Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Michael A Wulder; J. C. White; Barbara J Bentz; M. F. Alvarez; N. C. Coops
    Date: 2006
    Source: Remote Sensing of Environment. 101(2): 150-166
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: Download Publication  (884.5 KB)


    Accurate spatial information on the location and extent of mountain pine beetle infestation is critical for the planning of mitigation and treatment activities. Areas of mixed forest and variable terrain present unique challenges for the detection and mapping of mountain pine beetle red-attack damage, as red-attack has a more heterogeneous distribution under these conditions. In this study, mountain pine beetle red-attack damage was detected and mapped using a logistic regression approach with a forward stepwise selection process and a set of calibration data representing samples of red-attack and non-attack from the study area. Variables that were considered for inclusion in the model were the enhanced wetness difference index (EWDI) derived from a time series of Landsat remotely sensed imagery, elevation, slope, and solar radiation (direct, diffuse, and global). The output from the logistic regression was a continuous probability surface, which indicated the likelihood of red-attack damage. Independent validation data were used to assess the accuracy of the resulting models. The final model predicted red-attack damage with an accuracy of 86%. These results indicate that for this particular site, with mixed forest stands and variable terrain, remotely sensed and ancillary spatial data can be combined, through logistic regression, to create a mountain pine beetle red-attack likelihood surface that accurately identifies damaged forest stands. The use of a probabilistic approach reduces dependence upon the definition of change by the application of thresholds (upper and lower bounds of change) at the image processing stage. Rather, a change layer is generated that may be interpreted liberally or conservatively, depending on the information needs of the end user.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Wulder, Michael A; White, J. C.; Bentz, Barbara J; Alvarez, M. F.; Coops, N. C. 2006. Estimating the probability of mountain pine beetle red-attack damage. Remote Sensing of Environment. 101(2): 150-166


    forest, mountain pine beetle, logistic regression, Landsat, tasseled cap, change detection

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page