Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    In the expression of their genetic potential as phenotypes, trees respond to environmental cues such as photoperiod, temperature and soil and atmospheric water. However, growth chamber experiments often utilize simple and standard environmental conditions that might not provide these important environmental signals. We conducted a study to compare seedling growth in the field to both a standard growth chamber regime and a growth chamber regime programmed to simulate seasonal and diurnal variation in daylength, light intensity, temperature and relative humidity. Twenty-four open pollinated families of black spruce were grown in a nursery bed for one season while in situ temperature and relative humidity were recorded. The same 24 families were then grown under two growth chamber protocols: standard conditions (16 hour day and 8 hour night at temperatures 20°C and 15°C and 70% and 90% relative humidity, respectively) and climate simulation (programmed variation in diurnal temperature and relative humidity, and daylength). Seedlings from the climate simulation regime were similar to field-grown seedlings with respect to seedling size and dry matter partitioning. Seedlings from the standard growth chamber regime grew larger and allocated more dry matter to the shoots, compared to both other growth regimes. Results clearly indicate that simulating more realistic natural environments in ecophysiological studies can produce results closer to what are observed in the field.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Wang, Z.M.; Johnsen, K.H.; Lechowicz, M.J. 1999. Is Climate Simulation in Growth Chambers Necessary?. Biontronics 28. 13-21. 1999


    biomass allocation, Picea mariana, black spruce, seedling

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page