Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Andrzej BytnerowiczMark E. Fenn
    Date: 1996
    Source: Environmental Pollution, Vol. 92(2): 127-146
    Publication Series: Miscellaneous Publication
    PDF: View PDF  (2.1 MB)

    Description

    Atmospheric concentrations and deposition of the major nitrogenous (N) compounds and their biological effects in California forests are reviewed. Climatic characteristics of California are summarized in light of their effects on pollutant accumulation and transport. Over large areas of the state dry deposition is of greater magnitude than wet deposition due to the arid climate. However, fog deposition can also be significant in areas where seasonal fogs and N pollution sources coincide. The dominance of dry deposition is magnified in airsheds with frequent temperature inversions such as occur in the Los Angeles Air Basin. Most of the deposition in such areas occurs in summer as a result of surface deposition of nitric acid vapor (HN03) as well as particulate nitrate (NO3-) and ammonium (NH4+). Internal uptake of gaseous N pollutants such as nitrogen dioxide (NO2), nitric oxide (NO), HN03, peroxyacetyl nitrate (PAN), ammonia (NH3), and others provides additional N to forests. However, summer drought and subsequent lower stomatal conductance of plants tend to limit plant utilization of gaseous N. Nitrogen deposition is much greater than S deposition in California. In locations close to photochemical smog source areas, concentrations of oxidized forms of N (NO2, HN03, PAN) dominate, while in areas near agricultural activities the importance of reduced N forms (NH3, NH4+) significantly increases. Little data from California forests are available for most of the gaseous N pollutants. Total inorganic N deposition in the most highly-exposed forests in the Los Angeles Air Basin may be as high as 25-45 kg ha-1 year-1. Nitrogen deposition in these highly-exposed areas has led to N saturation of chaparral and mixed conifer stands. In N saturated forests high concentrations of NO3- are found in streamwater, soil solution, and in foliage. Nitric oxide emissions from soil and foliar N:P ratios are also high in N saturated sites. Further research is needed to determine the ecological effects of chronic N deposition, and to develop appropriate management options for protecting water quality and managing plant nutrient resources in ecosystems which no longer retain excess.

    Publication Notes

    • You may send email to psw_communications@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Bytnerowicz, Andrzej; Fenn, Mark E. 1996. Nitrogen deposition in California forests: a review. Environmental Pollution, Vol. 92(2): 127-146

    Keywords

    gaseous pollutants, particulates, Western forests, air pollution, ecological effects, soil nitrate, nitrogen saturation

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/24944