Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Suzanne M. Joy; R. M. Reich; Richard T. Reynolds
    Date: 2003
    Source: International Journal of Remote Sensing. 24(9): 1835-1852.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: View PDF  (388.9 KB)

    Description

    Traditional land classification techniques for large areas that use Landsat Thematic Mapper (TM) imagery are typically limited to the fixed spatial resolution of the sensors (30m). However, the study of some ecological processes requires land cover classifications at finer spatial resolutions. We model forest vegetation types on the Kaibab National Forest (KNF) in northern Arizona to a 10-m spatial resolution with field data, using topographical information and Landsat TM imagery as auxiliary variables. Vegetation types were identified by clustering the field variables total basal area and proportion of basal area by species, and then using a decision tree based on auxiliary variables to predict vegetation types. Vegetation types modelled included pinyon-juniper, ponderosa pine, mixed conifer, spruce- and deciduous-dominated mixes, and openings. To independently assess the accuracy of the final vegetation maps using reference data from different sources, we used a post-stratified, multivariate composite estimator. Overall accuracy was 74.5% (Kappa statistic=49.9%). Sources of error included differentiating between mixed conifer and spruce-dominated types and between openings in the forest and deciduous-dominated mixes. Overall, our nonparametric classification method successfully identified dominant vegetation types on the study area at a finer spatial resolution than can typically be achieved using traditional classification techniques.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Joy, Suzanne M.; Reich, R. M.; Reynolds, Richard T. 2003. A non-parametric, supervised classification of vegetation types on the Kaibab National Forest using decision trees. International Journal of Remote Sensing. 24(9): 1835-1852.

    Keywords

    Accipiter gentilis, classification, non-parametric classification, vegetation types, decision trees, Kaibab National Forest

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page