Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Measuring tree height is a time-consuming process. Often, tree diameter is measured and height is estimated from a published regression model. Trees used to develop these models are clustered into stands, but this structure is ignored and independence is assumed. In this study, hierarchical linear models that account explicitly for the clustered structure of the data are compared with model forms currently used in forestry. The data consist of 1433 Douglas firs from 99 Oregon stands measured in 2000, and an independent evaluation dataset of similar size measured in 2001. Overall model performance improved substantially if the stand random effect could be predicted: root mean squared error (RMSE) decreased from 4.91 m (current models) to less than 3.73 m (hierarchical model, 1 tree sampled). However, if the random effect could not be estimated, the improvement was small (RMSE 4.45 m). The within-stand relationship between height and diameter was different from that between stands. As a result, the random and fixed components of the model are confounded. A mixed model that did not account for this problem performed worse than the model that assumed an independent data structure.

    Publication Notes

    • You may send email to pnw_pnwpubs@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Monleon, Vicente J. 2003. A hierarchical linear model for tree height prediction. In: 2003 Joint Statistical Meetings - Section on Statistics & the Environment: 2865-2869

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page