Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Eric J. Gustafson; Patrick A. Zollner; Brian R. Sturtevant; S. He Hong; David J. Mladenoff
    Date: 2004
    Source: Landscape Ecology 19: 327-341, 2004.
    Publication Series: Scientific Journal (JRNL)
    Station: North Central Research Station
    PDF: Download Publication  (812.01 KB)


    We used the LANDIS disturbance and succession model to study the effects of six alternative vegetation management scenarios on forest succession and the subsequent risk of canopy fire on a 2791 km2 landscape in northern Wisconsin, USA. The study area is a mix of fire-prone and fire-resistant land types. The alternatives vary the spatial distribution of vegetation management activities to meet objectives primarily related to forest composition and recreation. The model simulates the spatial dynamics of differential reproduction, dispersal, and succession patterns using the vital attributes of species as they are influenced by the abiotic environment and disturbance. We simulated 50 replicates of each management alternative and recorded the presence of species age cohorts capable of sustaining canopy fire and the occurrence of fire over 250 years. We combined these maps of fuel and fire to map the probability of canopy fires across replicates for each alternative. Canopy fire probability varied considerably by land type. There was also a subtle, but significant effect of management alternative, and there was a significant interaction between land type and management alternative. The species associated with high-risk fuels (conifers) tend to be favored by management alternatives with more disturbances, whereas low disturbance levels favor low-risk northern hardwood systems dominated by sugar maple. The effect of management alternative on fire risk to individual human communities was not consistent across the landscape. Our results highlight the value of the LANDIS model for identifying specific locations where interacting factors of land type and management strategy increase fire risk.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Gustafson, Eric J.; Zollner, Patrick A.; Sturtevant, Brian R.; Hong, S. He; Mladenoff, David J. 2004. Influence of forest management alternatives and land type on susceptibility to fire in northern Wisconsin, USA. Landscape Ecology 19: 327-341, 2004.


    Fire risk, LANDIS, management alternatives, simulation model, timber harvest, wildland-urban interface

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page