Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Lianjun Zhang; Jeffrey H. Gove; Jeffrey H. Gove
    Date: 2005
    Source: Forest Science. 51(4): 334-346.
    Publication Series: Miscellaneous Publication
    PDF: Download Publication  (1.11 MB)


    Fomst modelers have attempted to account for the spatial autocorrelations among trees in growth and yield models by applying alternative regression techniques such as linear mixed models (LMM), generalized additive models (GAM), and geographicalIy weighted regression (GWR). However, the model errors are commonly assessed using average errors across the entire study area and across tree size classes. Little attention has been paid to the spatial heterogeneity of model performance. In this study, we used local Moran coefficients to investigate the spatial distributions of the model errors from the four regression models. The results indicated that GAM improved model-fitting to the data and provided better predictions for the response variable. However, it is nonspatial in nature and, consequently, generated spatial distributions for the model errors similar to the ones from ordinary least-squares (OLS). Furthermore, OLS and GAM yielded more clusters of similar (either positive or negative) model errors, indicating that trees in some subareas were either all underestimated or all overestimated for the response variable. In contrast, LMM was able to model the spatial covariance structures in the data and obtain more accurate predictions by accounting for the effects of spatial autocorrelations through the empirical best linear unbiased predictors. GWR is a varying-coefficient modeling technique. It estimated the model coefficients locally at each tree in the example plot and resulted in more accurate predictions for the response variable. Moreover, the spatial distributions of the model errors from LMM and GWR were more desirable, with fewer clusters of dissimilar model errors than the ones derived from OLS and GAM.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Zhang, Lianjun; Gove, Jeffrey H. 2005. Spatial Assessment of Model Errors from Four Regression Techniques. Forest Science. 51(4): 334-346.


    Spatial autocorrelation and heterogeneity, local indicator of spatial autocorrelation, ordinary least-squares, linear mixed model, generalized additive model, geographically weighted regression

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page