Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): David Rogers Tilley; Wayne T. Swank
    Date: 2003
    Source: Journal of Environmental Management 69: 213-227
    Publication Series: Miscellaneous Publication
    PDF: Download Publication  (1.17 MB)


    Emergy (with an 'm') synthesis was used to assess the balance between nature and humanity and the equity among forest outcomes of a US Forest Service ecosystem management demonstration project on the Wine Spring Creek watershed, a high-elevation (1600 m), temperate forest located in the southern Appalachian mountains of North Carolina, USA. EM embraces a holistic perspective, accounting for the multiple temporal and spatial scales of forest processes and public interactions, to balance the ecological, economic, and social demands placed on land resources. Emergy synthesis is a modeling tool that allows the structure and function of forest ecosystems to be quantified in common units (solar emergy-joules, sej) for easy and meaningful comparison, determining 'system-value' for forcing factors, components, and processes based on the amount of resources required to develop and sustain them, whether they are money, material, energy, or information. The Environmental Loading Ratio (ELR), the units of solar emergy imported into the watershed via human control per unit of indigenous, natural solar emergy, was determined to be 0.42, indicating that the load on the natural environment was not ecologically damaging and that excess ecological capacity existed for increasing non-ecological activities (e.g. timbering, recreation) to achieve an ELR of 1.0 (perfect ecological-economic balance). Three forest outcomes selected to represent the three categories of desired sustainability (ecological, economic, and social) were evaluated in terms of their solar emergy flow to measure outcome equity. Direct economic contribution was an order of magnitude less (224 X 1012 solar emergy-joules (sej) ha-') than the ecological and social contributions, which were provided at annual rates of 3083 and 2102 X 1012 sej ha-1, respectively. Emergy synthesis was demonstrated to holistically integrate arid quantify the interconnections of a coupled natul-e-hu~nans ystem allowing the goals of ecological balance and outcome equity to bemeasured quantitatively.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Tilley, David Rogers; Swank, Wayne T. 2003. EMERGY-based environmental systems assessment of a multi-purpose temperate mixed-forest watershed of the southern Appalachian Mountains, USA. Journal of Environmental Management 69: 213-227


    Ecosystem management, Watershed assessment, Ecological decision-making, Forest sustainability

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page