Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Thomas F. Smith; David M. Rizzo; Malcolm North
    Date: 2005
    Source: Forest Science, Vol. 51(3): 266-275
    Publication Series: Miscellaneous Publication
    PDF: Download Publication  (170 KB)

    Description

    Mortality patterns in an old-growth, mixed-conifer forest, in the absence of wildfire, were investigated at the Teakettle Experimental Forest from 2000 to 2002. We tested the hypothesis that after a century of fire suppression, pathogen- and insect-associated mortality (between episodic droughts) would be significantly greater on ingrowth trees (i.e., smaller-diameter, shade-tolerant species in high-density clusters). Using a survey of over 30,000 mapped trees, overall mortality, as measured by standing dead trees, was 8.7% of all stems ≥5 cm dbh. Mortality levels were proportional to the population size of the five dominant conifer species, white fir (Abies concolor), red fir (A. magnifica), incense cedar (Calocedrus decurrens), Jeffrey pine (Pinus jeffreyi), and sugar pine (Pinus lambertiana). There was also no significant difference in mortality between shade-tolerant and shade-intolerant species. All dead trees were clustered within plots. Mortality was significantly higher than expected for large-diameter trees (>100 cm dbh) with all conifer species combined and for each individual species, except Jeffrey pine. Small-diameter dead trees were grouped in high-density clusters. Mortality was less than expected among small-diameter trees (5–20 cm dbh) for all species combined, red and white fir, and sugar pine. Mortality for all conifers was higher than expected in areas of high stand density and lower in areas of low stand density. Mortality of small-diameter trees was clustered and particularly high in areas of high stand density. Our data suggest pathogen- and insect-associated mortality is significantly greater in areas of high stand density but it is not higher for shade-tolerant species. Furthermore, mortality is higher than expected for large-diameter trees, suggesting an acceleration of old-tree mortality under current fire suppression conditions.

    Publication Notes

    • You may send email to psw_communications@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Smith, Thomas F.; Rizzo, David M.; North, Malcolm. 2005. Patterns of mortality in an old-growth mixed-conifer forest of the Southern Sierra Nevada, California. Forest Science, Vol. 51(3): 266-275

    Keywords

    canopy gaps, density-dependent mortality, dwarf mistletoe, bark beetles, root rot

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/24976