseason in 1991. The slope of the linear regression between eddy correlation and chamber fluxes decreased from 1.49 to 1.14 (r2 increased from 0.53 to 0.75). During 1992, the scaling of chamber fluxes slightly improved their comparison with eddy correlation fluxes only prior to midseason. The lack of improvement after midseason in 1992 is likely the result of scaling assumptions when the water table was above the hollow surface. Results suggest that the adjustment of chamber flux data for spatial variations on microtopographical scales does provide fluxes more representative of a larger area. However, more information is needed on factors controlling spatial variation of methane flux to help refine the assumptions involved in the scaling procedure.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Clement, R.J.; Verma, S.B.; Verry, E.S. 1995. Relating chamber measurements to eddy correlation measurements of methane flux. Journal of Geophysical Research. 100(D10): 21,047-21,056.

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page