Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    Stem dissection and dendroecological methods were used to examine the effects of thinning and defoliation by gypsy moth (Lymantria dispar L.) on wood volume increment in oaks (Quercus rubra L., Q. alba L., Q. prinus L.). A model was developed to evaluate radial volume increment growth at three time periods: before defoliation, during defoliation and after defoliation, as a function of species, defoliation intensity and crown position. Volume increment during these same time periods was also compared at different stem locations. Trees were defoliated for two consecutive years and results indicated that volume loss was greater during the second year of defoliation with complete recovery taking 2-3 years after defoliation. Oaks in thinned stands had similar reductions in annual volume increment during defoliation as those in the unthinned stand.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Fajvan, Mary Ann; Rentch, Jim; Gottschalk, Kurt. 2008. The effects of thinning and gypsy moth defoliation on wood volume growth in oaks. Trees. 22: 257-268.


    gypsy moth, dendroecology, oaks, repeated measures analysis

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page