Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Erkan Istanbulluoglu; David G. Tarboton; Robert T. Pack; Charles H. Luce
    Date: 2004
    Source: Journal of geophysical research. 109: F01009 (22 p.)
    Publication Series: Miscellaneous Publication
    PDF: View PDF  (1.1 MB)

    Description

    The controls of forest vegetation, wildfires, and harvest vegetation disturbances on the frequency and magnitude of sediment delivery from a small watershed (~3.9 km2) in the Idaho batholith are investigated through numerical modeling. The model simulates soil development based on continuous bedrock weathering and the divergence of diffusive sediment transport on hillslopes. Soil removal is due to episodic gully erosion, shallow landsliding, and debris flow generation. In the model, forest vegetation provides root cohesion and surface resistance to channel initiation. Forest fires and harvests reduce the vegetation. Vegetation loss leaves the land susceptible to erosion and landsliding until the vegetation cover reestablishes in time. Simulation results compare well with field observations of event sediment yields and long-term averages over ~10,000 years. When vegetation is not disturbed by wildfires over thousands of years, sediment delivery is modeled to be less frequent but with larger event magnitudes. Increased values of root cohesion (representing denser forests) lead to higher event magnitudes. Wildfires appear to control the timing of sediment delivery. Compared to undisturbed forests, erosion is concentrated during the periods with low erosion thresholds, often called accelerated erosion periods, following wildfires. Our modeling suggests that drainage density is inversely proportional to root cohesion and that reduced forest cover due to wildfires increases the drainage density. We compare the sediment yields under anthropogenic (harvest) and natural (wildfire) disturbances. Disturbances due to forest harvesting appear to increase the frequency of sediment delivery; however, the sediment delivery following wildfires seems to be more severe. These modeling-based findings have implications for engineering design and environmental management, where sediment inputs to streams and the fluctuations and episodicity of these inputs are of concern.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Istanbulluoglu, Erkan; Tarboton, David G.; Pack, Robert T. ; Luce, Charles H. 2004. Modeling of the interactions between forest vegetation, disturbances, and sediment yields. Journal of geophysical research. 109: F01009 (22 p.)

    Keywords

    sediment yield, wildfires, forest management, hydrology

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page