Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Jeffery C. Glaubitz; O. Eugene, Jr. Rhodes; J. Andrew DeWoody
    Date: 2003
    Source: Molecular Ecology 12:1039-1047
    Publication Series: Scientific Journal (JRNL)
    Station: North Central Research Station
    PDF: Download Publication  (1.12 MB)


    An extraordinarily large number of single nucleotide polymorphisms (SNPs) are now available in humans as well as in other model organisms. Technological advancements may soon make it feasible to assay hundreds of SNPs in virtually any organism of interest. One potential application of SNPs is the determination of pairwise genetic relationships in populations without known pedigrees. Although microsatellites are currently the marker of choice for this purpose, the number of independently segregating microsatellite markers that can be feasibly assayed is limited. Thus, it can be difficult to distinguish reliably some classes of relationship (e.g. full-sibs from half-sibs) with microsatellite data alone. We assess, via Monte Carlo computer simulation, the potential for using a large panel of independently segregating SNPs to infer genetic relationships, following the analytical approach of Blouin et al. (1996). We have explored a 'best case scenario' in which 100 independently segregating SNPs are available. For discrimination among single-generation relationships or for the identification of parent-offspring pairs, it appears that such a panel of moderately polymorphic SNPs (minor allele frequency of 0.20) will provide discrimination power equivalent to only 16-20 independently segregating microsatellites. Although newly available analytical methods that can account for tight genetic linkage between markers will, in theory, allow improved estimation of relationships using thousands of SNPs in highly dense genomic scans, in practice such studies will only be feasible in a handful of model organisms. Given the comparable amount of effort required for the development of both types of markers, it seems that microsatellites will remain the marker of choice for relationship estimation in nonmodel organisms, at least for the foreseeable future.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Glaubitz, Jeffery C.; Rhodes, O. Eugene, Jr.; DeWoody, J. Andrew. 2003. Prospects for inferring pairwise relationships with single nucleotide polymorphisms. Molecular Ecology 12:1039-1047


    computer simulation, microsatellites, pairwise relationship, pedigree reconstruction, relatedness, single nucleotide polymorphisms

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page