Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Andrew D. Richardson; Bobby H. Braswell; David Y. Hollinger; Prabir Burman; Eric A. Davidson; Robert S. Evans; Lawrence B. Flanagan; J. William Munger; Kathleen Savage; Shawn P. Urbanski; Steven C. Wofsy
    Date: 2006
    Source: Agricultural and Forest Meteorology. 141: 219?234.
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: View PDF  (1.4 MB)

    Description

    Selection of an appropriate model for respiration (R) is important for accurate gap-filling of CO2 flux data, and for partitioning measurements of net ecosystem exchange (NEE) to respiration and gross ecosystem exchange (GEE). Using cross-validation methods and a version of Akaike's Information Criterion (AIC), we evaluate a wide range of simple respiration models with the objective of quantifying the implications of selecting a particular model. We fit the models to eddy covariance measurements of whole-ecosystem respiration (Reco) from three different ecosystem types (a coniferous forest, a deciduous forest, and a grassland), as well as soil respiration data from one of these sites. The well-known Q10 model, whether driven by air or soil temperature, performed poorly compared to other models, as did the Lloyd and Taylor model when used with two of the parameters constrained to previously published values and only the scale parameter being fit. The continued use of these models is discouraged. However, a variant of the Q10 model, in which the temperature sensitivity of respiration varied seasonally, performed reasonably well, as did the unconstrained three-parameter Lloyd and Taylor model. Highly parameterized neural network models, using additional covariates, generally provided the best fits to the data, but appeared not to perform well when making predictions outside the domain used for parameterization, and should thus be avoided when large gaps must be filled. For each data set, the annual sum of modeled respiration (annual ΣR) was positively correlated with model goodness-of-fit, implying that poor model selection may inject a systematic bias into gap-filled estimates of annual ΣR.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Richardson, Andrew D.; Braswell, Bobby H.; Hollinger, David Y.; Burman, Prabir; Davidson, Eric A.; Evans, Robert S.; Flanagan, Lawrence B.; Munger, J. William; Savage, Kathleen; Urbanski, Shawn P.; Wofsy, Steven C. 2006. Comparing simple respiration models for eddy flux and dynamic chamber data. Agricultural and Forest Meteorology. 141: 219?234.

    Keywords

    absolute deviations regression, Akaike?s information criterion (AIC), AmeriFlux, cross-validation, eddy covariance, maximum likelihood, model selection criteria, respiration, uncertainty

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page