Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Three machine learning subpixel estimation methods (Cubist, Random Forests, and support vector regression) were applied to estimate urban cover. Urban forest canopy cover and impervious surface cover were estimated from Landsat-7 ETM+ imagery using a higher resolution cover map resampled to 30 m as training and reference data. Three different band combinations (reflectance, tasseled cap, and both reflectance and tasseled cap plus thermal) were compared for their effectiveness with each of the methods. Thirty different training site number and size combinations were also tested. Support vector regression on the tasseled cap bands was found to be the best estimator for urban forest canopy cover, while Cubist performed best using the reflectance plus tasseled cap band combination when predicting impervious surface cover. More training data partitioned in many small training sites generally produces better estimation results.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Walton, Jeffrey T. 2008. Subpixel urban land cover estimation: comparing cubist, random forests, and support vector regression. Photogrammetric Engineering & Remote Sensing. 74(10): 1213-1222.

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page