Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Shoufan Fang; George Z. Gertner
    Date: 2000
    Source: In: Hansen, Mark; Burk, Tom, eds. Integrated tools for natural resources inventories in the 21st century. Gen. Tech. Rep. NC-212. St. Paul, MN: U.S. Dept. of Agriculture, Forest Service, North Central Forest Experiment Station. 199-206.
    Publication Series: General Technical Report (GTR)
    Station: North Central Research Station
    PDF: View PDF  (393.57 KB)

    Description

    When available information is scarce, the Maximum-Entropy Principle can estimate the distributions of parameters. In our case study, we estimated the distributions of the parameters of the forest self-thinning process based on literature information, and we derived the conditional distribution functions and estimated the 95 percent confidence interval (CI) of the self-thinning process for several tree species. The 95 percent CI indicated that the slope parameter of the so-called self-thinning law can be considered a random variable with a mean value of -3/2.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Fang, Shoufan; Gertner, George Z. 2000. Uncertainty estimation of the self-thinning process by Maximum-Entropy Principle. In: Hansen, Mark; Burk, Tom, eds. Integrated tools for natural resources inventories in the 21st century. Gen. Tech. Rep. NC-212. St. Paul, MN: U.S. Dept. of Agriculture, Forest Service, North Central Forest Experiment Station. 199-206.

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page