Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    The authors performed genetic analyses of growth, carbon isotope discrimination (?13C), and foliar N concentration using a half-diallel subset of a 7 × 7 complete diallel planted on three sites ranging in water availability. Trees were 22 years old. Heritabilities; general and specific combining abilities; as well as phenotypic, genetic, and environmental correlations were calculated using the best linear unbiased prediction and restricted maximum-likelihood methods. The four traits measured showed variable levels of genetic control. The calculated heritablilities for the traits were as follows: height, 0.39 ± 0.22 (estimate ± SD); diameter, 0.14 ± 0.10; ?13C value, 0.54 ± 0.26; and foliar N, 0.00. Phenotypic correlations were moderate (r = -0.35), genetic correlations were strong (r = -0.97), and environmental correlations were weak (r = -0.18) between height growth and ?13C. The strong negative genetic correlation between ?13C and growth supports earlier work with a subset of families indicating photosynthetic differences caused genetic variation in ?13C. Inbreeding greatly decreased growth while not impacting ?13C. High heritability, lack of inbreeding depression, and low environmental correlations indicate that a major proportion of ?13C genetic control may be relatively simple. Because ?13C is highly heritable, highly genetically correlated to growth, less environmentally sensitive than growth, and has the possibility of early selection, the trait is a good candidate trait for indirect selection for growth.

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Johnsen, Kurt H.; Flanagan, Lawrence B.; Huber, Dudley A.; Major, John E. 1999. Genetic variation in growth, carbon isotope discrimination, and foliar N concentration in Picea mariana: analyses from a half-diallel mating design using field-grown trees. Can. J. For. Res. 29: 1727-1735

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/1371