Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): James S. Clark
    Date: 2005
    Source: Ecology Letters, Vol. 8: 2-14
    Publication Series: Miscellaneous Publication
    PDF: Download Publication  (1.17 MB)


    Advances in computational statistics provide a general framework for the high dimensional models typically needed for ecological inference and prediction. Hierarchical Bayes (HB) represents a modelling structure with capacity to exploit diverse sources of information, to accommodate influences that are unknown (or unknowable), and to draw inference on large numbers of latent variables and parameters that describe complex relationships. Here I summarize the structure of HB and provide examples for common spatiotemporal problems. The flexible framework means that parameters, variables and latent variables can represent broader classes of model elements than are treated in traditional models. Inference and prediction depend on two types of stochasticity, including (1) uncertain); which describes our knowledge of fixed quantities, it applies to all 'unobservables' (latent variables and parameters), and it declines asymptotically with sample size, and (2) variable's, which applies to fluctuations that are not explained by deterministic processes and does not decline asymptotically with sample size. Examples demonstrate how different sources of stochasticity impact inference and prediction and how allowance for stochastic influences can guide research.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Clark, James S. 2005. Why environmental scientists are becoming Bayesians. Ecology Letters, Vol. 8: 2-14


    data modelling, Gibbs sampler, hierarchical bayes, inference, MCMC, models, prediction

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page