Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Mark E. Fenn; Mark A. Poth; Joseph D. Terry; Timothy J. Blubaugh
    Date: 2005
    Source: Canadian Journal of Forest Research 35:1464-1486
    Publication Series: Miscellaneous Publication
    PDF: View PDF  (891 KB)

    Description

    Net fluxes of nitrogen (N) mineralization and nitrification were measured in situ on a monthly basis for 3 years at a high (HN) and low (LN) N deposition site in the San Bernardino Mountains, California. Mean N mineralization fluxes in the forest floor and top 10 cm of mineral soil were 19.0 and 59.8 kg N·ha–1·year–1 at LN and HN, respectively. Mean net nitrification fluxes were 11.2 and 55.9 kg N·ha–1·year–1 at LN and HN, respectively. Relative nitrification (the percent N mineralized that was nitrified) was generally lower under Pinus ponderosa Dougl. ex P. & C. Laws. (or Pinus jeffreyi Grev. & Balf.) canopies than under Quercus kelloggii Newb. or open canopies. The rate of net N mineralization was the key factor for predicting the rate of net nitrification. Fertilization with 50 and 150 kg N·ha–1 at LN significantly increased the rates of net mineralization and net nitrification. At HN fertilization had no significant effect on net nitrification. We conclude that at low-deposition sites increased nitrification occurs in the short term in response to added N, but that sustained elevated net nitrification is driven by the accumulation of N-enriched litter and soil organic matter in conjunction with chronic throughfall N deposition inputs.

    Publication Notes

    • You may send email to psw_communications@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Fenn, Mark E.; Poth, Mark A.; Terry, Joseph D.; Blubaugh, Timothy J. 2005. Nitrogen mineralization and nitrification in a mixed-conifer forest in southern California: controlling factors, fluxes, and nitrogen fertilization response at a high and low nitrogen deposition site. Canadian Journal of Forest Research 35:1464-1486

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page