Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Rick G. KelseyPaul E. Hennon; Manuela Huso; Joseph G. Karchesy
    Date: 2005
    Source: Journal of Chemical Ecology. 31(11): 2653-2670
    Publication Series: Scientific Journal (JRNL)
    PDF: View PDF  (1.09 MB)

    Description

    We measured the concentrations of extractable bioactive compounds in heartwood of live yellow-cedar (Chamaecyparis noothtensis) trees and five classes of standing snags (1-5, averaging 4, 14,26,5 1, and 81 years since-death, respectively) to determine how the concentrations changed in the slowly deteriorating snags. Three individuals from each of these six condition classes were sampled at four sites spanning a 260-km distance across southeast Alaska, and the influence of geographic location on heartwood chemistry was evaluated. Cores of heartwood were collected at breast height and cut into consecutive 5-cm segments starting at the pith. Each segment was extracted with ethyl acetate and analyzed by gas chromatography. Concentrations of carvacrol, nootkatene, nootkatol, nootkatone, nootkatin, and total extractives (a sum of 16 compounds) for the inner (0-5 cm from pith), middle (5-10 cm from pith), and surface (outer 1.1-6.0 cm of heartwood) segments from each core were compared within each tree condition class and within segments across condition classes. Heartwood of class 1 and 2 snags had the same chemical composition as live trees. The first concentration changes begin to appear in class 3 snags, which coincides with greater heartwood exposure to the external environment as decaying sapwood sloughs away, after losing the protective outer bark. Within core segments, the concentrations of all compounds, except nootkatene, decrease between snag classes 2 and 5, resulting in the heartwood of class 5 snags having the lowest quantities of bioactive compounds, although not different from the amounts in class 4 snags. This decline in chemical defense is consistent with heartwood of class 5 snags being less decay-resistant than heartwood of live trees, as observed by others. The unique heartwood chemistry of yellow cedar and the slow way it is altered after death allow dead trees to remain standing for up to a century with a profound impact on the ecology of forests in southeast Alaska where these trees are in decline.

    Publication Notes

    • You may send email to pnw_pnwpubs@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Kelsey, Rick G.; Hennon, Paul E.; Huso, Manuela; Karchesy, Joseph G. 2005. Changes in heartwood chemistry of dead yellow-cedar trees that remain standing for 80 years or more in southeast Alaska. Journal of Chemical Ecology. 31(11): 2653-2670

    Keywords

    Chamaecyparis nookatensis, snags, decay resistance, chemical defense, carvacrol, nootkatin, antifungal compounds

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/24533