Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Erol Sarigul; A. Lynn Abbott; Daniel L. Schmoldt
    Date: 2000
    Source: Proceedings, 4th International Conference on Image Processing and Scanning of Wood. 37-49.
    Publication Series: Miscellaneous Publication
    PDF: View PDF  (234.8 KB)

    Description

    This paper deals with automated detection and identification of internal defects in hardwood logs using computed tomography (CT) images. We have developed a system that employs artificial neural networks to perform tentative classification of logs on a pixel-by-pixel basis. This approach achieves a high level of classification accuracy for several hardwood species (northern red oak, Quercus rubra, L., water oak, Q. nigra, L., yellow poplar, Liriodendron tulipifera, L., and black cherry, Prunus serotina, Ehrh.), and three common defect types (knots, splits, and decay). Although the results are very satisfactory statistically, a subjective examination reveals situations that could be refined in a subsequent post-processing step. We are currently developing a rule-based approach to region refinement to augment the initial emphasis on local information. The resulting rules are domain dependent, utilizing information that depends on region shape and type of defect. For example, splits tend to be long and narrow, and this knowledge can be used to merge smaller, disjoint regions that have tentatively been labeled as splits. Similarly, image regions that represent knots, decay, and clear wood can be refined by removing small, spurious points and by smoothing the boundaries of these regions. Mathematical morphology operators can be used for most of these tasks. This paper provides details concerning the domain-dependent rules by which morphology operators are chosen, and for merging results from different operations.

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Sarigul, Erol; Abbott, A. Lynn; Schmoldt, Daniel L. 2000. Rule-driven defect detection in CT images of hardwood logs. Proceedings, 4th International Conference on Image Processing and Scanning of Wood. 37-49.

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page