Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Brett Tyler; Sucheta Tripathy; Nik Grunwald; Kurt Lamour; Kelly Ivors; Matteo Garbelotto; Daniel Rokhsar; Nik Putnam; Igor Grigoriev; Jeffrey Boore
    Date: 2006
    Source: In: Frankel, Susan J.; Shea, Patrick J.; and Haverty, Michael I., tech. coords. Proceedings of the sudden oak death second science symposium: the state of our knowledge. Gen. Tech. Rep. PSW-GTR-196. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture: 157-158
    Publication Series: General Technical Report (GTR)
    Station: Pacific Southwest Research Station
    PDF: View PDF  (30 KB)

    Description

    A draft genome sequence has been determined for Phytophthora ramorum, together with a draft sequence of the soybean pathogen Phytophthora sojae. The P. ramorum genome was sequenced to a depth of 7-fold coverage, while the P. sojae genome was sequenced to a depth of 9-fold coverage. The genome size of P. ramorum was estimated to be significantly smaller than that of P. sojae, 65 Mb compared to 95 Mb, with the difference lying primarily in the amount of repetitive sequences in the P. sojae genome. Computer predictions estimate the number of genes in P. ramorum to be 15,743, while 19,027 are predicted for P. sojae. Most of the differences in gene number result from larger multigene families in P. sojae. Six hundred twenty four genes were predicted to be unique to P. ramorum, while 1755 were predicted to be unique to P. sojae. The generally high level of similarity of most P. ramorum and P. sojae genes predicts that, in general, chemical treatments developed for other Phytophthora species should also be effective against P. ramorum. The small size of the P. ramorum genome and lack of extensive numbers of duplicated chromosomal segments effectively eliminates the hypothesis that P. ramorum is a recent hybrid between two other Phytophthora species. The two Phytophthora genome sequences are available at http://genome.jgi-psf.org/ and http://phytophthora.vbi.vt.edu.

    Publication Notes

    • You may send email to psw_communications@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Tyler, Brett; Tripathy, Sucheta; Grunwald, Nik; Lamour, Kurt; Ivors, Kelly; Garbelotto, Matteo; Rokhsar, Daniel; Putnam, Nik; Grigoriev, Igor; Boore, Jeffrey. 2006. Genome sequence of Phytophthora ramorum: implications for management. In: Frankel, Susan J.; Shea, Patrick J.; and Haverty, Michael I., tech. coords. Proceedings of the sudden oak death second science symposium: the state of our knowledge. Gen. Tech. Rep. PSW-GTR-196. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture: 157-158

    Keywords

    DNA sequence, Phytophthora ramorum

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/26606