Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): John Ralph; Knut Lundquist; Gosta Brunow; Fachuang Lu; Hoon Kim; Paul F. Schatz; Jane M. Marita; Ronald D. Hatfield; Sally A. Ralph; Jorgen Holst Christensen; Wout Boerjan
    Date: 2004
    Source: Phytochemistry reviews. Vol. 3 (2004): p. 29-60.
    Publication Series: Miscellaneous Publication
    PDF: View PDF  (398 KB)

    Description

    Lignins are complex natural polymers resulting from oxidative coupling of, primarily, 4-hydroxyphenylpropanoids. An understanding of their nature is evolving as a result of detailed structural studies, recently aided by the availability of lignin-biosynthetic-pathway mutants and transgenics. The currently accepted theory is that the lignin polymer is formed by combinatorial-like phenolic coupling reactions, via radicals generated by peroxidase-H2O2, under simple chemical control where monolignols react endwise with the growing polymer. As a result, the actual structure of the lignin macromolecule is not absolutely defined or determined. The “randomness” of linkage generation (which is not truly statistically random but governed, as is any chemical reaction, by the supply of reactants, the matrix, etc.) and the astronomical number of possible isomers of even a simple polymer structure, suggest a low probability of two lignin macromolecules being identical. A recent challenge to the currently accepted theory of chemically controlled lignification, attempting to bring lignin into line with more organized biopolymers such as proteins, is logically inconsistent with the most basic details of lignin structure. Lignins may derive in part from monomers and conjugates other than the three primary monolignols (p-coumaryl, coniferyl, and sinapyl alcohols). The plasticity of the combinatorial polymerization reactions allows monomer substitution and significant variations in final structure which, in many cases, the plant appears to tolerate. As such, lignification is seen as a marvelously evolved process allowing plants considerable flexibility in dealing with various environmental stresses, and conferring on them a striking ability to remain viable even when humans or nature alter “required” ligninbiosynthetic-pathway genes/enzymes. The malleability offers significant opportunities to engineer the structures of lignins beyond the limits explored to date.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Ralph, John; Lundquist, Knut; Brunow, Gosta; Lu, Fachuang; Kim, Hoon; Schatz, Paul F.; Marita, Jane M.; Hatfield, Ronald D.; Ralph, Sally A.; Christensen, Jorgen Holst; Boerjan, Wout. 2004. Lignins : natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochemistry reviews. Vol. 3 (2004): p. 29-60.

    Keywords

    Biosynthesis, inter-unit linkage, lignification, lignin model, monolignol, mutant, optical activity, oxidative coupling, peroxidase, polymerization, transgenic, lignin, biotechnology, 4-hydroxyphenyl-propanoids

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/22070