Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Mark E. KubiskeVanessa A. QuinnWarren E. HeilmanEvan P. McDonaldPaula E. MarquardtRon M. TeclawAlexander L. Friend; David F. Karnosky
    Date: 2006
    Source: Global Change Biology. 12: 1054-1068.
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: View PDF  (424.11 KB)

    Description

    We analyzed growth data from model aspen (Populus tremuloides Michx.) forest ecosystems grown in elevated atmospheric carbon dioxide ([CO2]; 518?LL-1) and ozone concentrations ([O3]; 1.5 x background of 30-40 nL L-1 during daylight hours) for 7 years using free-air CO2 enrichment technology to determine how interannual variability in present-day climate might affect growth responses to either gas. We also tested whether growth effects of those gasses were sustained over time. Elevated [CO2] increased tree heights, diameters, and main stem volumes by 11%, 16%, and 20%, respectively, whereas elevated ozone [O3] decreased them by 11%, 8%, and 29%, respectively. Responses similar to these were found for stand volume and basal area. There were no growth responses to the combination of elevated [CO2+O3]. The elevated [CO2,] growth stimulation was found to be decreasing, but relative growth rates varied considerably from year to year. Neither the variation in annual relative growth rates nor the apparent decline in CO2 growth response could be explained in terms of nitrogen or water limitations. Instead, growth responses to elevated [CO2] and [O3] interacted strongly with present-day interannual variability in climatic conditions. The amount of photosynthetically active radiation and temperature during specific times of the year coinciding with growth phenology explained 20-63% of the annual variation in growth response to elevated [CO2] and [O3]. Years with higher photosynthetic photon flux (PPF) during the month of July resulted in more positive growth responses to elevated [CO2] and more negative growth responses to elevated [O3]. Mean daily temperatures during the month of October affected growth in a similar fashion the following year. These results indicate that a several-year trend of increasingly cloudy summers and cool autumns were responsible for the decrease in CO2 growth response.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Kubiske, Mark E.; Quinn, Vanessa A.; Heilman, Warren E.; McDonald, Evan P.; Marquardt, Paula E.; Teclaw, Ron M.; Friend, Alexander L.; Karnosky, David F. 2006. Interannual climatic variation mediates elevated CO2 and O3 effects on forest growth. Global Change Biology. 12: 1054-1068.

    Keywords

    air pollution, carbon dioxide, FACE, global change, ozone, Populus tremuloides, relative growth rate, trembling aspen

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/19876