Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Peter R. Robichaud
    Date: 2000
    Source: Journal of hydrology. 231-232(1-4): 220-229
    Publication Series: Miscellaneous Publication
    PDF: Download Publication  (178 KB)


    Infiltration rates in undisturbed forest environments are generally high. These high infiltration rates may be reduced when forest management activities such as timber harvesting and/or prescribed fires are used. Post-harvest residue burning is a common site preparation treatment used in the Northern Rocky Mountains, USA, to reduce forest fuels and to prepare sites for natural and artificial tree regeneration. Prescribed burn operations attempt to leave sites with the surface condition of a lowseverity burn. However, some of the areas often experience surface conditions associated with a high-severity burn which may result in hydrophobic or water repellent conditions. In this study, infiltration rates were measured after logging slash was broadcast burned from two prescribed burns. The two sites were in Northern Rocky coniferous forests of Douglas-fir/lodgepole pine and ponderosa pine/Douglas-fir. Simulated rainfall was applied to one-square meter plots in three, 30-min applications at 94 mm h21 within the three surface conditions found after the burn: unburned-undisturbed areas, low-severity burn areas and high-severity burn areas.

    Runoff hydrographs from the rainfall simulations were relatively constant from the plots that were in unburned-undisturbed areas and in areas subjected to a low-severity burn. These constant runoff rates indicate constant hydraulic conductivity values for these surface conditions even though there was variation between plots. Hydrographs from the rainfall simulation plots located within areas of high-severity burn indicate greater runoff rates than the plots in low-severity burn areas especially during the initial stages of the first rainfall event. These runoff rates decreased to a constant rate for the last 10 min of the event. These results indicate hydrophobic or water repellent soil conditions, which temporarily cause a 10–40% reduction in hydraulic conductivity values when compared to a normal infiltrating soil condition. Since variability was high for these forest conditions, cumulative distribution algorithms of hydraulic conductivity provide a means to account for the inherent variability associated with these hillslopes and different surface conditions cause by fire.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Robichaud, Peter R. 2000. Fire effects on infiltration rates after prescribed fire in northern Rocky Mountain forests, USA. Journal of hydrology. 231-232(1-4): 220-229


    water repellent, rainfall simulation, forest fires, hydraulic conductivity

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page