Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Paul V. Bolstad; Katherine Mitchell; James M. Vose
    Date: 1999
    Source: Tree Physiology 19, 871-878, 1999
    Publication Series: Scientific Journal (JRNL)
    PDF: Download Publication  (287 KB)


    We measured leaf respiration in 18 eastern deciduous forest tree species to determine if there were differences in temperature-respiration response functions among species or among canopy positions. Leaf respiration rates were measured in situ an4 on detached branches for Acer pensylvanicum L., A. rubrum L., Betula spp. (B. alleghaniensis Britt. and B. renta L.), Carya glabra (Mill.) Sweet, Cornus florida L., Fraxinus spp. (primarily F. americana L.), Liriodendmn tulipifra L., Magnolia fraseri Walt., Nyssa sylvatica Marsh., Oxydendrum arboreum L., Platanus occidentalis L., Quercus alba L., Q. coccinea Muenchh., Q. prinus L., Q. rubra L., Rhododendron maximum L., Robinia psuedoacacia L., and Tilia americana L. in the southern Appalachian Mountains, USA. Dark respiration was measured on fully expanded leaves at 10, 15, 20, 25, and 30 °C with an infrared gas analyzer equipped with a temperature-controlled cuvette. Temperature-respiration respons functions were fit for each leaf. There were significant differeuces in response functions among species and by canopy position within species. These differences were observed when respiration was expressed on a mass, nitrogen, or area basis. Cumulative nighttime leaf respiration was calculated and averaged.lover ten randomly selected nights for each leaf. Differences I mean cumulative nighttime respiration P were statistically significant among canopy positions and species. We conclude that effects of canopy position and species on temperature-respiration response functions may need to be considered when making estimates of whole-tree or canopy respiration .

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Bolstad, Paul V.; Mitchell, Katherine; Vose, James M. 1999. Foliar Temperature-Respiration Response Functions for Broad-Leaved Tree Species in the Southern Appalachians. Tree Physiology 19, 871-878, 1999


    broad-leaved trees, canopy position, leaf respiration, Q10

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page