Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Hartwell H. Welsh Jr.; Garth R. HodgsonAmy J. Lind
    Date: 2005
    Source: Ecography, Vol. 28: 521-536
    Publication Series: Miscellaneous Publication
    PDF: Download Publication  (200 KB)


    Ecosystems are rapidly being altered and destabilized on a global scale, threatening native biota and compromising vital services provided to human society. We need to better understand the processes that can undermine ecosystem integrity (resistance-resilience) in order to devise strategies to ameliorate this trend. We used a herpetofaunal assemblage to first assess spatial patterns of biodiversity and then to discover the underlying landscape processes likely responsible for these patterns. Reptiles and amphibians are a phylogenetically diverse set of species with documented sensitivity to environmental perturbations. We examined ecogeographic patterns of these taxa in aquatic and riparian environments across the landscape mosaic of the Mattole River watershed of northern California, USA. We analyzed species distributions relative to three primary vegetation types (grassland, second-growth forest, late-seral forest) and two hydrologic regimes (perennial vs intermittent). We sought evidence for the processes behind these patterns by modeling animal distributions relative to multi-scale compositional, structural, and physical attributes of the vegetation or hydrologic type. Total herpetofaunal diversity was higher along perennial streams, with reptile diversity higher in mixed grassland. Amphibian and reptile richness, and reptile evenness, varied significantly among the three vegetations. Evidence indicated that distinct assemblages were associated with each end of a seral continuum. Four amphibians were more abundant in late-seral forest, while two amphibians and two reptiles were more abundant in second-growth forest, or mixed grassland, or both. Two amphibians were more abundant along intermittent streams. Models for predicting reptile richness, or abundances of the two amphibian assemblages, indicated water temperature was the best predictor variable. Based on these results and the physiological limits of several sensitive species, we determined the primary processes influencing faunal assemblage patterns on this landscape have been vegetation changes resulting from the harvesting of late-seral forests and the clearing of forest for pasture. Comparing past with present landscape mosaics indicated that these changes have transformed the dominant amphibian and reptile species assemblage from a mostly cold-water and cool forest-associated assemblage to one now dominated by warm-water and mixed grassland/woodland species.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Welsh Jr., Hartwell H.; Hodgson, Garth R.; Lind, Amy J. 2005. Ecogeography of the herpetofauna of a nothern California watershed: linking species patterns to landscape processes. Ecography, Vol. 28: 521-536

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page