Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): J. Lu; Ge SunDevendra M. Amatya; S. V. Harder; Steve G. McNulty
    Date: 2006
    Source: In: Williams, Thomas, eds. Hydrology and Management of Forested Wetlands: Proceedings of the International Conference, St. Joseph, MI: American Society of Agricultural and Biological Engineers: 231-239
    Publication Series: Miscellaneous Publication
    PDF: View PDF  (684 KB)

    Description

    The hydrologic processes in wetland ecosystems are not well understood. There are also great concerns and uncertainties about the hydrologic response of wetlands to forest management and climate change. The objective of this study is to apply a hydrologic model to better understand the hydrologic processes of a low relief coastal forested watershed and its responses to potential land disturbance, and to test its sensitivity to potential climate variability and change. We applied MIKE SHE, a physically based and spatially distributed hydrologic model, at Watershed 80 within Santee Experimental Forest in the lower coastal plain of South Carolina, United States. With a user-friendly interface and GIS (Geographic Information Systems) linkage, the MIKE SHE model integrates surface water and groundwater, and it simulates full hydrologic cycle including interception, evapotranspiration (ET), infiltration, overland flow, subsurface and channel flow (with MIKE 11), and unsaturated and saturated soil water movement. The model was validated by the water table and streamflow data collected at the site in 2003 and 2004. Overall, the model performed well in simulating the hydrologic dynamics of the study watershed. The model simulations indicate that runoff is mainly generated by the overland flow after the soil is saturated during wet periods. We applied the validated model to examine the responses of reduction of leaf area index (LAI), increase of air temperature by 2 degrees C, and decrease of precipitation by 10%. Generally, the modeling results suggest that forest removal will raise the water table, especially during the dry periods, due to decrease in ET. Increase of air temperature or decrease of precipitation will reduce groundwater recharge and result in lower water table and runoff.

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Lu, J.; Sun, Ge; Amatya, Devendra M.; Harder, S. V.; McNulty, Steve G. 2006. Understanding the Hydrologic Response of a Coastal Plain Watershed to Forest Management and Climate Change in South Carolina, U.S.A. In: Williams, Thomas, eds. Hydrology and Management of Forested Wetlands: Proceedings of the International Conference, St. Joseph, MI: American Society of Agricultural and Biological Engineers: 231-239

    Keywords

    Hydrologic modeling, Wetland hydrology, MIKE SHE, Forest management, Climate change

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/22418