Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Lingli Lui; John S. King; Fitzgerald L. Booker; Christian P. Giardina; H. Lee Allen; Shuijin Hu
    Date: 2009
    Source: Global Change Biology. 15: 441-453.
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (379.19 KB)


    Elevated CO2 has been shown to stimulate plant productivity and change litter chemistry. These changes in substrate availability may then alter soil microbial processes and possibly lead to feedback effects on N availability. However, the strength of this feedback, and even its direction, remains unknown. Further, uncertainty remains whether sustained increases in net primary productivity will lead to increased longterm C storage in soil. To examine how changes in litter chemistry and productivity under elevated CO2 influence microbial activity and soil C formation, we conducted a 230-day microcosm incubation with five levels of litter addition rate that represented 0, 0.5, 1.0, 1.4 and 1.8 x litterfall rates observed in the field for aspen stand growing under control treatments at the Aspen FACE experiment in Rhinelander, WI, USA. Litter and soil samples were collected from the corresponding field control and elevated CO2 treatment after trees were exposed to elevated CO2 (560 ppm) for 7 years.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Lui, Lingli; King, John S.; Booker, Fitzgerald L.; Giardina, Christian P.; Allen, H. Lee; Hu, Shuijin. 2009. Enhanced litter input rather than changes in litter chemistry drive soil carbon and nitrogen cycles under elevated CO2: a microcosm study. Global Change Biology. 15: 441-453.


    decomposition, DIN, EMMA, global change, MBC, MBN, new soil C, old soil C, stable isotope

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page