Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): G.A. Bauer; F.A. Bazzaz; R. MinochaS. Long; A. Magill; J. Aber; G.M. Berntson
    Date: 2004
    Source: Forest Ecology and Management. 196: 173?186.
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: View PDF  (208.29 KB)

    Description

    Temperate forests are predicted to play a key role as important sinks for atmospheric carbon dioxide, which could be enhanced by nitrogen (N) deposition. However, experimental evidence suggests that the impact of N deposition on temperate forest productivity may not be as great as originally assumed. We investigated how chronic N addition affects needle morphology, nitrogen metabolism (or partitioning) photosynthetic capacity and foliage productivity. The investigation is based at the Harvard Forest (MA) as part of a now 15-year long N amendment study. Foliar N content in red pine (Pinus resinosa) of the high N treatment has significantly increased, but this increase was accompanied by a de-coupling of the photosynthesis?N relationship. In addition needle longevity in the high N trees was significantly lower compared to the control trees. Conifers of the high N treatment did not use the surplus of N to optimize the amount of photosynthetically active metabolites. Instead N accumulated as soluble protein (other than Rubisco), amino acids and chlorophyll. Photosynthetic capacity in the control trees was about 50% higher than in the fertilized trees. These results indicate that the increase in leaf N is not accompanied by a greater capacity for carbon assimilation in the high N treatment. Using a simple model (PnET-Day) of canopy photosynthesis and carbon allocation, we assessed the long-term effect of these physiological changes on ecosystem carbon balance. The model results emphasize and reinforce the large difference between rates of carbon accumulation predicted to occur if net photosynthesis remained linearly related to foliar N concentration, and rates measured in the field.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Bauer, G.A.; Bazzaz, F.A.; Minocha, R.; Long, S.; Magill, A.; Aber, J.; Berntson, G.M. 2004. Effects of chronic N additions on tissue chemistry, photosynthetic capacity, and carbon sequestration potential of a red pine (Pinus resinosa Ait.) stand in the NE United States. Forest Ecology and Management. 196: 173?186.

    Keywords

    photosynthesis, needle longevity, nitrogen, chlorophyll, NPP, Pinus resinosa

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page