Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Plants can aquaire carbon from sources other than atmospheric carbon dioxide (CO2), including soil-dissolved inorganic carbon (DIC). Although the next flux of CO2 is out of the root, soil DIC can be taken up by the root, transported within the plant, and fixed either photosynthetically or anaplerotically by plant tissues. We tested the ability of Pinus taeda L. seedlings exposed to 13C-labeled soil DIC and two NH2 availability regimes to take up and fix soil DIC. We also measured the concentration and distribution of the fixed soul DIC within the plant and mycorrhizal tissues, and quantified the contribution of soul DIC to whole-plant carbon (C) gain. Seedligns exposed to labeled DIC where significantly enriched in 13C compared with seedlings exposed to unlabeled DIC (6.7 versus -31.7%). Fixed soil DIC was almost evenly distributed between above- and belowground biomass (55 and 45%, respectively), but was unevenly distributed among tissues. Abovegorund, stem tissue contained 65% of the fixed soul DIC but represented only 27% of the aboveground biomass, suggesting either corticular photosynthesis or preferential stem allocation. Belowground, soil DIC had the greatest effect (measured as 13C enrichment) on the C pool of rapidly growing nonmycorrhizal roots. Soil DIC contributed ~0.8% to whole-plant C gain, and ~1.6% to belowground C gain. We observed a slight but nonsignificant increase in both relative C gain and the contribution of soil DIC among tissue types and increased the amount of fixed soul DIC in ectomycorrhizal roots by 130% compared with unfertilized seedlings. Increased NH4 availability did not increase fixation of soil DIC in nonmycorrhizal roots, suggesting that NH4 assimilation may be concentrated in ectomycorrhizal fungal tissues, reflecting greater anaplerotic demands. Soil DIC is likely to contribute only a small amount of C to forest trees, but it may be important in C fixation processes of specific tissues, such as newly formed stems and fine roots, an ectomycorrhizal roots assimilating NH4.

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Ford, Chelcy R.; Wurzburger, Nina; Henderick, Ronald L.; Teskey, Robert O. 2007. Soil DIC uptake and fixation in Pinus taeda seedlings and its C contribution to plant tissues and ectomycorrhizal fungi. Tree Physiology, Vol. 27: 375-383

    Keywords

    anaplerotic fixation, carbon cycling, carbon dioxide, corticular photosynthesis, dissolved inorganic carbon, stable isotope

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/26053