Skip to main content
U.S. flag

An official website of the United States government

Modeling gross primary production of an evergreen needleleaf forest using MODIS and climate data

Author(s):

Xiangming Xiao
Qingyuan Zhang
John Aber
Berrien, III Moore

Year:

2005

Publication type:

Scientific Journal (JRNL)

Primary Station(s):

Northern Research Station

Historical Station(s):

Northeastern Research Station

Source:

Ecological Applications 15(3):954-969

Description

Forest canopies are composed of photosynthetically active vegetation (PAV, chloroplasts) and nonphotosynthetic vegetation (NPV, e.g., cell wall, vein, branch). The fraction of photosynthetically active radiation (PAR) absorbed by the canopy (FAPAR) should be partitioned into FAPARPAV and FAPARNPV. Gross primary production (GPP) of forests is affected by FAPARPAV. In this study we developed and validated a satellite-based vegetation photosynthesis model (VPM; GPP = εg X FAPAPPAV X PAR) that incorporates improved vegetation indices derived from the moderate resolution imaging spectroradimeter (MODIS) sensor. Site-specific data from the CO2 flux tower site (evergreen needleleaf forest) at Howland, Maine, USA, were used. The enhanced vegetation index (EVI) better correlated with the seasonal dynamics of GPP than did the normalized difference vegetation index (NDVI). Simulations of the VPM model were conducted, using both daily and eight-day composites of MODIS images (500-m spatial resolution) and climate data (air temperature and PAR), respectively. Predicted GPP values in 2001 agree reasonably well with estimated GPP from the CO2 flux tower site. There were no significant differences in VPM-predicted GPP (from eight-day MODIS composites) among one pixel (~500-m resolution), 3 X 3 pixel block (~ 1.5-km resolution), and 5 X 5 pixel block (~ 2.5-km resolution). The differences between VPM-predicted and observed GPP were smaller for simulations using eight-day MODIS composites than for simulations using daily MODIS images. The results of this study have shown the potential of MODIS data (both daily and eight-day composites) and the VPM model for quantifying seasonal and interannual variations of GPP of evergreen needleleaf forests.

Citation

Xiao, Xiangming; Zhang, Qingyuan; Hollinger, David; Aber, John; Moore, Berrien, III. 2005. Modeling gross primary production of an evergreen needleleaf forest using MODIS and climate data. Ecological Applications 15(3):954-969

Publication Notes

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
https://www.fs.usda.gov/treesearch/pubs/14746