Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    We evaluated winter (January through March) carbon assimilation of red spruce (Picea rubens Sarg.) from three Vermont seed sources grown in a common garden in northwestern Vermont. Although CO2 exchange rates were generally low, net photosynthetic rates increased during two prolonged thaws. Significant correlations between CO2 exchange rates and multiday air temperature means supported our observations of enhanced gas exchange during extended periods of elevated temperature. Increases in photosynthesis during thaws occurred before observed increases in leaf conductance, indicating that initial changes in photosynthesis were probably not associated with changes in stomatal aperture. Results of correlations between photosynthetic rates and PAR suggested that solar irradiance did not have a strong effect on winter carbon capture.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Schaberg, P.G.; Wilkinson, R.C.; Shane, J.B.; Donnelly, J.R.; Cali, P.F. 1995. Winter photosynthesis of red spruce from three Vermont seed sources. Tree Physiology. 15: 345-350.

    Keywords

    carbon assimilation, carbon exchange, genetic variation, leaf conductance, Picea rubens, stomatal aperture, temperature.

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page