Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Qinfeng Guo; J. Brandle; Michele Schoeneberger; D. Buettner
    Date: 2004
    Source: Can. J. for. Res. 34: 2564-2572
    Publication Series: Scientific Journal (JRNL)
    PDF: Download Publication  (1.34 MB)


    Most forest growth models are not suitable for the highly fragmented, linear (or linearly shaped) forests in the Great Plains agroecosystems (e.g., windbreaks, riparian forest buffers), where such forests are a minor but ecologically important component of the land mosaics. This study used SEEI)SCAPE, a recently modified gap model designed for cultivated land mosaics in the Creat Plains, to simulate the effects of climate change on the dynamics of such linear forests. We simulated the dynamics of windbreaks with different initial planting species richness and widths flight changes as the selected resulting factor) using cuirent climate data and nested regional circulation models (RegCMs). Results indicated that ( i ) it took 70-80 simuhtion years for the linear forests to reach a steady state under both normal (present-day) and warming climates; (ii) warming climates would reduce total aboveground tree biomass and the spatial variation in biomass, but increase dominance in the linear forests, especially in the upland forests; (iii) linear forests with higher planting pecies richness and smaller width produced higher aboveground tree biomass per unit area; and (iv) the same species performed very differently with different climate scenarios, initial planting diversity, and forest widths. Although the model still needs further improvements ('e.g., the effects of understory species should be included, the model can serve as a useful tool in modeling the succession of linear forests in human-dominated land mosaics under changing climates and may also have significant practical implications in other systems.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Guo, Qinfeng; Brandle, J.; Schoeneberger, Michele; Buettner, D. 2004. Simulating the dynamics of linear forests in great plains agroecosystems under changing climates. Can. J. for. Res. 34: 2564-2572

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page