Skip to Main Content
-
Scaling Gross Primary Production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation.
Author(s): David P. Turner; William D. Ritts; Warren B. Cohen; Stith T. Gower; Maosheng Zhao; Steve W. Running; Steven C. Wofsy; Shawn Urbanski; Allison L. Dunn; J.W. Munger
Date: 2003
Source: Remote Sensing of Environment. 88: 256 271
Publication Series: Scientific Journal (JRNL)
PDF: View PDF (2.55 MB)Description
The Moderate Resolution Imaging Radiometer (MODIS) is the primary instrument in the NASA Earth Observing System for monitoring the seasonality of global terrestrial vegetation. Estimates of 8-day mean daily gross primary production (GPP) at the 1 km spatial resolution are now operationally produced by the MODIS Land Science Team for the global terrestrial surface using a production efficiency approach. In this study, the 2001 MODIS GPP product was compared with scaled GPP estimates (25 km2) based on ground measurements at two forested sites. The ground-based GPP scaling approach relied on a carbon cycle process model run in a spatially distributed mode. Land cover classification and maximum annual leaf area index, as derived from Landsat ETM+ imagery,, were used in model initiation. The model was driven by daily meteorological observations from an eddy covariance flux tower situated at the center of each site. Model simulated GPPs were corroborated with daily GPP estimates from the flux tower. At the hardwood forest site. the MODIS GPP phenology started earlier than was indicated by the scaled GPP and the summertime GPP from MOD1S was generally lower than the scaled GPP values. The fall off in production at the end of the growing season was similar to the validation data. At the boreal forest site, the GPP phenologies generally agreed because both responded to the strong signal associated with minimum temperature. The midsummer MODIS GPP there was generally higher than the ground-based GPR The differences between the MODIS GPP products and the ground-based GPPs were driven by differences in the timing of FPAR and the magnitude of light use efficiency as well as by differences in other inputs to the MODIS GPP algorithm--daily incident PAR, minimum temperature, and vapor pressure deficit. Ground-based scaling of GPP has the potential to improve the parameterization of light use efficiency in satellite-based GPP monitoring algorithms.Publication Notes
- You may send email to pnw_pnwpubs@fs.fed.us to request a hard copy of this publication.
- (Please specify exactly which publication you are requesting and your mailing address.)
- We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
- This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
Citation
Turner, David P.; Ritts, William D.; Cohen, Warren B.; Gower, Stith T.; Zhao, Maosheng; Running, Steve W.; Wofsy, Steven C.; Urbanski, Shawn; Dunn, Allison L.; Munger, J.W. 2003. Scaling Gross Primary Production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation. Remote Sensing of Environment. 88: 256 271Keywords
MODIS, validation, gross primary production, light use efficiency, eddy covariance, biome-BGC, FPAR, boreal tbrest, deciduous forestRelated Search
- Evaluation of MODIS NPP and GPP products across multiple biomes.
- Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring.
- Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: First global analysis based on OCO-2 and flux tower observations
XML: View XML
Show More
Show Fewer
https://www.fs.usda.gov/treesearch/pubs/20164