Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): David J. Mladenoff; Sally E. Dahir; Eric V. Nordheim; Lisa A. Schulte; Glenn G. Gutenspergen
    Date: 2002
    Source: Ecosystems 5:539-553
    Publication Series: Scientific Journal (JRNL)
    Station: North Central Research Station
    PDF: Download Publication  (2 MB)


    Historical data have increasingly become appreciated for insight into the past conditions of ecosystems, Uses of such data include assessing the extent of ecosystem change; deriving ecological baselines for management, restoration, and modeling; and assessing the importance of past conditions on the composition and function of current systems. One historical data set of this type is the Public Land Survey (PLS) of the United States General Land Office, which contains data on multiple tree species, sizes, and distances recorded at each survey point, located at half-mile (0.8-km) intervals on a 1-mi (1.6 km),grid. This survey method was begun in the 1790s on US federal lands extending westward from Ohio. Thus, the data have the potential of providing a view of much of the US landscape from the mid-1800s, and they have been used extensively for this purpose. However, historical data sources, such as those describing the species composition of forests, can often be limited in the detail recorded and the reliability of the data, since the information was often not originally recorded for ecological purposes. Forest trees are sometimes recorded ambiguously, using generic or obscure common names. For the PLS data of northern Wisconsin, USA, we developed a method to classify ambiguously identified tree species using logistic regression analysis, using data on trees that were clearly identified to species and a set of independent predictor variables to build the models. The models were first created on partial data sets for each species and then tested for fit against the remaining data. Validations were conducted using repeated, random subsets of the data. Model prediction accuracy ranged from 81% to 96% in differentiating congeneric species among oak, pine, ash, maple, birch, and elm. Major predictor variables were tree size, associated species, landscape classes indicative of soil type, and spatial location within the study region. Results help to clarify ambiguities formerly present in maps of historic ecosystems for the region and can be applied to PLS datasets elsewhere, as well as other sources of ambiguous historical data. Mapping the newly classified data with ecological land units provides additional information on the distribution, abundance, and associations of tree species, as well as their relationships to environmental gradients before the industrial period, and clarifies the identities of species formerly mapped only to genus. We offer some caveats on the appropriate use of data derived in this way, as well as describing their potential.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Mladenoff, David J.; Dahir, Sally E.; Nordheim, Eric V.; Schulte, Lisa A.; Gutenspergen, Glenn G. 2002. Narrowing Historical Uncertainty: Probabilistic Classification of Ambiguously Identified Tree Species in Historical Forest Survey Data. Ecosystems 5:539-553


    Northern Lakes States, Wisconsin, pre-European vegetation, logistic regression analysis, northern hardwood-conifer forest

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page